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1 Introduction
The differential equations involving fractional derivatives have recently been studied ex-
tensively, because they have proved to be valuable in various fields of science and engineer-
ing. Indeed, we can find numerous applications in electrochemistry, electromagnetism,
biology, and hydrogeology. For example space-fractional diffusion equations have been
used in groundwater hydrology to model the transport of passive-tracers carried by fluid
flow in a porous medium [, ], or to model activator-inhibitor dynamics with anomalous
diffusion []. In particular, there has been a significant development in fractional evolution
equations. The existence of solutions for fractional evolution equations has been studied
by many authors during recent years. Many excellent results were obtained in this field
[–].

Shu and Wang [] studied the existence of mild solutions for the fractional differential
equations with nonlocal conditions in a Banach space X:

{
cDα

t u(t) = Au(t) + f (t, u(t)) +
∫ t

 q(t – s)g(s, u(s)) ds, t ∈ [, T],
u() + m(u) = u ∈ X, u′() + n(u) = u ∈ X,

where Dα
t is the Caputo fractional derivative of order  < α < . By using the contraction

mapping principle and Krasnoselskii’s fixed point theorem, they obtained the existence of
solutions for the equation.

Mu [] considered the existence of mild solutions to the following semilinear fractional
evolution equations:

{
Dαu(t) + Au(t) = f (t, u(t)), t ∈ I,
u() = x ∈ X,

(.)
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where Dα is the Caputo fractional derivative of order  < α < . –A is the infinitesimal
generator of an analytic semigroup T(t) = eAt|t≥, and f : I × X → X is continuous.

As is well known, a mild solution to system (.) satisfies the following equation:

u(t) = Sα(t)x +
∫ t


Tα(t – s)f

(
s, u(s)

)
ds.

Since  < α < , we can combine the probability density function and semigroup theory to
describe the corresponding solution operators Sα(t), Tα(t) (see []), where

Tα(t) = α

∫ ∞


θφα(θ )tα–T

(
tαθ

)
dθ , Sα(t) =

∫ ∞


φα(θ )T

(
tαθ

)
dθ ,

where φα(θ ) is the probability density function defined on (,∞) such that its Laplace
transform is

∫ ∞


e–θxφα(θ ) dθ =

∞∑
j=

(–x)j

�( + αj)
, x > .

Thus, it is obvious that whatever operator A is, T(t) = eAt , Tα(t), Sα(t) are always positive
if –A is the infinitesimal generator of an analytic semigroup T(t).

In [], Mu and Fan investigate the existence and uniqueness of positive mild solutions
of the following periodic boundary value problem for the fractional evolution equations
in an ordered Banach space in []:

{
Dαu(t) + Au(t) = f (t, u(t)), t ∈ [,ω],
u() = u(ω),

where Dα is the Caputo fractional derivative of order  < α < . First, using the probabil-
ity density function and semigroup theory the authors established the mild solutions of
the associated linear fractional evolution equations. Then they estimated the spectral ra-
dius of resolvent operators accurately. With the aid of the estimation, the existence and
uniqueness results of positive mild solutions are obtained by using the monotone iterative
technique.

However, for  < α < , the existence of a positive mild solution for a fractional differ-
ential evolution equation still is an untreated topic in the literature. On the one hand,
whether Kα(t), Tα(t) is positive is still unknown, meanwhile Sα(t) is not positive; see Re-
mark .. On the other hand, we do not know if we can still use the probability density
function together with semigroup theory to describe the corresponding solution opera-
tors Sα(t), Kα(t), and Tα(t). So, it is difficult for us to investigate the positive mild solutions
of fractional differential evolution equation in the way as [] did. In [], Bai and Lü in-
vestigate the positive solutions for nonlinear fractional differential equation by means of
some fixed point theorem on cone. Given these, using the fixed point theorem on a cone,
we investigate the existence of positive mild solution of such a fractional order differential
equation.

Motivated by the above, in this paper, we study the existence of positive mild solutions
of the following fractional differential evolution equation in an ordered Banach space X
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with positive cone P:

{
Dα

t u(t) = Au(t) + f (t, u(t)) +
∫ t

 q(t – s)g(s, u(s)) ds, t ∈ J = [, T],
u() + m(u) = u ∈ X, u′() + n(u) = u ∈ X,

(.)

where Dα is the Caputo fractional derivatives of  < α < , A is a sectorial operator of type
(M, θ ,α,μ) defined from domain D(A) ⊂ X into X, the nonlinear map f , g : J × X → P are
continuous, q : [, T] → R+ is an integrable function on [, T], and q = maxt∈[,T]

∫ t
 |q(t –

s)|ds. m, n : X → X are also continuous.
The rest of this paper is organized as follows. In Section , we first present some basic

definitions and theorems to be used. Then we investigate the properties of solution op-
erators by means of classical Mittag-Leffler function. The main results of this article are
given in Section . In Section , an example is considered to illustrate the applications of
the main results presented in Section . Finally, in Section , we make a conclusion of this
paper.

