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Abstract
By hibernating, animals can reduce their energy requirements by at least ninety
percent and survive for many months while slowly catabolizing body lipid reserves.
Hibernation constitutes an effective strategy of animals in order to survive cold
environments and limited availability of food. In this work, we investigate a periodic
impulsive switched predator-prey system with hibernation and birth pulse. We firstly
obtain the conditions of the globally asymptotically stable prey-extinction boundary
periodic solution of the investigated system. Secondly, we obtain the permanent
conditions of the investigated system. Finally, numerical analysis is presented to
illustrate the results. Our results provide reliable tactic basis for the practical biological
economics management.

Keywords: hibernation; periodic switched systems; birth pulse; prey-extinction;
permanence

1 Introduction
Hibernation allows small mammals to minimize metabolic energy costs at a time when a
scarcity of food and cold environmental temperatures endanger normal life. By hibernat-
ing, animals can reduce their energy requirements by at least ninety percent and survive
for many months while slowly catabolizing body lipid reserves []. Hibernation consti-
tutes an effective strategy of animals in order to survive cold environments and limited
availability of food [].

Biological resources are renewable resources. Clark [] considered the economic and
biological aspects of renewable resources management. In recent years, the optimal man-
agement of renewable resources, which has a direct relationship to sustainable develop-
ment, has been studied extensively by many authors [–]. Especially, the predator-prey
models with harvesting have been investigated by many papers [–]. Li and Wang []
considered dynamics of an Ivlev-type predator-prey system with constant rate harvesting

{
dx(t)

dt = x(t)( – x(t – τ )) – y(t)( – e–rx(t) – h),
dy(t)

dt = βy(t)(α –  – αe–rx(t)),
(.)

where x(t) denotes the density of the prey population at time t. y(t) denotes the density
of the predator population at time t. The biological meanings of the parameters can be
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found in []. There is a vast amount of literature on the applications of impulsive dif-
ferential equations to investigate predator-prey systems and SI system [–]. Jiao et al.
[] also considered a three-dimensional predator-prey model with impulsive diffusion
and harvesting on predator as follows:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dx(t)
dt = x(t)(a – bx(t)) – βx(t)y(t),

dy(t)
dt = kβx(t)y(t) – ay(t),

dy(t)
dt = y(t)(a – by(t)),

⎫⎪⎪⎬
⎪⎪⎭ t �= (n –  + l)τ , t �= nτ ,

�x(t) = –px(t),
�y(t) = ,
�y(t) = –py(t),

⎫⎪⎬
⎪⎭ t = (n –  + l)τ , n = , , . . . ,

�x(t) = ,
�y(t) = D(y(t) – y(t)),
�y(t) = D(y(t) – y(t)),

⎫⎪⎬
⎪⎭ t = nτ , n = , , . . . ,

(.)

where they suppose that system (.) is composed of two patches connected by diffusion
and occupied by species x(t) and yi(t) (i = , ). x(t) and yi(t) (i = , ) represent the density
of prey species in Patch  and the density of predator species in Patch i (i = , ), respec-
tively. The biological meanings of the parameters can be found in [].

The hibernation constitutes an effective strategy of animals in order to survive cold en-
vironments and limited availability of food, it is a universal phenomenon in biological
world. However, there are few papers considering and investigating mathematical models
with winter hibernation. In this paper, we introduce the phenomenon of hibernation and
focus on a periodic impulsive switched predator-prey system with hibernation and birth
pulse.

The organization of this paper is as follows. In the next section, we introduce the model
and background concepts. In Section , some important lemmas are presented. In Sec-
tion , we give the globally asymptotically stable conditions of a prey-extinction periodic
solution of system (.) and the permanent condition of system (.). In Section , a brief
discussion and the simulations are given to conclude this work.

