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Abstract
In this paper, a class of discrete wave equations with Dirichlet boundary conditions
are obtained by using the center-difference method. For any positive integersm
and T , when the existence of timemT -periodic solutions is considered, a strongly
indefinite discrete system needs to be established. By using a variant generalized
weak linking theorem, a non-resonant superlinear (or superquadratic) result is
obtained and the Ambrosetti-Rabinowitz condition is improved. Such a method
cannot be used for the corresponding continuous wave equations or the continuous
Hamiltonian systems; however, it is valid for some general discrete Hamiltonian
systems.
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1 Introduction
The existence of time periodic solutions for a nonlinear wave equation of the form

utt – uxx + g(t, u) = ,  < x < π , t ∈ R, ()

with the Dirichlet boundary conditions

u(, t) =  = u(π , t) ()

had been established in Vitt [] when the distributed self-oscillating systems been consid-
ered.

We note that the eigenvalues of the operator ∂tt – ∂xx in the space of functions u(x, t),
π/ω-periodic in time and such that, say, u(·, t) ∈ H

(,π ) for all t, are –ωl + j, l ∈ Z,
j ≥ . Therefore, when ω is irrational, the eigenvalues accumulate to . In this case, the in-
verse operator of ∂tt – ∂xx is unbounded and the standard implicit function theorem is not
applicable. When ω is rational, the number of -spectra is infinite, thus, this will intro-
duce the presence of an infinite-dimensional bifurcation equation. Consequently, when
we consider the existence of the time periodic solutions for problem ()-(), two main
difficulties must be overcome: the ‘small denominators’ problem and the presence of an
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infinite-dimensional bifurcation equation. To this end, two main methods are used, that
is, the variations viewpoint (see Rabinowitz [] and Brézis and Coron []) and the KAM
theory (see Berti and Bolle [] and Gentile and Mastropietro []).

Let Z be a set of all integers, R be a set of all real numbers, and Z+ = {, , , . . .}. For
any integers k and l with k < l, denote [k, l] = {k, k + , . . . , l}. By using the center-difference
method for the space variable x and the time variable t, we can obtain a discrete analog of
()-() of the form

⎧
⎪⎨

⎪⎩


h Δu( iπ

N+ , (n – )h) – ( N+
π

)∇u( (i–)π
N+ , nh)

+ g(nh, u( iπ
N+ , nh)) = , i ∈ [, N], n ∈ Z,

u( π
N+ , nh) = u( (N+)π

N+ , nh) = , n ∈ Z,
()

where h >  is the time step size, N is a positive integer and the space step size is π/(N + ).
Let

u
(

iπ
N + 

, nh
)

= ui
n,

then we have
{

Δui
n– – δ∇ui–

n + f (n, ui
n) = , i ∈ [, N], n ∈ Z,

u
n =  = uN+

n , n ∈ Z,
()

where

Δui
n– = ui

n+ – ui
n + ui

n–,

∇ui–
n = ui+

n – ui
n + ui–

n ,

δ = h
(

N + 
π

)

,

and

f
(
n, ui

n
)

= hg
(

nh, u
(

iπ
N + 

, nh
))

.

Problem () can be rewritten by the vector and matrix as

ΔUn– + δAUn + ∇V (n, Un) = , n ∈ Z, ()

where

Un = col
(
u

n, u
n, uN

n
)
,

A =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

 –  · · · 
–  – 

· · · · · ·
 –  –
 · · ·  – 

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

N×N

,
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and

V (n, Un) =
N∑

i=

∫ ui
n


f (n, s) ds,

which implies that

∇V (n, Un) = col
(
f
(
n, u

n
)
, f

(
n, u

n
)
, . . . , f

(
n, uN

n
))

.

For a given positive integer T , we assume that the function f : Z × R → R is continuous
about the two variables and satisfies the periodic condition

f (n + T , ·) = f (n, ·) for n ∈ Z. ()

Let L = –(Δ + δA). For any positive integers T and m, σ (L) denotes the spectrum of
the linear operator L in EmT which will be defined in the next section. We can see that
σ (L) ∩ (,∞) �= ∅ and σ (L) ∩ (–∞, ) �= ∅. In this paper, we will consider the existence of
mT-periodic solutions for problem () when the condition  /∈ σ (L) holds. However,  is
the spectrum point of the linear operator ∂tt – ∂xx for problem ()-(). Thus, our method
cannot be used for the corresponding continuous wave equations.