2 Preliminaries
In this part, we will introduce some basic definitions and theorems that are used through-
out this paper.

2.1 Definitions and theorems
If X is an ordered Banach space with the norm ‖ · ‖. Let P be a cone in which defined a
partial ordering in X by x ≤ y if and only if y – x ∈ P. P is said to be normal if there exists
a positive constant N such that θ ≤ x ≤ y implies ‖x‖ ≤ N‖y‖, where θ denotes the zero
element of X, and the smallest N is called the normal constant of P. P is called solid if its
interior P is nonempty. If x ≤ y and x 
= y, we write x < y. If P is solid and y – x ∈ Ṗ, we write
x � y. For details on cone theory, see [].

Besides, if X is an ordered Banach space, then C(J , X) is also an ordered Banach space
with the partial order ≤ induced by the positive cone K = {x ∈ C(J , X) : x(t) ≥ θ , for all t ∈
J}.

Throughout this paper, we assume that P is a positive cone of ordered Banach space
X, then K = {x ∈ C(J , X) : x(t) ≥ θ , for all t ∈ J} also is the positive cone of Banach space
C(J , X).

In general, the Mittag-Leffler function is defined as []:

Eα,β (z) =
∞∑

k=

zk

�(αk + β)
=


π i

∫
Hα

eμ μα–β

μα – z
dμ, α,β > , z ∈ C,

where Hα denotes a Hankel path, a contour starting and ending at –∞, and encircling the
disc |μ| ≤ |z| 

α counterclockwise.

Theorem . ([]) Let A be a densely defined operator in X satisfying the following con-
ditions:

() For some  < θ < π/, μ + Sθ = {μ + λ : λ ∈ C, |Arg(–λ)| < θ}.
() There exists a constant M such that

∥∥(λI – A)–∥∥ ≤ M
|λ – μ| , λ /∈ μ + Sθ .
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Then A is the infinitesimal generator of a semigroup T(t) satisfying ‖T(t)‖ ≤ C. Moreover,
T(t) = 

π i
∫

c eλtR(λ, A) dλ with c being a suitable path λ /∈ μ + Sθ for λ ∈ c.

Definition . ([]) Let A : D(A) ⊆ X → X be a closed linear operator. A is said to be a
sectorial operator of type (M, θ ,α,μ) if there exist  < θ < π/, M > , and μ ∈ R such that
the α-resolvent of A exists outside the sector

μ + Sθ =
{
μ + λα : α ∈ C,

∣∣Arg
(
–λα

)∣∣ < θ
}

and

∥∥(
λαI – A

)–∥∥ ≤ M
|λα – μ| , λ /∈ μ + Sθ .

Remark . ([]) If A is a sectorial operator of type (M, θ ,α,μ), then it is not difficult
to see that A is the infinitesimal generator of a α-resolvent family {Tα(t)}t≥ in a Banach
space, where Tα(t) = 

π i
∫

C eλtR(λα , A) dλ.

Definition . ([]) A function x ∈ C([, T], X) is called a mild solution of problem (.)
if it satisfies the operator equation

u(t) = Sα(t)
[
u – m(u)

]
+ Kα(t)

[
u – n(u)

]
+

∫ t


Tα(t – s)

[
f
(
s, u(s)

)
+

∫ s


q(s – τ )g

(
τ , u(τ )

)
dτ

]
ds.

Definition . ([]) Let R(t)(t≥) be an α-resolvent solution operator in X. If R(t)x ≥ θ for
every x ≥ θ , x ∈ X, and t ≥ , then R(t)(t≥) is called to be positive.

Definition . ([]) Let A : D(A) → X be a linear operator. Operator A is said to be non-
negative if and only if it satisfies both of the following conditions:

() There exists K ≥  such that for every value of λ >  and every u ∈ D(A), we have

λ‖u‖ ≤ K‖λu + Au‖.

() R(λI + A) = X for every value of λ > .

Definition . ([]) If A is a linear operator and satisfies condition () in Definition .
for K = , then A is said to be accretive. In addition, A is said to be m-accretive if condition
() is also satisfied.

Definition . Operator A is a sectorial accretive operator of type (M, θ ,α,μ) if and only
if A is a sectorial operator of type (M, θ ,α,μ) and A is accretive.

