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Abstract
The existence of the nontrivial periodic solutions for the nonautonomous first order
delay differential equation x′(t) = –[f (t, x(t – 1)) + f (t, x(t – 2)) + · · · + f (t, x(t – (2N – 1)))] is
investigated, where f ∈ C(R × R,R) is 2N-periodic in t and odd in x, N is a positive
integer. We prove several new existence results by some recent critical point
theorems.
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1 Introduction
It is well known that critical point theory is a powerful tool that deals with the multiplicity
of periodic solutions to ordinary differential systems as well as partial differential equa-
tions (see [–]). In , Li and He [] firstly applied the critical point theory to study the
multiplicity of periodic solutions to delay differential equations. Especially, in , Guo
and Yu [] established a variational framework for autonomous systems. In the past sev-
eral years, some results on the existence of periodic solutions for the functional differential
equation were obtained by critical point theory (see [–]).

In , Fei [, ] considered the following autonomous functional differential equa-
tion:

(∗) x′(t) = –
[
f
(
x(t – )

)
+ f

(
x(t – )

)
+ · · · + f

(
x
(
t – (n – )

))]
,

where f is odd and n ≥  is an integer. Using the Yorke-Kaplan technique, (∗) is changed
into a Hamiltonian system. Periodic solutions of the Hamiltonian systems are still obtained
as critical points of a function ϕ over a Hilbert space E. However, instead of finding critical
points of ϕ over E directly, the author worked on a subspace of E which has a symmetric
structure. When n is even, the function ϕ is invariant and ϕ is equivariant about a compact
group. This allows one to find critical points of ϕ on a subspace of E which is invariant un-
der the mentioned group action. Then one can apply the pseudo-index theory [] to obtain
periodic solutions in this subspace, which surely have the required symmetric structure
and give solutions to (∗). When n is odd, the function ϕ is still invariant about a similar
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compact group. However, ϕ is not equivariant about this compact group action anymore.
Therefore one cannot directly apply the same idea as in the case when n is even. In order
to overcome the difficulty, one has to construct equivariant pseudo-gradient vector fields
and prove a new deformation theorem. Then one can combine a Galerkin approximation
with the S-index theory ([], Chapter ) to obtain critical points of ϕ with the required
symmetric structure (for details see []).

But most of these functional differential equation are autonomous, and the results on
the nonautonomous functional differential equation are relatively few (see [, –]).

Motivated by the work of [–, –], we consider a class of nonautonomous first
order delay differential equations,

x′(t) = –
[
f
(
t, x(t – )

)
+ f

(
t, x(t – )

)
+ · · · + f

(
t, x

(
t – (N – )

))]
, (.)

where f ∈ C(R × R, R) is N-periodic in t and odd in x, N ∈ Z+ and Z+ is the set of all
positive integers.

More precisely, if the solution x(t) of (.) satisfies x(t) = –x(t – N), let

x(t) = x(t), x(t) = x(t – ), . . . , xN (t) = x
(
t – (N – )

)
, (.)

then X(t) = (x(t), x(t), . . . , xN (t))T satisfies

d
dt

X(t) = AN G(t, X), where AN =

⎛

⎜⎜
⎜⎜
⎜
⎝

 – · · · –

 
. . .

...
...

. . . . . . –
 · · ·  

⎞

⎟⎟
⎟⎟
⎟
⎠

, (.)

i.e., AN is a N × N skew symmetric matrix, and

G(t, X) =
(
f (t, x), f (t, x), . . . , f (t, xN )

)T .

Also

X(t) =
(
x(t), x(t), . . . , xN (t)

)T

satisfies the following symmetric structure:

x(t) = –xN (t – ), x(t) = x(t – ), x(t) = x(t – ), . . . ,

xN (t) = xN–(t – ).
(.)

In this paper, we have the following conditions on f .

(f) There exist two N-periodic and continuous functions α, β such that

α(t) = lim
x→

f (t, x)
x

, β(t) = lim
x→∞

f (t, x)
x

uniformly for t ∈ [, N].
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(f±) There exist d, d >  such that

±[
F(t, x) – xf (t, x)

] ≥ d|x| – d, (t, x) ∈ [, N] × R,

where F(t, x) =
∫ x

 f (t, s) ds.

Denote m–(t) =  if all t < ; m–(t) =  otherwise.

Theorem . Assume that f satisfies (f)-(f–) with

β(t) >
π

N
tan

π

N
, for t ∈ [, N].