2 The model
In this section, a periodic impulsive switched predator-prey system with hibernation and
birth pulse is modeled by the nonlinear impulsive differential equation

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dx(t)
dt = x(t)(a – bx(t)) – βx(t)y(t),

dy(t)
dt = kβx(t)y(t) – dy(t),

}
t ∈ (nτ , (n + l)τ ],

�x(t) = ,
�y(t) = y(t)(a – by(t)),

}
t = (n + l)τ , n ∈ Z+,

dx(t)
dt = –dx(t) – βx(t)y(t),

dy(t)
dt = kβx(t)y(t) – dy(t),

}
t ∈ ((n + l)τ , (n + )τ ],

�x(t) = –μx(t),
�y(t) = –μy(t),

}
t = (n + )τ , n ∈ Z+,

(.)

where the total population is divided into two subpopulations: prey population x(t) and
predator population y(t). It is assumed that the prey population is hibernator, and the
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predators depend on prey as their source of food; if there is no prey, the predator popula-
tion will disappear. The impulsive period is divided into hibernation and non-hibernation.
The predator population is birth pulse in their non-hibernation of the prey population.
Intrinsic rate of natural increase and density dependence rate of prey population are de-
noted by a and b, respectively. d is the natural death rate of the predator population. The
predator population consumes the prey population with predation coefficients β in the
non-hibernation period of prey population. k is the rate of conversion of nutrients into
the predator population. d >  is the natural death rate of the prey population in the hi-
bernation period of prey population. The predator population is birth pulse as intrinsic
rate of natural increase and density dependence rate of prey population are denoted by a

and b respectively at moments t = (n + l)τ ,  < l < , n ∈ Z+, that is, the predator popu-
lation is born in non-hibernation of prey population, and the predator population cannot
have birth ability in hibernation of prey population. d >  is the natural death rate of the
predator population in the hibernation period of prey population. The predator popula-
tion consumes prey population with predation coefficients β in the hibernation period
of prey population. k is the rate of conversion of nutrients into the predator population
in the hibernation period of prey population.  < μ <  is the harvesting coefficient of the
prey population at moments t = (n + )τ , n ∈ Z+.  < μ <  is the harvesting coefficient of
the predator population at moments t = (n + )τ , n ∈ Z+. Time interval (nτ , (n + l)τ ] is the
non-hibernation of prey population. Time interval ((n + l)τ , (n + )τ ] is the hibernation of
prey population.

3 Some lemmas
The solution of system (.), denoted by X(t) = (x(t), y(t))T , is a non-smooth function
X : R+ → R

+, X(t) is continuous on (nτ , (n + l)τ ] and ((n + l)τ , (n + )τ ], n ∈ Z+. X(nτ+) =
limt→nτ+ X(t) and X((n + l)τ+) = limt→(n+l)τ+ X(t) exist. Obviously the global existence and
uniqueness of solutions of system (.) are guaranteed by the smoothness properties of
f , which denotes the mapping defined by the right-hand side of system (.) (see Laksh-
mikantham et al. []).

Lemma . For each solution (x(t), y(t)) of system (.), there exists a constant M >  such
that x(t) ≤ M, y(t) ≤ M with all t large enough.

Proof Define V (t) = kx(t) + y(t), k = max{k, k}, and d = min{d, d, d}. When t ∈ (nτ , (n +
l)τ ], we have

D+V (t) + dV (t) ≤ kx(t)
[
a – bx(t)

]
– (d – d)y(t) ≤ k(a + d)

b
,

when t ∈ ((n + l)τ , (n + )τ ], we have

D+V (t) + dV (t) ≤ –k(d – d)x(t) – (d – d)y(t) ≤ δ < .

Then, taking δ = k(a+d)

b , when t �= nτ , t �= (n + l)τ , we have

D+V (t) + dV (t) ≤ δ.
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When t = (n + l)τ , V ((n + l)τ+) = V ((n + l)τ ) – b[y(t) – a
b

] + a


b
≤ V ((n + l)τ ) + ζ , where

ζ = a


b
. When t = (n+)τ , V ((n+)τ+) = (–μ)x((n+)τ )+(–μ)y((n+)τ ) ≤ V ((n+)τ ).