Clearly, system () is also a discrete second order Hamiltonian system. Recently, the ex-
istence of T-periodic solutions for system () has also been extensively studied when A is
symmetric matrix and L is positive definite. By using critical point theory, many solvabil-
ity conditions are given, such as the superquadratic condition and subquadratic condition
(see Deng et al. [] and Yan et al. []), the convex condition (see Jiang []), and the asymp-
totically linear condition (see Guo and Yu []). Our method can be extended to a general
system, however, the linear operator L is strongly indefinite. On the other hand, in the su-
perquadratic case, all papers required the Ambrosetti-Rabinowitz condition, that is, there
exist constants μ >  and M >  such that

 < μH(t, U) ≤ (∇H(t, U), U
)
, |U| ≥ M, t ∈ [, T], ()

where

|U| =

( N∑

i=

∣
∣ui∣∣

)/

, U ∈ RN .

In this paper, we will give a more general condition.
In fact, system () is also a discrete analog of the second order Hamiltonian system of

the form

U ′′(t) + BU(t) + ∇H(t, U) = , t ∈ R. ()

The existence of periodic solutions of () have also been extensively discussed since
Poincaré []. The importance of periodic solutions for finite-dimensional Hamiltonian
system was pointed out by Poincaré in []. Poincaré stressed their importance formu-
lating a conjecture. This conjecture stimulates the systematic study of periodic solutions
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by Poincaré himself, Lyapunov [], Birkhoff and Lewis [], Moser [], Weinstein [],
Rabinowitz [], Ekeland and Lasry [], etc. In Pugh and Robinson [] a positive an-
swer to the conjecture was given, but only in a generic sense (namely in the C-category
of Hamiltonian functions): the periodic orbits are dense on every compact and regular
energy surface. However, for specific systems, the conjecture is still open (and far from
having been proved); see [].

Since Rabinowitz’s pioneering work [] of , variational methods have been widely
used in the study of existence of solutions of Hamiltonian systems; see Long [] and Luan
and Mao []. Recently, some authors had improved Ambrosetti-Rabinowitz condition
by using the linking theorem; for example, see Schechter and Zou [] and Chen and Ma
[]. In [], the authors considered the existence of solutions for a Schrödinger equation
and the classical Ambrosetti-Rabinowitz condition is replaced by a general superquadratic
condition: there exist constants a >  and p >  such that

∣
∣∇V (t, U)

∣
∣ ≤ a

(
 + |U|p–) for U ∈ RN . ()

In [], Chen and Ma established the existence of periodic solutions of () by using a
similar method. However, the condition () will be improved in our result.

In the next section of the present paper, we will give some preliminary results which will
be used in the proof of the main results. The exact spectrum of the linear operator L in
EmT will be given. In this case, we easily give the conditions  /∈ σ (L), σ (L) ∩ (,∞) �= ∅,
and σ (L) ∩ (–∞, ) �= ∅. Thus, in this paper, we only consider the non-resonant strongly
indefinite problem. Our approach is based on an application of a variant generalized weak
linking strongly indefinite problem developed by Schechter and Zou []; also see Chen
and Ma []. Thus, a variant generalized weak linking theorem is also given in this section.
In Section , our main result will be obtained by using the variant generalized weak linking
theorem, and the Ambrosetti-Rabinowitz condition will be improved.

2 Some preliminary results
In this section, we recall some basic facts which will be used in the proof of the main
results.

Let

X =
{

U = {Un}n∈Z : Un ∈ RN , n ∈ Z
}

.

For any given positive integers T and m, EmT is defined by

EmT = {U ∈ X : Un+mT = Un, n ∈ Z}.

EmT can be equipped with the inner product 〈·, ·〉mT and norm ‖ · ‖mT as follows:

〈U , V 〉mT =
mT∑

n=

(Un, Vn) =
mT∑

n=

N∑

i=

ui
nvi

n, U , V ∈ EmT ,

‖U‖mT =

( mT∑

n=

N∑

i=

(
ui

n
)

)/

.
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Clearly, we can also define one other norm for EmT . Note that the space EmT is finite
dimensional, thus, they are equivalent.