Then (.) possesses at least m pairs N-periodic solutions with x(t) = –x(t – N), where

m =
∞∑

j=

m–
[

π (j – )
N

tan
π (j – )

N
– β(t)

]
,

for

tan
π (j – )

N
> , j ∈ Z+ and for all t ∈ [, N].

Theorem . Assume that f satisfies (f)-(f+) with

β(t) <
π (N – )

N
tan

π (N – )
N

, for t ∈ [, N].

Then (.) possesses at least m pairs N-periodic solutions with x(t) = –x(t – N), where

m =
∞∑

j=

m–
[
β(t) –

π (j – )
N

tan
π (j – )

N

]
,

for

tan
π (j – )

N
< , j ∈ Z+ and for all t ∈ [, N].

In this paper, the main purpose is to study the multiplicity of periodic solutions for the
systems (.) via some recent critical point theorems for strongly indefinite functionals.
In order to achieve this, some preliminaries are necessary. Let X and Y be Banach spaces
with X being separable and reflexive, and set E = X ⊕ Y . Let S ⊂ X∗ be a dense subset. For
each s ∈ S , there is a semi-norm on E defined by

ps : E → R, ps(u) =
∣∣s(x)

∣∣ + ‖y‖ for u = x + y ∈ X ⊕ Y .

We denote by TS the topology on E induced by a semi-norm family {ps}, and let ω and
ω∗ denote the weak topology and weak∗ topology, respectively. Clearly, the TS topology
contains the product topology on E = X ⊕ Y produced by the weak topology on X and the
strong topology on Y .

For a functional � ∈ C(E, R) we write �a = {u ∈ E : �(u) ≥ a}. Recall that �′ is weakly
sequentially continuous if uk ⇀ u in E, and one has limk→∞ �′(uk)v → �′(uk)v for each
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v ∈ E, i.e. �′ : (E,ω) → (E∗,ω∗) is sequentially continuous. For c ∈ R we say that � satisfies
the (C)c condition if any sequence {uk} ⊂ E such that �(uk) → c and ( + ‖uk‖)�′(uk) → 
as k → ∞ contains a convergent subsequence.

Suppose that

(�) � ∈ C(E, R), �c is TS -closed for every c ∈ R, and �′ : (�c,TS ) → (E∗,ω∗) is contin-
uous.

(�) There exists a ρ >  such that κ := inf�(Bρ ∩ Y ) >  = �(), where Bρ = {u ∈ E :
‖u‖ = ρ}.

(�) There exist a finite dimensional subspace Y ⊂ Y and R > ρ such that c := sup�(E) <
∞ and sup�(E\S) < inf�(Bρ ∩Y ), where E := X ⊕Y, and S = {u ∈ E : ‖u‖ ≤ R}.

The following critical point theorem will be used later (see [, , ]).

Theorem A Assume that � is even and (�)-(�) are satisfied. Then � has at least m =
dim Y pairs of critical points with critical values less than or equal to c provided � satisfies
the (C)c condition for all c ∈ [κ , c].

2 Preliminaries
It is easy to see that AN is a nonsingular skew symmetric Hamiltonian matrix, and (.)
becomes a classical Hamiltonian system,

z′(t) = AN∇H(t, z), (.)

where ∇H(t, z) denotes the gradient of H(t, z) with respect to the z variable, and

H(t, z) = F(t, z) + F(t, z) + · · · + F(t, zN ), (.)

for any z = (z, z, . . . , zN )T ∈ RN .
For S = R/(NZ), let H/ = W /,(S, RN ). Then H/ is a Hilbert space with norm ‖ · ‖

and inner product 〈, 〉, and H/ consists of those z(t) in L(S, RN ) whose Fourier series,

z(t) = a +
∞∑

j=

[
aj cos

(
π

N
jt
)

+ aj cos

(
π

N
jt
)]

,

satisfies

‖z‖ = N |a| + N
∞∑

j=

j
(|aj| + |bj|

)
< ∞,

where aj, bj ∈ RN . By Proposition . [], we know that H/ is compactly embedded in
Ls(S, RN ), where s ∈ [,∞).

Since AN is a nonsingular skew, so is A–
N . We define an operator L by extending the

bilinear form

〈Lz, y〉 =
∫ N



(
–A–

N ż(t), y(t)
)

dt. (.)