Remark . ([]) Assume that A is a Hilbert space with inner product (·; ·). Then the
necessary and sufficient condition for A to be accretive is Re(Au, u) ≥  for every u ∈ D(A).
Particularly, if X is a real Hilbert space and A is positive, then we obtain (Au, u) ≥  for
every u ∈ D(A). Note that an ordered Banach space is a real space, implying that if X is an
ordered Banach space and A is accretive, then (Au, u) ≥  for every u ∈ D(A).
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Now, we state two well-known fixed point theorems, which are needed to prove our
main results.

Theorem . (Schauder’s fixed point theorem) Let Y be a nonempty, closed, bounded,
and convex subset of a Banach space X, and suppose that T : Y → Y is a compact operator.
Then T has at least one fixed point in Y .

Theorem . (Krasnoselskii’s fixed point theorem) Let M be a closed convex and
nonempty subset of a Banach space X. Let A, B be the operators such that (i) Ax + By ∈ M
whenever x, y ∈ M; (ii) A is compact and continuous; (iii) B is a contraction mapping. Then
there exists z ∈ M such that z = Az + Bz.

2.2 Properties of solution operators
Lemma . If A is a sectorial operator of type (M, θ ,α,μ), then we have

Sα(t) =


π i

∫
c

eλtλα–R
(
λα , A

)
dλ = Eα,

(
Atα

)
=

∞∑
k=

(Atα)k

�( + αk)
,

Tα(t) =


π i

∫
c

eλtR
(
λα , A

)
dλ = tα–Eα,α

(
Atα

)
= tα–

∞∑
k=

(Atα)k

�(α + αk)

and

Kα(t) =


π i

∫
c

eλtλα–R
(
λα , A

)
dλ = tEα,

(
Atα

)
= t

∞∑
k=

(Atα)k

�( + αk)
.

Proof We note that


�(s)

=


π i

∫
c

eζ ζ –s dζ , Re s > . (.)

Applying the transformation ζ = η

α to (.) gives


�(s)

=


παi

∫
c

eη

α
η– s

α + 
α – dη.

Since A is a sectorial operator of type (M, θ ,α,μ), it follows from the inequality

∥∥(
λαI – A

)–∥∥ ≤ M
|λα – μ|

that A is the infinitesimal generator of α-resolvent families {Sα(t)}t≥, {Kα(t)}t≥, and
{Tα(t)}t≥ (see []). Hence, using the transformation t–αη = λα (i.e., t–α dη = αλα– dλ and
eη


α = etλ), we obtain

Eα,
(
Atα

)
=

∞∑
k=

(Atα)k

�( + αk)

=


παi

∞∑
k=

{∫
c

eη

α
η–k– dη

}(
Atα

)k
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=


παi

∫
c

eη

α
η–

{ ∞∑
k=

(
Atαη–)k

}
dη

=


παi

∫
c

eη

α t–α

(
t–αηI – A

)– dη

=


π i

∫
c

eλtλα–R
(
λα , A

)
dλ

= Sα(t).

Similarly, we show that

tα–Eα,α
(
Atα

)
= tα–

∞∑
k=

(Atα)k

�(α + αk)

=
tα–

παi

∞∑
k=

{∫
c

eη

α
η–k+ 

α – dη

}(
Atα

)k

=
tα–

παi

∫
c

eη

α
η


α –

{ ∞∑
k=

(
Atαη–)k

}
dη

=


παi

∫
c

eη

α t–η


α –(t–αηI – A

)– dη

=


π i

∫
c

eλtR
(
λα , A

)
dλ

= Tα(t)

and

tEα,
(
Atα

)
= t

∞∑
k=

(Atα)k

�( + αk)

=
t

παi

∞∑
k=

{∫
c

eη

α
η–k– 

α – dη

}(
Atα

)k

=
t

παi

∫
c

eη

α
η– 

α –

{ ∞∑
k=

(
Atαη–)k

}
dη

=


παi

∫
c

eη

α t–α+η– 

α
(
t–αηI – A

)– dη

=


π i

∫
c
λα–eλtR

(
λα , A

)
dλ

= Kα(t). �

Remark . The Mittag-Leffler function Eα,(x) is well known to have a finite number of
real zeros in the range  < α < . Reference [] deduces that operator Sα(t) is non-positive
by Lemma ..

Remark . It follows from Definition . and Remark . that if X is an ordered Banach
space and A is a sectorial accretive operator of type (M, θ ,α,μ), then the α-resolvent fam-
ilies {Tα(t)}t≥, {Sα(t)}t≥, and {Kα(t)}t≥ are all positive.
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Theorem . ([]) Let A be a sectorial operator of type (M, θ ,α,μ). Then the following
estimates on ‖Sα(t)‖ hold.