It is easy to see that (EmT , 〈·, ·〉mT ) is a finite-dimensional Hilbert space and linearly home-
omorphic to RmT×N . For convenience, we identify U ∈ EmT with U = col(U, U, . . . , UmT ).
In this case, we will consider the existence of solutions for the discrete wave equation

Δui
n– – δ∇ui–

n + f
(
n, ui

n
)

= , (i, n) ∈ [, N] × [, mT], ()

with the space Dirichlet boundary conditions

u
n =  = uN+

n , n ∈ [, mT], ()

and the time periodic boundary conditions

ui
 = ui

mT and ui
 = ui

mT+, i ∈ [, N], ()

or the discrete Hamiltonian system

ΔUn– + δAUn + ∇V (n, Un) = , n ∈ [, mT], ()

with the time periodic boundary conditions

U = UmT and U = UmT+. ()

Define the functional H on EmT as follows:

H(U) =
mT∑

j=

N∑

i=

[



∣
∣ui

j+ – ui
j
∣
∣ –

δ


∣
∣ui+

j – ui
j
∣
∣ –

∫ ui
j


f (j, s) ds

]

=



mT∑

j=

N∑

i=

(
∣
∣Δui

j
∣
∣ –

δ


∣
∣∇ui

j
∣
∣

)

–
mT∑

j=

N∑

i=

∫ ui
j


f (j, s) ds

=



mT∑

j=

(ΔUj,ΔUj) –
δ



mT∑

j=

(AUj, Uj) –
mT∑

j=

H(j, Uj).

A vector W ∈ EmT is called a critical point of the functional H if the gradient of H at W is
zero, i.e.,

∂H(U)
ui

j

∣
∣
∣
U=W

=  for i ∈ [, N], j ∈ [, mT]. ()

At the same time, c = H(W ) is called a critical value of H . So we can obtain the following
result.

Lemma  A vector W ∈ EmT is a critical point of the functional H(U) (or –H(U)) if, and
only if, W is a solution of problem ()-(), in fact, it is also a solution of ()-().
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Its proof is similar to Lemma  in [], thus, it will be omitted.
In the following, we will consider the eigenvalue problem of the form

LU = –
(
Δui

n– – δ∇ui–
n

)
= λui

n, (i, n) ∈ [, N] × [, mT], ()

with the boundary conditions () and ().
It is well known that the eigenvalue problem

{
–Δxn– = γ xn, n ∈ [, N],
x = xN+ = ,

has the eigenvalues

γk =  sin kπ

(N + )
, k ∈ [, N],

and that the eigenvalue problem

{
–Δxn– = ηxn, n ∈ [, mT],
x = xmT , x = xmT+,

has the eigenvalues

ηl =  sin (l – )π
mT

, l ∈ [, mT].

See Cheng []. Thus, we see that all eigenvalues of the linear problem ()-()-() are

λkl =  sin (l – )π
mT

– δ sin kπ

(N + )

for k ∈ [, N] and l ∈ [, mT]. That is,

σ (L) =
{


[

sin (l – )π
mT

– δ sin kπ

(N + )

]

, (k, l) ∈ [, N] × [, mT]
}

. ()

We note that

γmax = max
k∈[,N]

γk =  sin Nπ

(N + )
,

γmin = min
k∈[,N]

γk =  sin π

(N + )
,

ηmax = max
l∈[,mT]

ηl =

{
, mT is even,
 cos π

mT , mT is odd,

and

ηmin = min
l∈[,mT]

ηl = .
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Thus, we have

λmax = max
(k,l)∈[,N]×[,mT]

λkl

= ηmax – δγmin

=

{
( – δ sin π

(N+) ), mT is even,
(cos π

mT – δ sin π
(N+) ), mT is odd,

and

λmin = min
(k,l)∈[,N]×[,mT]

λkl = –δ sin Nπ

(N + )
.