By the lemma of [], for t ∈ (nτ , (n + l)τ ] and t ∈ ((n + l)τ , (n + )τ ], we have

V (t) ≤ V () exp(–dt) +
∫ t


δ exp

(
–d(t – s)

)
ds +

∑
<(n+l)τ<t

ζ e–d(t–(n+l)τ )

= V () exp(–dt) +
δ

d
(
 – exp(–dt)

)
+ ζ

e–d(t–lτ ) – e–d(t–(n+l)τ )

 – e–dlτ

< V () exp(–dt) +
δ

d
(
 – exp(–dt)

)
+

ζ e–d(t–lτ )

 – e–dlτ +
ζ edlτ

edlτ – 

≤ V () exp(–dt) +
ζ e–d(t–lτ )

 – e–dlτ +
ζ edlτ

edlτ – 

→ ζ edlτ

edlτ – 
as t → ∞.

So V (t) is uniformly ultimately bounded. Hence, by the definition of V (t), we have that
there exists a constant M >  such that x(t) ≤ M, y(t) ≤ M for t large enough. The proof is
complete. �

If x(t) = , we can easily have the subsystem of system (.) as follows:

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

dy(t)
dt = –dy(t), t ∈ (nτ , (n + l)τ ],

�y(t) = y(t)(a – by(t)), t = (n + l)τ , n ∈ Z+,
dy(t)

dt = –dy(t), t ∈ ((n + l)τ , (n + )τ ],
�y(t) = –μy(t), t = (n + )τ , n ∈ Z+.

(.)

We can easily obtain the analytic solution of system (.) between pulses, i.e.,

y(t) =

{
y(nτ+)e–d(t–nτ ), t ∈ (nτ , (n + l)τ ],
y((n + l)τ+)e–d(t–(n+l)τ ), t ∈ ((n + l)τ , (n + )τ ].

(.)

Considering the second and fourth equations of system (.), we have the stroboscopic
map of system (.)

y
(
(n + )τ+)

= ( – μ)y
(
nτ+)

e–[dlτ+d(–l)τ ]

+ ( – μ)y
(
nτ+)

e–[dlτ+d(–l)τ ][a – by
(
nτ+)

e–dlτ ]. (.)

Two fixed points of (.) are obtained as P() and P(y∗), where

y∗ =
( – μ)(a + )e–[dlτ+d(–l)τ ] – 

( – μ)be–d(–l)τ × e–[dlτ+d(–l)τ ] , ( – μ)(a + )e–[dlτ+d(–l)τ ] > . (.)

Lemma . [] Consider the following difference equation:

z
(
(t + )

)
= F

(
z(t)

)
. (.)
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z∗ satisfies

z∗ = F
(
z∗), (.)

then z∗ is called equilibrium of (.), and if

∂F(z)
∂z

∣∣∣∣
z=z∗

< , (.)

then the unique equilibrium z∗ of (.) is globally asymptotically stable. Otherwise, it is not
stable.

Lemma .
(i) If ( – μ)(a + )e–(dlτ+d(–l)τ ) < , the fixed point P() of (.) is globally

asymptotically stable.
(ii) If ( – μ)(a + )e–(dlτ+d(–l)τ ) > , the fixed point P(y∗) of (.) is globally

asymptotically stable.

Proof Making notation as

F
(
y
(
nτ+))

= ( – μ)y
(
nτ+)

e–[dlτ+d(–l)τ ]

+ ( – μ)y
(
nτ+)

e–[dlτ+d(–l)τ ][a – by
(
nτ+)

e–dlτ ], (.)

then

∂F(y(nτ+))
∂y(nτ+)

∣∣∣∣
y(nτ+)=

= ( – μ)(a + )e–[dl+d(–l)]τ <  (.)

and

∂F(y(nτ+))
∂y(nτ+)

∣∣∣∣
y(nτ+)=y∗

=  – ( – μ)(a + )e–[dl+d(–l)]τ < . (.)

From Lemma ., we obtain that the fixed points P() and P(y∗) of (.) are stable, and
then they are globally asymptotically stable. �

It is well known that the following lemma can easily be proved.