(i) Suppose μ ≥ . Given φ ∈ (,π ), we have

∥∥Sα(t)
∥∥ ≤ K(θ ,φ)Me[K(θ ,φ)(+μtα )]


α [( + sinφ

sin(φ–θ ) ) 
α – ]

π sin+ 
α θ

(
 + μtα

)

+
�(α)M

π ( + μtα)| cos π–φ

α
|α sin θ sinφ

,

for t > , where K(θ ,φ) = max{, sin θ
sin(θ–φ) }.

(ii) Suppose μ < . Given φ ∈ (,π ), we have

∥∥Sα(t)
∥∥ ≤

(
eM[( + sinφ) 

α – ]
π | cosφ|+ 

α

+
�(α)M

π | cosφ|| cos π–φ

α
|α

)


 + |μ|tα
,

for t > .

Theorem . ([]) Let A be a sectorial operator of type (M, θ ,α,μ). Then the following
estimates on ‖Tα(t)‖, ‖Kα(t)‖ hold.

(i) Suppose μ ≥ . Given φ ∈ (,π ), we have

∥∥Tα(t)
∥∥ ≤ Me[K(θ ,φ)(+μtα )]


α [( + sinφ

sin(θ–φ) ) 
α – ]

π sin θ

(
 + μtα

) 
α tα–

+
Mtα–

π ( + μtα)| cos π–φ

α
|α sin θ sinφ

,

∥∥Kα(t)
∥∥ ≤ MK(θ ,φ)e[K(θ ,φ)(+μtα )]


α [( + sinφ

sin(θ–φ) ) 
α – ]

π sin
α+
α θ

(
 + μtα

) α–
α tα–

+
Mα�(α)

π ( + μtα)| cos π–φ

α
|α sin θ sinφ

,

for t > , where K(θ ,φ) = max{, sin θ
sin(θ–φ) }.

(ii) Suppose μ < . Given φ ∈ (,π ), we have

∥∥Tα(t)
∥∥ ≤

(
eM[( + sinφ) 

α – ]
π | cosφ| +

M
π | cosφ|| cos π–φ

α
|
)

tα–

 + |μ|tα
,

∥∥Kα(t)
∥∥ ≤

(
eMt[( + sinφ) 

α – ]
π | cosφ|+ 

α

+
α�(α)M

π | cosφ|| cos π–φ

α
|
)


 + |μ|tα

,

for t > .

3 Main result
Because of the estimation on ‖Sα(t)‖, ‖Kα(t)‖, and ‖Tα(t)‖ in Theorem . and Theo-
rem ., it is easy to see they are bounded. So we make the following assumptions:
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(H): There exist positive numbers M̃ such that for any t ∈ J , we have

sup
t∈J

∥∥Sα(t)
∥∥ ≤ M̃, sup

t∈J

∥∥Kα(t)
∥∥ ≤ M̃, sup

t∈J

∥∥Tα(t)
∥∥ ≤ M̃.

(H): The linear operator A is a sectorial accretive operator of type (M, θ ,α,μ) and gener-
ates compact α-resolvent families {Tα(t)}t≥, {Sα(t)}t≥, and {Kα(t)}t≥.

(H): f , g : J × X → P is jointly continuous and for any k >  there exist positive functions
μk ,νk ∈ L([, T], R+) such that

sup
‖u‖≤k

∥∥f (t, u)
∥∥ ≤ μk(t), sup

‖u‖≤k

∥∥g(t, u)
∥∥ ≤ νk(t).

(H): u – m(u), u – n(u) ∈ C(X, P) and there exist positive numbers a, b, c, d such that

∥∥m(u)
∥∥ ≤ a‖u‖ + b,

∥∥n(u)
∥∥ ≤ c‖u‖ + d, for all u ∈ X.

Theorem . Assume that (H)-(H) hold, if M̃(a + c) < , then problem (.) has at least
one positive mild solution on J .

Proof Using Definition ., the mild solution of nonlocal fractional differential evolution
equation (.) can be expressed as

u(t) = Sα(t)
[
u – m(u)

]
+ Kα(t)

[
u – n(u)

]
+

∫ t


Tα(t – s)

[
f
(
s, u(s)

)
+

∫ s


q(s – τ )g

(
τ , u(τ )

)
dτ

]
ds.

Choose

r ≥ M̃(T‖μr‖L∞(J ,R+) + Tq‖νr‖L∞(J ,R+) + ‖u‖ + ‖u‖ + b + d)
 – M̃(a + c)

and consider Q = {u ∈ K : ‖u‖ ≤ r}. Define the operator � : Q → C(J , X) by

(�u)(t) = Sα(t)
[
u – m(u)

]
+ Kα(t)

[
u – n(u)

]
+

∫ t


Tα(t – s)

[
f
(
s, u(s)

)
+

∫ s


q(s – τ )g

(
τ , u(τ )

)
dτ

]
ds.