By direct computation, L is a bounded self-adjoint linear operator on H/.
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By (f), one can show that H(t, z) ∈ C(R × RN , R) and there exist two continuous func-
tions a(t) > , b(t) ≥  such that

H(t, z) ≤ a(t)|z| + b(t), ∀z ∈ RN .

By using similar arguments as in [], Chapter , let

ϕ(z) =


〈Lz, z〉 + ψ(z), (.)

where

ψ(z) =
∫ N


H

(
t, z(t)

)
dt. (.)

Thus the critical points of ϕ(z) in H/ are classical solutions of (.).
Let TN be the N × N matrix given

TN =

⎛

⎜⎜
⎜⎜⎜
⎜⎜
⎜
⎝

  · · ·  –

 
. . .  

 
. . .

...
...

...
. . . . . .  

 . . .   

⎞

⎟⎟
⎟⎟⎟
⎟⎟
⎟
⎠

.

For z(t) ∈ H/, define by

δz(t) = TN z(t – ). (.)

Then δN z(t) = –z(t – N), δN z(t) = z(t), and G = {δ, δ, . . . , δN } is a compact group action
over H/. Moreover, if δz(t) = z(t) holds, z(t) has the symmetric structure (.).

Lemma . [] Denote E = {z(t) ∈ H/ : δz(t) = z(t)}. Then

E =

{

z(t) ∈ H/(S, RN)
: z(t) =

∞∑

j=

[
aj cos

(
π

N
(j – )t

)
+ bj sin

(
π

N
(j – )t

)]
:

(
aj

bj

)

∈ span

{(
uj

wj

)

,

(
–wj

uj

)}}

,

where βj = π
N (j – ) and

uj =
(
, cosβj, cos(βj), . . . , cos(N – )βj

)T ,

wj =
(
, sinβj, sin(βj), . . . , sin(N – )βj

)T .

Then we have the following lemma by using similar arguments [].

Lemma . If z(t) is a critical point of ϕ in E, then z(t) is a critical point of ϕ in H/.
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Proof By (.) and direct computation, we have

AN TN = TN AN , H(t, TN z) = H(t, z), ∇H(t, TN z) = TN∇H(t, z).

Combing these with (.) and the fact that any z(t) ∈ E is N-periodic, one can easily
verify that

ϕ(δz) = ϕ(z), ϕ′(δz) = δϕ′(z),

i.e., ϕ is G-invariant, and ϕ′ is G-equivariant. The conclusion follows directly. �

Remark . By Lemma ., the function ϕ is invariant and ϕ is equivariant about the
compact group G. This allows to find critical points of ϕ on a subspace of E which is
invariant under the group G. Then we can apply Theorem A to obtain periodic solutions
in this subspace, which surely have the required symmetric structure and give solutions
to (.).

Moreover, we also denote by M+(·), M–(·) and M(·) the positive definite, negative defi-
nite, and null subspaces of the self-adjoint linear operator defining it, respectively.

Then E has an orthogonal decomposition

E = M+(L) ⊕ M–(L) ⊕ M(L).

By Lemma . [], for zj(t) = aj cos( π
N (j – )t) + bj sin( π

N (j – )t) (j = , , . . .), aj and bj

are defined in Lemma ., we have

〈Lzj, zj〉 = –
π (j – )

N
tan

π (j – )
N

[
(aj, aj) + (bj, bj)

]
. (.)

Let

σ = min

{∣
∣∣
∣
π (j – )

N
tan

π (j – )
N

∣
∣∣
∣ : j ∈ Z+

}
> .

So we have

〈Lzj, zj〉 ≥ σ‖zj‖, for γj > ,

〈Lzj, zj〉 ≤ –σ‖zj‖, for γj < ,

where γj = – tan π (j–)
N . Therefore, we get

〈Lz, z〉 ≥ σ‖z‖, for z ∈ M+(L), (.)

〈Lz, z〉 ≤ –σ‖z‖, for z ∈ M–(L). (.)

3 Proofs of theorems
In this section, ci stand for different positive constants for i ∈ Z+.



Meng Advances in Difference Equations  (2015) 2015:134 Page 7 of 15

By direct computation, (f) implies that H(t, z) is even and satisfies

∇H(t, z) = α(t)z + o
(|z|) as |z| → , (.)