Lemma .
(i) If ( – μ)(a + )e–[dl+d(–l)]τ < , the triviality periodic solution of system (.) is

globally asymptotically stable.
(ii) If ( – μ)(a + )e–[dl+d(–l)]τ > , the periodic solution ỹ(t) of system (.) is globally

asymptotically stable, where ỹ(t) is defined as

ỹ(t) =

{
y∗e–d(t–nτ ), t ∈ (nτ , (n + l)τ ],
(e–dlτ y∗)e–d(t–(n+l)τ ), t ∈ ((n + l)τ , (n + )τ ],

(.)

and y∗ is defined as (.).
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4 Dynamics for system (2.1)
Theorem . Let (x(t), y(t)) be any solution of system (.). If

( – μ)(a + )e–[dl+d(–l)]τ < 

and

ln


 – μ
> alτ – d( – l)τ –

βy∗

d
× (

 – e–dlτ ) –
βe–dlτ y∗

d

(
 – e–d(–l)τ )

hold, then the prey-extinction boundary periodic solution (, ỹ(t)) of (.) is globally asymp-
totically stable, where y∗ is defined as (.).

Proof First, we prove the local stability. Defining x(t) = x(t), y(t) = y(t) – ỹ(t), then we
have the following linearly similar system for system (.) which concerns one periodic
solution (, ỹ(t)) to

(
dx(t)

dt
dy(t)

dt

)
=

(
a – βỹ(t) 
kβỹ(t) –d

)(
x(t)
y(t)

)
, t ∈ (

nτ , (n + l)τ
]

and

(
dx(t)

dt
dy(t)

dt

)
=

(
–d – βỹ(t) 

kβỹ(t) –d

)(
x(t)
y(t)

)
, t ∈ (

nτ , (n + l)τ
]
.

It is easy to obtain the fundamental solution matrix

�(t) =

(
exp(

∫ t
 (a – βỹ(s)) ds) 

∗ exp(–dt)

)
, t ∈ (

nτ , (n + l)τ
]
.

There is no need to calculate the exact form of ∗, as it is not required in the analysis that
follows, and

�(t) =

(
exp(

∫ t
 (–d – βỹ(t)) ds) 

	 exp(–dt)

)
, t ∈ (

(n + l)τ , (n + )τ
]
.

There is no need to calculate the exact form of 	, as it is not required in the analysis that
follows.

The linearization of the third and fourth equations of (.) is

(
x((n + l)τ+)
y((n + l)τ+)

)
=

(
 
  + a

)(
x((n + l)τ )
y((n + l)τ )

)
,

and the linearization of the seventh and eighth equations of (.) is

(
x((n + )τ+)
y((n + )τ+)

)
=

(
 – μ 

  – μ

)(
x((n + )τ )
y((n + )τ )

)
.
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The stability of the periodic solution (, ỹ(t)) is determined by the eigenvalues of

M =

(
 
  + a

)(
 – μ 

  – μ

)
�(τ ),

where

λ = ( – μ)e
∫ lτ

 (a–β ỹ(s)) ds–
∫ τ

lτ [d+β ỹ(s)] ds

= ( – μ)ealτ–d(–l)τ– βy∗
d

×(–e–dlτ )– βe–d lτ y∗
d

(–e–d(–l)τ )

and

λ = ( – μ)( + a)e–[dlτ+d(–l)τ ].

According to the Floquet theory [], if |λ| <  and |λ| < , i.e.,

ln


 – μ
> alτ – d( – l)τ –

βy∗

d
× (

 – e–dlτ ) –
βe–dlτ y∗

d

(
 – e–d(–l)τ )

and

ln( – μ)( + a) < dlτ + d( – l)τ

hold, then (, ỹ(t)) is locally stable, where y∗ is defined as (.).
In the following, we will prove the global attraction. Choose ε >  such that

ρ = ( – μ)e
∫ lτ

 [a–β(ỹ(s)+ε)] ds–
∫ τ

lτ [d+β(ỹ(s)+ε)] ds < .