Step : we prove that �Q ⊆ Q.
For any u ∈ Q, based on assumptions (H) and (H), for t ∈ J , we have

u – m(u) ≥ θ , u – n(u) ≥ θ , (.)

f
(
t, u(t)

) ≥ θ ,
∫ t


q(t – s)g

(
s, u(s)

)
ds ≥ θ . (.)

In view of (H), we note that A is a sectorial accretive operator of type (M, θ ,α,μ) and
generates compact and positive α-resolvent families {Sα(t)}t≥, {Kα(t)}t≥, and {Tα(t)}t≥.
Then we have

Sα(t)
[
u – m(u)

] ≥ θ , Kα(t)
[
u – n(u)

] ≥ θ , (.)
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∫ t


Tα(t – s)

[
f
(
s, u(s)

)
+

∫ s


q(a – τ )g

(
τ , u(τ )

)
dτ

]
ds ≥ θ . (.)

Consequently, we obtain

(�u) ≥ θ , for u ∈ �. (.)

Also we have

∥∥(�u)(t)
∥∥ ≤ ∥∥Sα(t)

∥∥ · ∥∥u – m(u)
∥∥ +

∥∥Kα(t)
∥∥ · ∥∥u – n(u)

∥∥
+

∫ t



∥∥Tα(t – s)
∥∥ ·

∥∥∥∥f
(
s, x(s)

)
+

∫ s


q(s – τ )g

(
τ , u(τ )

)
dτ

∥∥∥∥ds

≤ M̃
(

‖u‖ +
∥∥m(u)

∥∥ + ‖u‖ +
∥∥n(u)

∥∥ + T
∥∥f

(
t, u(t)

)∥∥
+ T

∫ t



∣∣q(t – s)
∣∣ · ∥∥g

(
s, u(s)

)∥∥ds
)

≤ M̃
(‖u‖ + a‖u‖ + b + ‖u‖ + c‖u‖ + d

+ T‖μr‖L∞(J ,R+) + Tq‖νr‖L∞(J ,R+)
)

≤ r. (.)

Combining (.) with (.), we obtain

�Q ⊆ Q, for all u ∈ Q.

Step : continuity of F .
Let {un} be a sequence in Q such that ‖un –u‖ → . Noting that f , g , m, n are continuous,

as n → ∞ we have

m(un) → m(u), n(un) → n(u), (.)

f
(
t, un(t)

) → f
(
t, u(t)

)
, g

(
t, un(t)

) → g
(
t, u(t)

)
. (.)

For all t ∈ J , we get

∥∥(�un)(t) – (�u)(t)
∥∥ ≤ ∥∥Sα(t)

∥∥ · ∥∥m(un) – m(u)
∥∥ +

∥∥Kα(t)
∥∥ · ∥∥n(un) – n(u)

∥∥
+

∫ t



∥∥Tα(t – s)
∥∥ ·

[∥∥f
(
s, un(s)

)
– f

(
s, u(s)

)∥∥
+

∫ s



∣∣q(s – τ )
∣∣ · ∥∥g

(
τ , un(τ )

)
– g

(
τ , u(τ )

)∥∥dτ

]
ds

≤ M̃
∥∥m(un) – m(u)

∥∥ + M̃
∥∥n(un) – n(u)

∥∥
+ M̃T

∥∥f
(
t, un(t)

)
– f

(
t, u(t)

)∥∥
+ M̃Tq

∥∥g
(
t, un(t)

)
– g

(
t, u(t)

)∥∥.

From (.) and (.), we obtain limn→∞(�un)(t) = (�u)(t), that is, the operator � is con-
tinuous.
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Step : compactness of �.
To this end, we use the Arzela-Ascoli theorem. We prove that {(�u)(t) : u ∈ Q} is rela-

tively compact in X. First, we prove that {(�u)(t) : u ∈ Q} is uniformly bounded. We have

∥∥(�u)(t)
∥∥ ≤ ∥∥Sα(t)

∥∥ · ∥∥u – m(u)
∥∥ +

∥∥Kα(t)
∥∥ · ∥∥u – n(u)

∥∥
+

∫ t



∥∥Tα(t – s)
∥∥ ·

[∥∥f
(
s, u(s)

)∥∥ +
∫ s



∣∣q(τ – s)
∣∣ · ∥∥g

(
τ , u(τ )

)∥∥dτ

]
ds

≤ M̃
(

‖u‖ +
∥∥m(u)

∥∥ + ‖u‖ +
∥∥n(u)

∥∥ + T
∥∥f

(
t, u(t)

)∥∥
+ T

∫ t



∣∣q(t – s)
∣∣∥∥g

(
s, u(s)

)∥∥ds
)

≤ M̃
(‖u‖ + a‖u‖ + b + ‖u‖ + c‖u‖ + d

+ T‖μr‖L∞(J ,R+) + Tq‖νr‖L∞(J ,R+)
)

≤ r

≤ ∞.