In this paper, we require σ (L)∩ (,∞) �= ∅ and σ (L)∩ (–∞, ) �= ∅. Clearly, σ (L)∩ (–∞, ) �=
∅, thus, we only assume that the condition

{
δ sin π

(N+) < , mT is even,
δ sin π

(N+) < cos π
mT , mT is odd,

()

holds, where δ > . On the other hand, we also need to suppose that the conditions

sin (l – )π
mT

�= δ sin kπ

(N + )
()

hold for (k, l) ∈ [, N] × [, mT]. In this case, we have  /∈ σ (L). Throughout this paper, we
always assume that the conditions () and () hold.

The abstract critical point theorem plays an important role in proving our main results.
Let E be a Hilbert space with norm ‖ · ‖ and inner product 〈·, ·〉 and have an orthogonal
decomposition E = N ⊕ N⊥, where N ∈ E is a closed and separable subspace. Since N is
separable, we can define a new norm |v|ω satisfying |v|ω ≤ ‖v‖ for all v ∈ N and such that
the topology induced by this norm is equivalent to the weak topology of N on bounded
subset of N . For u = v + w ∈ E with v ∈ N and w ∈ N⊥, we define |u|ω = |v|ω + ‖w‖, then
|u|ω ≤ ‖u‖ for u ∈ E. Particularly, if {un = vn + wn}∞n= ∈ E is | · |ω-bounded and un →|·|ω u,
then vn ⇀ v weakly in N , wn → w strongly in N⊥, un ⇀ v + w weakly in E (see []).

Let E = E– ⊕ E+, z ∈ E+ with ‖z‖ = . For any u ∈ E, we write u = u– ⊕ sz ⊕ w+ with
u– ∈ E–, s ∈ R, w+ ∈ (E– ⊕ Rz)⊥ := E+

 . For R > , let

Q =
{

u = u– + sz | s ∈ R+, u– ∈ E–,‖u‖ < R
}

with p = sz ∈ Q, s > . We define

D =
{

u = sz + w+ | s ≥ , w+ ∈ E+
 ,

∥
∥sz + w+∥

∥ = s
}

.

For I ∈ C(E, R), define h : [, ] × Q → E is | · |ω -continuous, h(, u) = u, I(h(s, u)) ≤ I(u)
for u ∈ Q, for any (s, u) ∈ [, ] × Q, there is a | · |ω-neighborhood U(s,u) such that

{
u – h(t, u) | (t, u) ∈ U(s,u) ∩ [, ] × Q

} ⊂ Efin,
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where Efin denotes various finite-dimensional subspaces of E whose exact dimensions are
irrelevant and depend on (s, u). Denote

Γ =
{

h | h : [, ] × Q → E
}

,

then Γ �= ∅ since id ∈ Γ .
The variant weak linking theorem is as follows.

Lemma  (see []) The family of C-functional {Hλ} has the form

Hλ(u) = I(u) – λK(u) for λ ∈ [, ]. ()

Assume that
(a) K(u) ≥ , u ∈ E, H = H ;
(b) I(u) → ∞ or K(u) → ∞ as ‖u‖ → ∞;
(c) Hλ is | · |ω-upper semicontinuous, H ′

λ is weakly sequentially continuous on E.
Moreover, Hλ maps bounded sets to bounded sets;

(d) sup∂Q Hλ ≤ infD Hλ for λ ∈ [, ].
Then, for almost all λ ∈ [, ], there exists a sequence {un} such that

sup
n

‖un‖ < ∞, H ′
λ(un) → , Hλ(un) → cλ,

where

cλ = inf
h∈Γ

sup
u∈Q

Hλ

(
h(, u)

) ∈
[
inf
D

Hλ, sup
Q

H
]
.

3 Main result
First of all, we state the following conditions.

(i) xf (n, x) ≥  for x ∈ R and n ∈ Z.
(ii) There exist  < a <  and r >  such that

∫ x


f (j, s) ds ≤ aσ +

min


x for |x| ≤ r.

(iii) There exist ρ >  and d >  such that

∫ x


f (j, s) ds ≥ dσ +

max


x for |x| > ρ,

where

σ +
min = min

{
λkl > , (k, l) ∈ [, N] × [, mT]

}

and

σ +
max = max

{
λkl > , (k, l) ∈ [, N] × [, mT]

}
.
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Theorem  The function f : Z × R → R is continuous about the second variable and there
exists a positive integer T such that

f (n + T , ·) = f (n, ·) for n ∈ Z.