From the first and fifth equations of (.), we notice that

dy(t)
dt

≤ dy(t)

and

dy(t)
dt

≤ –dy(t),

so we consider the following impulsive differential equation:

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

dy(t)
dt = –dy(t), t ∈ (nτ , (n + l)τ ],

�y(t) = y(t)(a – by(t)), t = (n + l)τ , n ∈ Z+,
dy(t)

dt = –dy(t), t ∈ ((n + l)τ , (n + )τ ],
�y(t) = –μy(t), t = (n + )τ , n ∈ Z+.

(.)

From Lemma . and the comparison theorem of impulsive equation [], we have y(t) ≤
y(t) and y(t) → ỹ(t) as t → ∞. Then

y(t) ≤ y(t) ≤ ỹ(t) + ε (.)
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for all t large enough, for convenience we may assume that (.) holds for all t ≥ . From
(.) and (.), we get

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

dx(t)
dt ≤ x(t)[(a – β(ỹ(t) + ε)) – bx(t)], t ∈ (nτ , (n + l)τ ],

�x(t) = , t = (n + l)τ , n ∈ Z+,
dx(t)

dt ≤ –[d + β(ỹ(t) + ε)]x(t), t ∈ ((n + l)τ , (n + )τ ],
�x(t) = –μx(t), t = (n + )τ , n ∈ Z+.

(.)

So

x
(
(n + )τ

) ≤ x
(
nτ+)

( – μ)e
∫ τ

 [a–β(ỹ(s)+ε)] ds–
∫ τ

lτ [d+β(ỹ(s)+ε)] ds.

Hence x(nτ ) ≤ x(+)ρn and x(nτ ) →  as n → ∞, therefore x(t) →  as t → ∞.
Next we prove that y(t) → ỹ(t) as t → ∞. For ε < min{ d

kβ
, d

kβ
}, there must exist t > 

such that  < x(t) < ε for all t ≥ t. Without loss of generality, we may assume that  <
x(t) < ε for all t ≥ , then for system (.) we have

–dy(t) ≤ dy(t)
dt

≤ –[d – kβε]y(t) (.)

and

–dy(t) ≤ dy(t)
dt

≤ –[d – kβε]y(t). (.)

Then we have z(t) ≤ y(t) ≤ z(t) and z(t) → ỹ(t), z(t) → z̃(t) as t → ∞. While z(t) and
z(t) are the solutions of

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

dz(t)
dt = –dz(t), t ∈ (nτ , (n + l)τ ],

�z(t) = z(t)(a – bz(t)), t = (n + l)τ , n ∈ Z+,
dz(t)

dt = –dz(t), t ∈ ((n + l)τ , (n + )τ ],
�z(t) = –μz(t), t = (n + )τ , n ∈ Z+

(.)

and ⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

dz(t)
dt = –[d – kβε]z(t), t ∈ (nτ , (n + l)τ ],

�z(t) = z(t)(a – bz(t)), t = (n + l)τ , n ∈ Z+,
dz(t)

dt = –[d – kβε]z(t), t ∈ ((n + l)τ , (n + )τ ],
�z(t) = –μz(t), t = (n + )τ , n ∈ Z+,

(.)

respectively,

z̃(t) =

{
z∗

e–(d–kβε)(t–nτ ), t ∈ (nτ , (n + l)τ ],
(e–(d–kβε)(t–nτ )lτ z∗

)e–(d–kβε)(t–(n+l)τ ), t ∈ ((n + l)τ , (n + )τ ],
(.)

where z∗
 is defined as

z∗
 =

( – μ)(a + )e–[(d–kβε)lτ+(d–kβε)(–l)τ ] – 
( – μ)be–[(d–kβε)lτ+(d–kβε)(–l)τ ] × e–(d–kβε)lτ ,

( – μ)(a + )e–[(d–kβε)lτ+(d–kβε)(–l)τ ] > . (.)
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Therefore, for any ε > , there exists t, t > t, such that

ỹ(t) – ε < y(t) < z̃(t) + ε.