Now, let us prove that �(Q) is equicontinuous. The function {(�u)(t) : u ∈ Q} are
equicontinuous at t = . For  < t < t ≤ T and u ∈ Q, we have

∥∥(�u)(t) – (�u)(t)
∥∥ ≤ ∥∥Sα(t) – Sα(t)

∥∥ · ∥∥u – m(u)
∥∥

+
∥∥Kα(t) – Kα(t)

∥∥ · ∥∥u – n(u)
∥∥

+
∫ t



∥∥Tα(t – s) – Tα(t – s)
∥∥[∥∥f

(
s, u(s)

)∥∥
+

∫ s



∣∣q(τ – s)
∣∣ · ∥∥g

(
τ , u(τ )

)∥∥dτ

]
ds

+
∫ t

t

∥∥Tα(t – s)
∥∥[∥∥f

(
s, u(s)

)∥∥
+

∫ s



∣∣q(τ – s)
∣∣ · ∥∥g

(
τ , u(τ )

)∥∥dτ

]
ds

≤ I + I + I,

where

I =
∥∥Sα(t) – Sα(t)

∥∥ · ∥∥u – m(u)
∥∥ +

∥∥Kα(t) – Kα(t)
∥∥ · ∥∥u – n(u)

∥∥,

I =
∫ t



∥∥Tα(t – s) – Tα(t – s)
∥∥ ·

[∥∥f
(
s, u(s)

)∥∥ +
∫ s


q(τ – s)

∥∥g
(
τ , u(τ )

)∥∥dτ

]
ds,

I =
∫ t

t

∥∥Tα(t – s)
∥∥ ·

[∥∥f
(
s, u(s)

)∥∥ +
∫ s



∣∣q(τ – s)
∣∣∥∥g

(
τ , u(τ )

)∥∥dτ

]
ds.

The continuity of functions t → ‖Sα(t)‖, t → ‖Kα(t)‖ for t ∈ (, T], allows us to conclude
that limt→t I = . Indeed, we have

I ≤
∫ t

t

∥∥Tα(t – s) – Tα(t – s)
∥∥ · [‖μr‖L∞(J ,R+) + q‖νr‖L∞(J ,R+)

]
ds.
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Therefore, the continuity of function t → ‖Tα(t)‖ for t ∈ (, T] also allows us to conclude
that limt→t I = . We have

I ≤
∫ t

t

∥∥Tα(t – s)
∥∥(‖μr‖L∞(J ,R+) + q‖νr‖L∞(J ,R+)

)
ds

≤ M̃
(‖μr‖L∞(J ,R+) + q‖νr‖L∞(J ,R+)

)|t – t|.

Consequently, limt→t I = .
Thus, for t ∈ J , {(�u)(t) : u ∈ Q} is a family of equicontinuous function. We have proved

that {�(Q)} is relatively compact. Hence by the Arzela-Ascoli theorem, � is compact.
Schauder’s fixed point theorem allows us to conclude that � has at least one fixed point
on J . As (�u)(t) ≥ θ when u ∈ Q, problem (.) has at least one positive mild solution
on J . �

In the following, we give an existence result in the case where (H) is not satisfied. We
need the following assumptions.

(H): u – m(u), u – n(u) : X → P are continuous and bounded on X .
(H): There exist positive numbers l, l such that for any t ∈ J , u, v ∈ X we have

∥∥f (t, u) – f (t, v)
∥∥ ≤ l‖u – v‖,

∥∥g(t, u) – g(t, v)
∥∥ ≤ l‖u – v‖.

Theorem . Assume that (H)-(H), (H)-(H) hold. If M̃T(l + ql) < , then problem
(.) has at least one positive mild solution on J .

Proof Choose

R ≥ M̃
(∥∥u – m(u)

∥∥ +
∥∥u – n(u)

∥∥ + T‖μR‖L∞(J ,R+) + Tq‖νR‖L∞(J ,R+)
)

and consider � = {u ∈ K : ‖u‖ ≤ R}. Define operators S, T on � by

(Su)(t) = Sα(t)
[
u – m(u)

]
+ Kα(t)

[
u – n(u)

]
,

(Tu)(t) =
∫ t


Tα(t – s)

[
f
(
s, u(s)

)
+

∫ s


q(s – τ )g

(
τ , u(τ )

)
dτ

]
ds.