Suppose that the above conditions (i)-(iii), (), and () hold. Then for any positive inte-
ger m, for problem ()-() there at least exists a non-zero time mT-periodic solution.

Proof In view of Lemma , we need to prove that the conditions (a)-(d) hold. First of all,
we give some symbols.

When the conditions () and () hold, we can denote

σ +(L) =
{
λkl > , (k, l) ∈ [, N] × [, mT]

}
,

σ –(L) =
{
λkl < , (k, l) ∈ [, N] × [, mT]

}
,

σ +
min = min

{
λkl > , (k, l) ∈ [, N] × [, mT]

}
,

σ +
max = max

{
λkl > , (k, l) ∈ [, N] × [, mT]

}
,

σ –
min = min

{
λkl < , (k, l) ∈ [, N] × [, mT]

}
,

and

σ –
max = max

{
λkl < , (k, l) ∈ [, N] × [, mT]

}
.

Clearly, we have

σ –
min < σ –

max <  < σ +
min < σ +

max,

σ (L) = σ +(L) ∪ σ –(L),

and

σ +(L) ∩ σ –(L) = ∅.

That is, the linear operator L = –(Δ – δA) has a sequence of eigenvalues

σ –
min = λ–p ≤ λ–p+ ≤ · · · ≤ λ– = σ –

max

<  < σ +
min = λ ≤ λ ≤ · · · ≤ λq = σ +

max

and the corresponding eigenvectors Υj for j = –p, . . . , –, , . . . , q. (Clearly, we have p + q =
mTN .)

Let

E– =

{ p∑

i=

ciΥ–i

∣
∣
∣
∣ ci ∈ R

}

and E+ =

{ q∑

i=

ciΥi

∣
∣
∣
∣ ci ∈ R

}

.

Then EmT = E = E– ⊕ E+ and for any U ∈ EmT we have U = U– + U+, where U– ∈ E– and
U+ ∈ E+. Clearly, we have also E = ker L = {}.
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For any U , V ∈ EmT , U = U+ + U– and V = V + + V –, we can define an equivalent new
inner product 〈·〉 and the corresponding norm ‖ · ‖ in EmT by

〈U , V 〉 =
〈
LU+, V +〉

mT –
〈
LU–, V –〉

mT and ‖U‖ = 〈U , U〉/,

see []. Therefore, H can be rewritten as

H(U) =



(∥
∥U+∥

∥ –
∥
∥U–∥

∥)
– Ψ (U)

=



∥
∥U+∥

∥ –
(




∥
∥U–∥

∥ + Ψ (U)
)

,

where

Ψ (U) =
mT∑

j=

N∑

i=

∫ ui
j


f (j, s) ds =

mT∑

j=

H(j, Uj).

In order to apply Lemma , we consider the family of functional defined by

Hλ(U) =



∥
∥U+∥

∥ – λ

(



∥
∥U–∥

∥ + Ψ (U)
)

for λ ∈ [, ]. ()

In the following, we give the proofs for the conditions (a)-(d) in Lemma .
(a) K(U) ≥ , U ∈ EmT , H = H .
Let

K(U) =



∥
∥U–∥

∥ + Ψ (U).

When xf (n, x) ≥ , we find that (a) holds.
(b) I(U) → ∞ or K(U) → ∞ as ‖U‖ → ∞. We will prove that K(U) → ∞ as ‖U‖ → ∞.

In fact, this is clear when the condition (iii) holds.
(c) Hλ is | · |ω-upper semicontinuous, H ′

λ is weakly sequentially continuous on E. More-
over, Hλ maps bounded sets to bounded sets.

The condition (iii) implies that

Hλ(U) =



∥
∥U+∥

∥ – λ

(



∥
∥U–∥

∥ + Ψ (U)
)

≤ 


∥
∥U+∥

∥ –



∥
∥U–∥

∥ – Ψ (U)

≤ σ +
max


‖U‖

mT –
dσ +

max


‖U‖

mT

= –(d – )
σ +

max


‖U‖

mT → –∞ as ‖U‖mT → ∞.