∇H(t, z) = β(t)z + o
(|z|) as |z| → ∞, (.)

uniformly for t ∈ [, N].
(f±) implies that

H(t, z) –
(∇H(t, z), z

) ≥ d|z| – Nd, ∀(t, z) ∈ [, N] × RN (.)

and

–
[
H(t, z) –

(∇H(t, z), z
)] ≥ d|z| – Nd, ∀(t, z) ∈ [, N] × RN . (.)

Remark . Here we prove that (.) and (.) hold. By (.) and (f±), we have

±[
H(t, z) –

(∇H(t, z), z
)]

= ±
N∑

i=

[
F(t, zi) – zif (t, zi)

]

≥ d

N∑

i=

|zi| – Nd ≥ d|z| – Nd.

Lemma . Suppose that f satisfies (f)-(f±). Then the function ϕ satisfies the (C)c con-
dition for any c ∈ R.

Proof First, we need some notations. For any z, y ∈ E, define an operator B by extending
the bilinear form

〈Bz, y〉 =
∫ N



(
β(t)z(t), y(t)

)
dt.

By direct computation, B is a bounded self-adjoint linear operator on E. Thus L + B is also
a self-adjoint linear operator on E.

Let

E = M+(L + B) ⊕ M–(L + B) ⊕ M(L + B).

Also there exists σ >  such that
〈
(L + B)z, z

〉 ≥ σ‖z‖, for z ∈ M+(L + B), (.)
〈
(L + B)z, z

〉 ≤ –σ‖z‖, for z ∈ M–(L + B). (.)

So we have

�(z) = –ϕ(z) = –


〈
(L + B)z, z

〉
–

∫ N



[
H(t, z) –



(
β(t)z, z

)
]

dt

and

〈
�′(z), y

〉
= –

〈
(L + B)z, y

〉
–

∫ N



(∇H(t, z) – β(t)z, y
)

dt.
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Let {zk} ⊂ E be any sequence such that

�(zk) → c,
(
 + ‖zk‖

)
�′(zk) →  as k → ∞. (.)

We first prove that {zk} is bounded. Since zk ∈ E, we have

zk = z+
k + z–

k + z ∈ M+(L + B) ⊕ M–(L + B) ⊕ M(L + B).

Let

h(z) =
∫ N


H̃(t, z) dt, H̃(t, z) = H(t, z) –



(
β(t)z, z

)
, z ∈ E.

By (.), we have

|∇H̃(t, z)|
|z| →  as |z| → ∞,

uniformly for t ∈ [, N]. This means that, for any ε > , there exists M >  such that

∣∣∇H̃(t, z)
∣∣ ≤ ε|z| + M, for all (t, z) ∈ [, N] × RN . (.)

Therefore, for any y ∈ E,

∣∣〈h′(zk), y
〉∣∣ =

∣∣∣
∣

∫ N



(∇H̃
(
t, zk(t)

)
, y(t)

)
dt

∣∣∣
∣

≤
∫ N



∣∣∇H̃
(
t, zk(t)

)∣∣∣∣y(t)
∣∣dt

≤
(∫ N



∣∣∇H̃
(
t, zk(t)

)∣∣ dt
)/

‖y‖L

≤ (
ε‖zk‖

L + NM)/‖y‖L

≤ (
ε‖zk‖ + NM)/‖y‖.

This implies

lim
k→∞

‖h′(zk)‖
‖zk‖ ≤ √

ε, for any ε > ,

i.e.

‖h′(zk)‖
‖zk‖ →  as k → ∞. (.)

Then

〈
–�′(zk), z+

k
〉

=
〈
(L + B)z+

k , z+
k
〉
+

〈
h′(zk), z+

k
〉

≥ σ
∥∥z+

k
∥∥ –

∥∥h′(zk)
∥∥∥∥z+

k
∥∥.
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By (.) and (.), we have

‖z+
k ‖

‖zk‖ →  as k → ∞. (.)

Similarly,

‖z–
k ‖

‖zk‖ →  as k → ∞. (.)

Case (i): (.) holds. We have

〈
�′(zk), zk

〉
– �(zk)

=
∫ N



[
H(t, zk) –

(∇H(t, zk), zk
)]

dt

≥ d

∫ N


|zk|dt – Nd

≥ d

∫ N



∣
∣z

k
∣
∣dt – d

∫ N



(∣∣z+
k
∣
∣ +

∣
∣z–

k
∣
∣)dt – Nd

≥ d
∥
∥z

k
∥
∥ – d

(∥∥z+
k
∥
∥ +

∥
∥z–

k
∥
∥)

– Nd.