Firstly, we prove that when u, v ∈ �, we have Su + Tv ∈ �.
Similar to (.) and (.), for u, v ∈ �, we obtain

Sα(t)
[
u – m(u)

] ≥ θ , Kα(t)
[
u – n(u)

] ≥ θ ,∫ t


Tα(t – s)

[
f
(
s, v(s)

)
+

∫ s


q(s – τ )g

(
τ , v(τ )

)
dτ

]
ds ≥ θ .

Consequently, we have

(Su)(t) + (Tv)(t) ≥ θ , for u, v ∈ �. (.)
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Following from (H), (H), and (H), we also have

∥∥(Su)(t) + (Tv)(t)
∥∥ ≤ ∥∥Sα(t)

∥∥ · ∥∥u – m(u)
∥∥ +

∥∥Kα(t)
∥∥ · ∥∥u – n(u)

∥∥
+

∫ t



∥∥Tα(t – s)
∥∥ ·

∥∥∥∥f
(
s, u(s)

)

+
∫ s


q(s – τ )g

(
τ , u(τ )

)
dτ

∥∥∥∥ds

≤ M̃
(∥∥u – m(u)

∥∥ +
∥∥u – n(u)

∥∥
+ T‖μR‖L∞(J ,R+) + Tq‖νR‖L∞(J ,R+)

)
≤ R. (.)

Combining (.) with (.), we have Su + Tv ∈ �, for u, v ∈ �.
Secondly, we prove that the operator T is a contraction.
For any u, v ∈ �, we get

∥∥(Tu)(t) – (Tv)(t)
∥∥ ≤

∫ t



∥∥Tα(t – s)
∥∥ · ∥∥f

(
s, u(s)

)
– f

(
s, v(s)

)∥∥ds

+
∫ t



∥∥Tα(t – s)
∥∥ ·

(∫ s



∣∣q(s – τ )
∣∣ · ∥∥g

(
τ , u(τ )

)

– g
(
τ , v(τ )

)∥∥dτ

)
ds

≤ M̃Tl
∥∥u(t) – v(t)

∥∥ + M̃Tlq
∥∥u(t) – v(t)

∥∥
≤ M̃T(l + ql)‖u – v‖.

Since M̃T(l + ql) < , operator T is a contraction.
Thirdly, we prove that S is continuous.
Let un, u ∈ �, ‖un(t) – u(t)‖ →  as n → ∞. Noting that m, n are continuous, we have

m(un) → m(u), n(un) → n(u), as n → ∞. (.)

Then

∥∥(Sun)(t) – (Su)(t)
∥∥ ≤ ∥∥Sα(t)

∥∥ · ∥∥m(un) – m(u)
∥∥

+
∥∥Kα(t)

∥∥ · ∥∥n(un) – n(u)
∥∥

≤ M̃
(∥∥m(un) – m(u)

∥∥ +
∥∥n(un) – n(u)

∥∥)
.

Following from (.), we have limn→∞(Sun)(t) = (Su)(t). That is, operator S is continuous.
Lastly, we prove S is compact.
To this end, we use the Ascoli-Arzela theorem. We prove that {(Su)(t) : u ∈ �} is rela-

tively compact for t ∈ J . For u ∈ �, we have

∥∥(Su)(t)
∥∥ ≤ ∥∥Sα(t)

∥∥ · ∥∥u – m(u)
∥∥

+
∥∥Kα(t)

∥∥ · ∥∥u – n(u)
∥∥
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≤ M̃
(∥∥u – m(u)

∥∥ +
∥∥u – n(u)

∥∥)
< ∞.

This shows operator S is uniformly bounded.
Now, let us prove that S(�) is equicontinuous. Obviously, the function (Su)(t) is equicon-

tinuous at t = . For  < t < t ≤ T , u ∈ �, we have

∥∥(Su)(t) – (Su)(t)
∥∥ ≤ ∥∥Sα(t) – Sα(t)

∥∥ · ∥∥u – m(u)
∥∥

+
∥∥Kα(t) – Kα(t)

∥∥ · ∥∥u – n(u)
∥∥.

In view of (H), ‖u – m(u)‖, ‖u – n(u)‖ are bounded, so the continuity of functions t →
‖Sα(t)‖, t → ‖Kα(t)‖ for t ∈ (, T], allows us to conclude that

lim
t→t

(Su)(t) = (Su)(t).

