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Abstract
By means of topological theory, a class of Liénard type equations with a deviating
argument of the form (ϕp(x′(t)))′ + f (x(t – τ ))x′(t – τ ) + β(t)g(x(t – τ )) = e(t) is studied. It
is notable that the coefficient β(t) in front of g(x(t – τ )) is allowed to change sign in
this paper. Moreover, a numerical simulation is carried out to verify the validity of the
obtained results. In addition, the generalized form of the above equation with
time-varying delays is also discussed briefly.
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1 Introduction
Consider the Liénard type p-Laplacian differential equation

(
ϕp

(
x′(t)

))′ + f
(
x(t – τ )

)
x′(t – τ ) + β(t)g

(
x(t – τ )

)
= e(t), (.)

where p >  and ϕp : R �→ R is given by ϕp(s) = |s|p–s for s �=  and ϕp() = ,
∫ T

 β(s) ds �= ,
f , g, e ∈ C(R, R), and e(t) is T-periodic,

∫ T
 e(s) ds = , T , τ >  are given constants. The

equation can be applied to the dynamics of fluids. An example is Euler’s equation, govern-
ing the flow of an ideal fluid in a conservative force field. While there are plenty of results
on the existence of periodic solutions for the p-Laplacian equation (see [–] and refer-
ences therein), studying delay Liénard equations with a variable coefficient in front of the
nonlinear term is relatively uncommon. The main difficulty lies in finding a priori bounds
for (.) requiring the coefficient of the nonlinear term to keep a fixed sign.

In the aforementioned literature, based on the Leray-Schauder degree theory, Amster
et al. [] considered the existence of at least one periodic solution for the p-Laplacian-like
system with a fixed delay. Gao and Zhang [] discussed an n-dimensional p-Laplacian-like
neutral functional differential equation, and they established some criteria to guarantee
the existence of periodic solutions for the equation by using Mawhin’s continuation the-
orem. Manásevich and Sȩdziwy [] were concerned with the existence and uniqueness of
a limit circle for a generalized Liénard type equation, which involves the one-dimensional
p-Laplacian operator and a positive small parameter. Manásevich and Mawhin [] stud-
ied the existence of periodic solutions to some system cases involving the fairly general
vector-valued p-Laplacian operator. Aizicovici et al. [] investigated a nonlinear periodic
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problem driven by the scalar p-Laplacian with a nonsmooth potential via the degree map;
they proved the existence of at least three distinct nontrivial solutions, two of which have
a constant sign. In Gaines and Mawhin’s monograph [], coincidence degree theory was
described and used to study alternative problems. Aizicovici et al. [] conducted periodic
problems driven by the scalar p-Laplacian with a multivalued right-hand side nonlinearity.
Gao et al. [, ] considered the existence of periodic solutions for two kinds of Rayleigh
type p-Laplacian equations by using the continuation theorem. Cheung [] proposed the
existence of periodic solutions of a p-Laplacian Rayleigh equation with two deviating ar-
guments.

Based on topological theory and some analysis techniques, the existence of periodic so-
lutions for (.) is investigated in the present paper. It is significant that the coefficient β(t)
of the nonlinear term can change sign, which cannot be achieved in most of the previous
papers. Furthermore, a numerical simulation is performed to validate the feasibility of the
obtained results. In addition, the fixed delays in (.) are also extended to the time-varying
delays and we briefly discuss them. Moreover, the approaches used to estimate a priori
bounds of periodic solutions are different from the corresponding ones in the literature.

2 Preliminaries
Let us consider the problem: find u ∈ C

T such that

(
ϕp

(
u′(t)

))′ = f̃
(
t, u(t – τ ), u′(t – τ )

)
. (.)

Lemma . (see Amster et al. []) Let � ∈ C
T be an open set. Assume that:

(A) For λ ∈ (, ] the problem

(
ϕp

(
u′(t)

))′ = λ̃f
(
t, u(t – τ ), u′(t – τ )

)

has no solution on ∂�.
(A) The equation

F̃(a) � 
T

∫ T


f̃ (t, a, ) = 

has no solution on ∂� ∩ Rn.
(A) The Brouwer degree

deg
(
F̃ ,� ∩ Rn, 

) �= .

Then the problem (.) has at least one solution in C
T .

3 Main results
For the sake of convenience, we only study the periodic solutions of (.) in the case
∫ T

 β(t) dt >  (
∫ T

 β(t) dt <  can be discussed in the same way).

Theorem . Assume that the following conditions hold:
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(H) There are positive constants m, m, and d such that

m|u|p– ≤ ∣∣g(u)
∣∣ ≤ m|u|p–, ∀|u| > d.

(H) There is a constant r ≥  such that lim|u|→∞ |F(u)|
|u|p– ≤ r, where F(x) =

∫ x
 f (s) ds.