Here we used the fact that M(L + B) is finite dimensional. By (.), (.), and (.), we
have

‖z
k‖

‖zk‖ →  as k → ∞. (.)

But this implies the following contradiction:

 =
‖zk‖
‖zk‖ ≤ ‖z

k‖ + ‖z–
k ‖ + ‖z+

k ‖
‖zk‖ →  as k → ∞. (.)

Therefore {‖zk‖} must be bounded.
Case (ii): (.) holds. Similar to Case (i), we have

〈
�(zk) – �′(zk), zk

〉

=
∫ N



[(∇H(t, zk), zk
)

– H(t, zk)
]

dt

≥ d

∫ N


|zk|dt – Nd

≥ d

∫ N



∣∣z
k
∣∣dt – d

∫ N



(∣∣z+
k
∣∣ +

∣∣z–
k
∣∣)dt – Nd

≥ d
∥∥z

k
∥∥ – d

(∥∥z+
k
∥∥ +

∥∥z–
k
∥∥)

– Nd.

This implies (.) and (.). Thus {‖zk‖} must be bounded.
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So we see that {zk} is bounded, and going if necessary to a subsequence, we can assume
that zk ⇀ z in E and zk → z in L(S, RN ). Write zk = z+

k + z–
k + z–

k and z = z+ + z– + z, then
z±

k ⇀ z± in E, z
k ⇀ z in E, and z±

k → z± in L(S, RN ).
In view of (.) and z–

k → z– in L(S, RN ), it is easy to verify

∫ N



(∇H(t, zk) – β(t)zk , z–
k – z–)

dt → 

and

∫ N



(∇H(t, z) – β(t)z, z–
k – z–)

dt → .

But then 〈�′(zk) – �′(z), z–
k – z–〉 →  as k → ∞, and

〈
�′(zk) – �′(z), z–

k – z–〉

= –
〈
(L + B)

(
z–

k – z–)
, z–

k – z–〉

–
∫ N



(∇H(t, zk) – β(t)zk , z–
k – z–)

dt +
∫ N



(∇H(t, z) – β(t)z, z–
k – z–)

dt

≥ σ
∥
∥z–

k – z–∥
∥ –

∫ N



(∇H(t, zk) – β(t)zk , z–
k – z–)

dt

+
∫ N



(∇H(t, z) – β(t)z, z–
k – z–)

dt.

This yields z–
k → z– in E. Similarly, z+

k → z+ in E and hence zk → z in E, that is, � sat-
isfies the (C)c condition. Thus ϕ satisfies the (C)c condition. The proof of Lemma . is
complete. �

Proof of Theorem . Let X = M+(L) ⊕ M(L), Y = M–(L), E = X ⊕ Y , and

�(z) = –ϕ(z), �(z) = ψ(z),

where ϕ(z) and ψ(z) are defined in Section .
In order to obtain this theorem, we will apply Theorem A to the functional �(z). Let

S = X∗, TS = E = X ⊕ Y . The proof of this theorem is divided into the following three
steps.

Step . � satisfies (�).
We first check that �c is TS -closed for any c ∈ R. Let {zk} be any sequence TS -converging

to some z ∈ E. Write zk = z+
k + z

k + z–
k and z = z+ + z + z–, then z–

k → u– in E and hence
{z–} is bounded in the norm topology.

Note that β(t) > π
N tan π

N for t ∈ [, N], then for any z ∈ E and small ε > , by (.), we
have

�(z) =
∫ N


H(t, z) dt =

∫ N



∫ 



(∇H(t, sz), z
)

ds dt

≥
∫ N



∫ 



(
β(t)sz, z

)
ds dt
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–
∫ N



∫ 



∣∣∇H(t, sz) –
(
β(t)sz, z

)∣∣|z|ds dt

≥ 


∫ N



(
β(t)z, z

)
dt –

∫ N



∫ 



(
ε|sz| + M

)|z|ds dt

≥ 


(
π

N
tan

π

N
– ε

)
‖z‖

L – M‖z‖L ≥ c‖z‖
L – c‖z‖L ,

which implies that � is bounded from below on E. Consequently, combining zk ∈ �c and

 〈Lz+

k , z+
k 〉 = – 

 〈Lz–
k , z–

k 〉–�(zk) –�(zk) shows that {z+
k } is bounded in E by (.) and hence

�(zk) = –


〈
Lz+

k , z+
k
〉
–



〈
Lz–

k , z–
k
〉
– �(zk)

≤ –


〈
Lz+

k , z+
k
〉
–



〈
Lz–

k , u–
k
〉
– c ≤ c. (.)