In short, we have proved that {S(�)} is relatively compact for {(Su)(t) : u ∈ �} is a family
of equicontinuous function. Hence by the Arzela-Ascoli theorem, S is compact. As all the
conditions of Krasnoselskii’s fixed point theorem are satisfied, we conclude that Cauchy
problem (.) has at least one mild solution on J . Given that Su + Tu ≥ θ for u ∈ �, we
learn that Cauchy problem (.) has at least one positive mild solution on J . �

4 Example
We consider the following fractional differential equation:

⎧⎪⎪⎨
⎪⎪⎩

Dαu(t, x) = ∂u(t,x)
∂x + et |u(t,x)|

(+et )(+|u(t,x)|) +
∫ t

 et–s es√
+|u(t,x)| ds,

u(, x) – |u(t,x)|
+|u(t,x)| = , du(t,x)

dt |t= – |u(t,x)|
+|u(t,x)| = ,

u(t, ) = u(t,π ) = , u′(t, ) = u′(t,π ) = ,

(.)

where t ∈ J = [, ],  ≤ x ≤ π ,  < α < , let X = L([,π ]). Then the fractional differential
equation (.) has at least one positive mild solution on J .

Proof As X = L([,π ]), then the positive cone of X is P = {u ∈ C(J , X) : u(t, x) ≥
, a.e. (t, x) ∈ J × X}. The operator A : D(A) ⊂ X → X is given by

Ax = x′′ with D(A) :=
{

x ∈ X : x′ ∈ X, x() = x(π ) = 
}

.

It is well known that A is the infinitesimal generator of an analytic semigroup {T(t)}t≥

on X. Furthermore, A has discrete spectrum with eigenvalues –n, n ∈ N , and correspond-
ing normalized eigenfunctions given by zn(x) = ( π

 )/ sin(nx) []. In addition, {zn : n ∈ N}
is an orthonormal basis of X and

T(t) =
∞∑

n=

e–nt〈x, zn〉zn, for x ∈ X, t ≥ .

It follows from this representation that T(t) is compact for every t >  and that ‖T(t)‖ ≤ e–t

for every t ≥  [].



Wang and Shu Advances in Difference Equations  (2015) 2015:159 Page 14 of 15

As indicated in [], the operator A = � is a sectorial operator of type (M, θ ,α,μ) and
generates compact α-resolvent families {Sα(t)}t≥, {Kα(t)}t≥, and {Tα(t)}t≥. Since it was
proved in [] that A = � is an m-accretive operator on X with dense domain, assumption
(H) is satisfied.

In this situation,

f (t, u) =
et|u|

( + et)( + |u|) , g(t, u) =
et

√
 + |u| ,

m(u) = –
|u|

 + |u| , n(u) = –
|u|

 + |u| , q(t – s) = et–s.

From the estimates on the norms of operators of Theorem . and Theorem ., we can
obtain M̃ =  (see []). Moreover, for t ∈ J , u, v ∈ R we have

∥∥f (t, u) – f (t, v)
∥∥ =

et

 + et

∥∥∥∥ u
 + u

–
v

 + v

∥∥∥∥ ≤ et

 + et ‖u – v‖ ≤ 

‖u – v‖,

∥∥g(t, u) – g(t, v)
∥∥ = et

∥∥∥∥ √
 + u

–
√

 + v

∥∥∥∥ ≤ et


‖u – v‖ ≤ 


‖u – v‖.

So, we have l = 
 , l = 

 . Meanwhile,

∥∥f (t, u)
∥∥ ≤ et

 + et <



,
∥∥g(t, u)

∥∥ ≤ et
√


<

√


=
√




.

Hence, ‖μ‖ = 
 , ‖ν‖ =

√


 , which means assumptions (H) and (H) are satisfied. We
have

max
∫ t



∣∣q(t – s)
∣∣ds = max

t∈[,]

∫ t


et–s ds = max

t∈[,]
et –  ≤ .

For u ∈ R, we have

∥∥u – m(u)
∥∥ ≤

∥∥∥∥ u
 + u

∥∥∥∥ ≤ 


,
∥∥u – n(u)

∥∥ ≤ 


.

Then assumption (H) is satisfied.
Consequently,

M̃T(l + ql) = 
(




+  × 


)
=




< .

It is not difficult to conclude that all the conditions of Theorem . are satisfied. Hence,
the nonlocal fractional differential equation (.) has at least one positive mild solution.

�

5 Conclusion
In this paper, we discussed the existence of positive mild solution of a kind of fractional
differential evolution equation with nonlocal conditions of order  < α < . Firstly, we in-
vestigated the properties of solution operators by means of the classical Mittag-Leffler
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function. Secondly, we obtain the existence result by applying Schauder’s fixed point the-
orem and Krasnoselskii’s fixed point theorem under some special conditions.

Based on this work, our future work will be devoted to the study of the existence of
positive mild solutions of impulsive fractional differential evolution equations of order
 < α < .
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