Let ε → , so we have

ỹ(t) – ε < y(t) < ỹ(t) + ε

for t large enough, which implies y(t) → ỹ(t) as t → ∞. This completes the proof. �

The next work is the investigation of permanence of system (.). Before starting our
theorem, we give the following definition.

Definition . System (.) is said to be permanent if there are constants m, M >  (inde-
pendent of initial value) and a finite time T such that for all solutions (x(t), y(t)) with all
initial values x(+) > , y(+) > , m ≤ x(t) ≤ M, m ≤ y(t) ≤ M hold for all t ≥ T. Here T

may depend on the initial values (x(+), y(+)).

Theorem . Let (x(t), y(t)) be any solution of system (.). If

( – μ)(a + )e–[dl+d(–l)]τ < 

and

ln


 – μ
< alτ – d( – l)τ –

βy∗

d
× (

 – e–dlτ ) –
βe–dlτ y∗

d

(
 – e–d(–l)τ )

hold, then system (.) is permanent.

Proof Suppose (x(t), y(t)) is a solution of (.) with x() > , y() > . By Lemma ., we
have proved that there exists a constant M >  such that x(t) ≤ M, y(t) ≤ M for t large
enough, we may assume x(t) ≤ M, y(t) ≤ M for t ≥ . From Theorem ., we know y(t) >
ỹ(t) – ε for all t large enough and ε > , so y(t) ≥ e–dlτ y∗( + e–d(–l)τ ) – ε = m for t
large enough. Thus, we only need to find m >  such that x(t) ≥ m for t large enough, we
will do it in what follows.

By the conditions of this theorem, we can select m > , ε >  small enough such that
m < min{ d

kβ
, d

kβ
}, σ = alτ – βε – βε – d( – l)τ – βz∗

d–kβm
× ( – e–(d–kβm)lτ ) –

βe–(d–kβm)lτ z∗
d–kβm

( – e–(d–kβm)(–l)τ ) >  and

z∗ =
( – μ)(a + )e–[(d–kβm)lτ+(d–kβm)(–l)τ ] – 

( – μ)be–[(d–kβm)lτ+(d–kβm)(–l)τ ] × e–(d–kβm)lτ ,

( – μ)(a + )e–[(d–kβm)lτ+(d–kβm)(–l)τ ] > . We will prove that x(t) < m cannot hold
for t ≥ . Otherwise,

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

dy(t)
dt < –(d – kβm)y(t), t ∈ (nτ , (n + l)τ ],

�y(t) = y(t)(a – by(t)), t = (n + l)τ , n ∈ Z+,
dy(t)

dt < –(d – kβm)y(t), t ∈ ((n + l)τ , (n + )τ ],
�y(t) = –μy(t), t = (n + )τ , n ∈ Z+.

(.)
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(a) (b)

(c)

Figure 1 Globally asymptotically stable prey-extinction periodic solution of system (2.1) with
x(0) = 0.1, y(0) = 0.1, a = 2, b = 0.8, d1 = 0.5, d2 = 0.5, d3 = 0.4, β1 = 0.6, k1 = 0.3, β2 = 0.3, k2 = 0.4,
μ = 0.7, l = 0.8, τ = 1. (a) Time-series of x(t); (b) time-series of y(t); (c) the phase portrait of the globally
asymptotically stable prey-extinction periodic solution of system (2.1).