Moreover, since ‖zk‖
L = ‖z+

k ‖
L + ‖z

k‖
L + ‖z–

k ‖
L , we have

�(zk) ≥ c‖zk‖
L – c‖zk‖L ≥ ‖zk‖L – c ≥ ∥∥z

k
∥∥

L – c. (.)

It follows from (.) and (.) that {z
k } is also bounded in E since all norms are equivalent

in a finite dimensional space. Then ‖zk‖ is bounded, and hence we can assume that {zk}
converges weakly to z = z+ + z + z– in E. Thus we have �(zk) → �(z). Note that 〈Ly, y〉/

is an equivalent norm on H+. By the lower semi-continuity of the norm, we get

c ≤ lim sup
k→∞

�(zk) = lim sup
k→∞

(
–



〈
Lz+

k , z+
k
〉
–



〈
Lz–

k , z–
k
〉
– �(zk)

)

= – lim inf
k→∞



〈
Lz+

k , z+
k
〉
–



〈
Lz–, z–〉

– �(z) ≤ �(z),

that is, z ∈ �c and hence �c is TS -closed.
Next, we prove that �′ : (�c,TS ) → (E∗,ω∗) is continuous. To achieve this, it is sufficient

to demonstrate that � ′ has the same property. Suppose zk ⇀ u in E, then {zk} converges
uniformly to z on [, N]. Hence, for every given y ∈ E, we see that (∇H(t, zk(t)), y(t))
converges to (∇H(t, z(t)), y(t)) in measure on [, N]. Moreover, by (.), one has

∣∣(∇H
(
t, zk(t)

)
, y(t)

)∣∣ ≤ (
ε‖zk‖∞ + β̄‖zk‖∞ + M

)‖y‖∞ ≤ c

for all k and t ∈ [, N], where β̄ = maxt∈[,N]{β(t)} and ‖ · ‖∞ denotes the natural norm
of C(S, RN ). Thus, the Vitali theorem is applicable and

〈
� ′(zk), y

〉
=

∫ N



(∇H(t, zk), y
)

dt →
∫ N



(∇H(t, z), y
)

dt =
〈
� ′(z), y

〉

for any y ∈ E. So � satisfies (�).
Step . � satisfies (�).
By (.) and (.), for any ε > , there exist Cε >  and p >  such that

H(t, z) ≤ ε|z| + Cε|z|p, for all (t, z) ∈ [, N] × RN .
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Hence, for z ∈ Y and small ε, we have

�(z) = –


〈Lz, z〉 –

∫ N


H(t, z) dt

≥ –


〈Lz, z〉 –

∫ N



(
ε|z| + Cε|z|p

)
dt

≥ σ


‖z‖ – ε‖z‖

L – Cε‖z‖p
Lp

≥ σ


‖z‖ – εξ‖z‖ – Cεξ‖z‖p

≥ σ


‖z‖ – c‖z‖p,

where ξ, ξ >  satisfy ‖z‖L ≤ ξ‖z‖, ‖z‖Lp ≤ ξ‖z‖; see [], Proposition ..
Since p > , there exists a small ρ >  such that 

ρ ≥ cρ
p. Therefore,

κ := inf�(Bρ ∩ Y ) ≥ 

ρ > ,

and hence (�) holds.
Step . � satisfies (�).
Let

Y = span

{
aj cos

(
π

N
(j – )t

)
, bj sin

(
π

N
(j – )t

)
:

β(t) >
π (j – )

N
tan

π (j – )
N

> , for all t ∈ [, N]
}

,

where aj and bj are defined in Lemma ..
Obviously, Y ⊂ Y and dimY = m. In order to obtain the desired conclusion, it is suf-

ficient to prove that �(z) → –∞ as ‖z‖ → ∞ on E := X ⊕ Y.
Let

m = max

{
j ∈ Z+ : β(t) >

π (j – )
N

tan
π (j – )

N
> , for all t ∈ [, N]

}

and

� = –
π (m – )

N
tan

π (m – )
N

.