Thus, if Un →|·|ω U and Hλ(Un) ≥ a, then Hλ(U) ≥ a, which means that Hλ is | · |ω-upper
semicontinuous. The other cases are clear.

(d) sup∂Q Hλ ≤ infD Hλ for λ ∈ [, ].
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Note by the condition (ii), letting s = r, for U ∈ S = {U | U ∈ E+,‖U‖ = s} we have

Hλ(U) =



∥
∥U+∥

∥ – λΨ (U)

≥ σ +
min


‖U‖

mT – 
mT∑

j=

N∑

i=

∫ ui
j


f (j, s) ds

≥ σ +
min


‖U‖

mT –
aσ +

min


‖U‖

mT

= ( – a)
σ +

min


‖U‖

mT .

Let z = Υ/‖Υ‖ and

D =
{

U | U = sz + W +, s ≥ , W + ∈ E+
 and ‖U‖ = s

}
,

we have D ⊂ S, which implies that

inf
D

Hλ(U) > .

Now, we choose ρ >  of the condition (ii) and let

Q =
{

U | U = U– + sz, s ≥ , U– ∈ E– and ‖U‖ < ρ
}

.

For U ∈ ∂Q, we have

Hλ(U) =



∥
∥U+∥

∥ – λ

(



∥
∥U–∥

∥ + Ψ (U)
)

≤ –(d – )
σ +

max


‖U‖

mT < .

That is, the condition (d) holds.
In view of Lemma , we find that for almost all λ ∈ [, ] there exists a sequence {U (n)} ⊂

Q such that

sup
n

∥
∥U (n)∥∥ < ∞, H ′

λ

(
U (n)) → 

and

Hλ

(
U (n)) → cλ ∈

[



( – a)rσ +
min, sup

Q
Hλ(U)

]

. ()

Note that the function Hλ(U) is finite dimensional continuous, thus, there exist {U (n)} ⊂ Q
and U∗ ∈ Q such that

lim
n→∞ H

(
U (n)) = lim

n→∞ H
(
U (n)) = lim

n→∞ H
(
U∗)

= c > .

The proof is complete. �
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Remark  The symbols σ –
min and σ –

max have not been used. In fact, similarly, if we discuss
the functional –H(U), then the corresponding result can also be obtained. It is omitted.

Remark  From the proofs of (a)-(d), we can see that the conditions (ii)-(iii) need only to
be hold locally. For convenience, we use the present state.

Remark  Our result is new; see Deng et al. [] and Yan et al. []. Clearly, the sublinear
case can also be established. It will be omitted.

Remark  For an mT-dimensional discrete system of the form

ΔUn– + BUn + ∇V (n, Un) = , n ∈ Z,

when B is a symmetric positive definite, negative definite, or infinite definite matrix, our
method is also valid.

Remark  The superlinear condition (iii) cannot be used for the corresponding continu-
ous wave equations or the continuous Hamiltonian systems because their eigenvalues are
unbounded.

Remark  Our method is not suitable for the corresponding continuous wave equations.
When ω is irrational, the eigenvalues of the operator ∂tt – ∂xx accumulate to . However,
if ω is rational, the number of -spectrum is infinite.

Remark  All conditions of Theorem  are easily satisfied. For the conditions () and
(), for example, let δ = , m =  and T = , the condition () clearly holds for any N . At
the same time, note that

sin ( – )π


= , sin ( – )π


= 

and

 < sin kπ

(N + )
< 

for all k ∈ [, N]. Thus, the condition () also holds. For the nonlinear term, the conditions
(i)-(iii) are also easy satisfied. For example, for δ = , m = , T = , and N = , we have

σ (L) =
{

–



, –



, , 
}

, σ +
min = , and σ +

max = .

In this case, we let f (–x) = –f (x) and

f (x) =

⎧
⎪⎨

⎪⎩

x
 ,  ≤ x < ,

 x – 

 ,  ≤ x ≤ ,
x, x > .

Then all conditions of Theorem  are satisfied. However, such a function is not valid for
the corresponding continuous wave equations or the continuous Hamiltonian systems.
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