By Lemma ., we have y(t) ≥ z(t) and z(t) → z(t), t → ∞, where z(t) is the solution of
⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

dz(t)
dt = –(d – kβm)z(t), t ∈ (nτ , (n + l)τ ],

�z(t) = z(t)(a – bz(t)), t = (n + l)τ , n ∈ Z+,
dz(t)

dt = –(d – kβm)z(t), t ∈ ((n + l)τ , (n + )τ ],
�z(t) = –μz(t), t = (n + )τ , n ∈ Z+

(.)

and

z(t) =

{
z∗e–(d–kβm)(t–nτ ), t ∈ (nτ , (n + l)τ ],
(e–(d–kβm)(t–nτ )lτ z∗)e–(d–kβm)(t–(n+l)τ ), t ∈ ((n + l)τ , (n + )τ ],

(.)

where z∗ is defined as

z∗ =
( – μ)(a + )e–[(d–kβm)lτ+(d–kβm)(–l)τ ] – 

( – μ)be–[(d–kβm)lτ+(d–kβm)(–l)τ ] × e–(d–kβm)lτ ,

( – μ)(a + )e–[(d–kβm)lτ+(d–kβm)(–l)τ ] > . (.)

Therefore, there exists T >  such that

y(t) ≤ z(t) ≤ z(t) + ε
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(a) (b)

(c)

Figure 2 The permanence of system (2.1) with x(0) = 0.1, y(0) = 0.1, a = 2, b = 0.8, d1 = 0.5, d2 = 0.5,
d3 = 0.4, β1 = 0.6, k1 = 0.3, β2 = 0.3, k2 = 0.4, μ = 0.5, l = 0.8, τ = 1. (a) Time-series of x(t); (b) time-series
of y(t); (c) the phase portrait of the permanence of system (2.1).

and

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

dx(t)
dt ≥ x(t)[(a – β(z(t) + ε)) – bx(t)], t ∈ (nτ , (n + l)τ ],

�x(t) = , t = (n + l)τ , n ∈ Z+,
dx(t)

dt ≥ –[d + β(z(t) + ε)]x(t), t ∈ ((n + l)τ , (n + )τ ],
�x(t) = –μx(t), t = (n + )τ , n ∈ Z+.

(.)

For t ≥ T, let N ∈ N and Nτ > T. Integrating (.) on (nτ , (n + )τ ), n ≥ N, we have

x
(
(n + )τ

) ≥ x
(
nτ+)

( – μ)e
∫ (n+l)τ

nτ [a–β(z(s)+ε)] ds–
∫ (n+)τ

(n+l)τ [d+β(z(s)+ε)] ds

= ( – μ)x
(
nτ+)

eσ ,

then x((N + k)τ ) ≥ ( – μ)kx(Nτ
+)ekσ → ∞, as k → ∞, which is a contradiction to the

boundedness of x(t). Hence there exists t >  such that x(t) ≥ m. The proof is complete.
�

5 Discussion
In this paper, according to the fact, a periodic impulsive switched predator-prey system
with hibernation and birth pulse is proposed and investigated, we analyzed global asymp-
totic stability of the prey-extinction periodic solution of system (.) and obtained the
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conditions for the permanence of system (.). If it is assumed that x() = ., y() = .,
a = , b = ., d = ., d = ., d = ., β = ., k = ., β = ., k = ., μ = .,
μ = , l = ., τ = , then the prey-extinction periodic solution (, ỹ(t)) of system (.) is
globally asymptotically stable (see Figure ). If we assume that x() = ., y() = ., a = ,
b = ., d = ., d = ., d = ., β = ., k = ., β = ., k = ., μ = ., μ = ,
l = ., τ = , then system (.) is permanent (see Figure ).

From the simulation experiment of Figures  and , the parameter μ affects the dynam-
ical behaviors of system (.). If all parameters of system (.) are fixed, when μ = .,
the prey population of system (.) goes extinct; when μ = ., system (.) is permanent.
From Theorem . and Theorem ., we can easily deduce that there must exist a thresh-
old μ∗. If μ > μ∗, the prey-extinction periodic solution (, ỹ(t)) of system (.) is globally
asymptotically stable. If μ < μ∗, system (.) is permanent. That is to say, impulsive har-
vesting rate of the prey population plays an important role in system (.). The impulsive
harvesting rate of the prey population will also reduce the predator population. It tells us
that destroying or excessive exploiting of the prey population will cause extinction of the
predator population. Our results also provide reliable tactic basis for the practical biolog-
ical economics management and the protection of biodiversity.
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