By the definition of �, there exists a constant  < δ < σ ; σ is defined in (.), such that

β(t) ≥ –� + δ (.)

for t ∈ [, N]. Let

J =
{

j ∈ Z+ : β(t) >
π (j – )

N
tan

π (j – )
N

> , for all t ∈ [, N]
}

.
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For any y ∈ Y, by (.),

〈Ly, y〉 =
∑

j∈J

(
–

π (j – )
N

tan
π (j – )

N
[
(aj, aj) + (bj, bj)

])

≥ �‖y‖
L . (.)

Let H̃(t, z) = H(t, z) – 
 (β(t)z, z). We claim that, for  �= z ∈ E,

‖z‖–
∫ N


H̃(t, z) dt →  as ‖z‖ → ∞. (.)

Indeed, for  �= z ∈ E, by (.), one has

‖z‖–
∣∣
∣∣

∫ N


H̃(t, z) dt

∣∣
∣∣

= ‖z‖–
∣
∣∣
∣

∫ N



∫ 



(∇H(t, sz) – β(t)sz, z
)

ds dt
∣
∣∣
∣

≤ ‖z‖–
∫ N



(
ε|z| + M

)|z|dt

≤ ‖z‖–(ε‖z‖
L + M‖z‖L

)

≤ ε +
M
‖z‖ ,

which implies that (.) is true by the arbitrariness of ε. Then, for z = z+ + z + z– ∈ E, by
(.)-(.) and (.), one has

�(z) = –


〈
Lz–, z–〉

–


〈
Lz+, z+〉

–
∫ N


H(t, z) dt

≤ –
�


∥∥z–∥∥

L –
δ


∥∥z+∥∥ –




∫ N



(
β(t)z, z

)
dt –

∫ N


H̃(t, z) dt

≤ –
�


∥
∥z–∥

∥
L –

δ


∥
∥z+∥

∥ –



(–� + δ)‖z‖
L –

∫ N


H̃(t, z) dt

≤ –
�


∥∥z–∥∥

L –
δ


∥∥z+∥∥ –




(–� + δ)
(∥∥z–∥∥

L +
∥∥z∥∥

L
)

–
∫ N


H̃(t, z) dt

≤ –
δ


(∥∥z–∥∥

L +
∥∥z+∥∥ +

∥∥z∥∥
L

)
–

∫ N


H̃(t, z) dt.

Since M and Y are finitely dimensional, (.) and the above estimate imply that �(z) →
–∞ as ‖z‖ → ∞, z ∈ E := X ⊕ Y. Hence (�) holds.

The proof of Theorem . is complete. �

Proof of Theorem . Let X = M–(L) ⊕ M(L), Y = M+(L), E = X ⊕ Y , and

�(z) = ϕ(z), �(z) = –ψ(z)
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and

Y = span

{
aj cos

(
π

N
(j – )t

)
, bj sin

(
π

N
(j – )t

)
:

β(t) <
π (j – )

N
tan

π (j – )
N

< , for t ∈ [, N]
}

,

where aj and bj are defined in Lemma ..
Then the conclusion will be obtained by the same argument as in the proof of Theo-

rem .. The proof of Theorem . is complete. �

Consider the nonautonomous delay equation

x′(t) = –f
(
t, x(t – )

)
. (.)

Example . Consider the nonautonomous delay equation (.), where

f (t, x) = a(t)x – b(t)
[

x
ln(e + x)

–
x

(e + x) ln(e + x)

]
,

and a(t) = π ( + tan( π t
 – π

 )), b(t) = π
 for t ∈ [, ].

It is easy to see that α(t) = a(t) – b(t) ≤ , β(t) = a(t) ≥ π for t ∈ [, ], and F(t, x) =
∫ x

 f (t, s) ds = a(t)x

 – b(t)x

ln(e+x) . By Theorem ., we get m = . Thus (.) possesses at least
two pairs of -periodic solutions with x(t) = –x(t – ).

Example . Consider the nonautonomous delay equation (.), where

f (t, x) = a(t)x – b(t)
[

x
ln(e + x)

–
x

(e + x) ln(e + x)

]
,

and a(t) = π (– + tan( π t
 – π

 )), b(t) = –π for t ∈ [, ].
It is easy to see that α(t) = a(t) – b(t) ≥ , β(t) = a(t) ≤ –π for t ∈ [, ]. By Theo-

rem ., we get m = . Thus (.) possesses at least four pairs of -periodic solutions with
x(t) = –x(t – ).
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