(H)

A :=

⎧
⎪⎨

⎪⎩

[ (β∞+ε)mT
m

∫ T
 (β(t)+β∞+ε) dt

]


p– 
–p
p– < ,  < p ≤ ,

[ (β∞+ε)mT
m

∫ T
 (β(t)+β∞+ε) dt

]


p– < , p > ,

where ε > , β∞ = maxt∈[,T] |β(t)|.
(H) ug(u) > , ∀|u| > d.

Then (.) has at least one T-periodic solution, if Cpr[ T
(–A) ]p– + β∞mT

(–A)p < , where

Cp =

{
,  < p ≤ ,
p–, p > .

Proof Consider the homotopic equation of (.) as follows:

(
ϕp

(
x′(t)

))′ + λf
(
x(t – τ )

)
x′(t – τ ) + λβ(t)g

(
x(t – τ )

)
= λe(t), λ ∈ (, ]. (.)

For ∀ε > , β∞ = maxt∈[,T] |β(t)|, (.) can be written in the following form:

(
ϕp

(
x′(t)

))′ + λf
(
x(t – τ )

)
x′(t – τ ) + λ

(
β(t) + β∞ + ε

)
g
(
x(t – τ )

)

= λ(β∞ + ε)g
(
x(t – τ )

)
+ λe(t), λ ∈ (, ]. (.)

Integrating both sides of (.) from  to T and using the integral mean value theorem,
there exists a constant ξ ∈ (, T) such that

g
(
x(ξ – τ )

)∫ T



(
β(t) + β∞ + ε

)
dt =

∫ T


(β∞ + ε)g

(
x(t – τ )

)
dt. (.)

Now, we claim that

∣∣x(ξ – τ )
∣∣ ≤ A|x|∞ + B, (.)

where

A =

⎧
⎪⎨

⎪⎩

[ (β∞+ε)mT
m

∫ T
 (β(t)+β∞+ε) dt

]


p– 
–p
p– ,  < p ≤ ,

[ (β∞+ε)mT
m

∫ T
 (β(t)+β∞+ε) dt

]


p– , p > ,

B =

⎧
⎪⎨

⎪⎩

[ (β∞+ε)Mg T
m

∫ T
 (β(t)+β∞+ε) dt

]


p– 
–p
p– + d,  < p ≤ ,

[ (β∞+ε)Mg T
m

∫ T
 (β(t)+β∞+ε) dt

]


p– + d, p > ,

Mg = max
|u|≤d

∣
∣g(u)

∣
∣.
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Case : If |x(ξ – τ )| ≤ d, then (.) holds clearly.
Case : If |x(ξ – τ )| > d. Denote

E =
{

t : t ∈ [, T],
∣∣x(t – τ )

∣∣ ≤ d
}

, E =
{

t : t ∈ [, T],
∣∣x(t – τ )

∣∣ > d
}

.

From (.), we have

∣
∣g

(
x(ξ – τ )

)∣∣
∫ T



(
β(t) + β∞ + ε

)
dt ≤ (β∞ + ε)

(∫

E

+
∫

E

)∣
∣g

(
x(t – τ )

)∣∣dt,

which, together with assumption (H), leads to

∣∣x(ξ – τ )
∣∣p–m

∫ T



(
β(t) + β∞ + ε

)
dt ≤ (β∞ + ε)

(∫

E

m
∣∣x(t – τ )

∣∣p– dt + MgT
)

≤ (β∞ + ε)mT |x|p–
∞ + (β∞ + ε)MgT ,

i.e.,

∣
∣x(ξ – τ )

∣
∣ ≤

[
(β∞ + ε)mT

m
∫ T

 (β(t) + β∞ + ε) dt

] 
p–


–p
p– |x|∞

+
[

(β∞ + ε)MgT
m

∫ T
 (β(t) + β∞ + ε) dt

] 
p–


–p
p– ,  < p ≤ ,

∣∣x(ξ – τ )
∣∣ ≤

[
(β∞ + ε)mT

m
∫ T

 (β(t) + β∞ + ε) dt

] 
p– |x|∞

+
[

(β∞ + ε)MgT
m

∫ T
 (β(t) + β∞ + ε) dt

] 
p–

, p > .

Thus, from Case  and Case , we see that (.) holds.
Let ξ – τ = kT + ξ̄ , where k is an integer and ξ̄ ∈ [, T]; noticing (.), we get

∣∣x(t)
∣∣ ≤ A|x|∞ + B +

∫ t

ξ̄

∣∣x′(s)
∣∣ds, t ∈ [ξ̄ , ξ̄ + T],

and

∣
∣x(t – T)

∣
∣ ≤ A|x|∞ + B +

∫ ξ̄

t–T

∣
∣x′(s)

∣
∣ds, t ∈ [ξ̄ , ξ̄ + T].

Combining the above two inequalities, we obtain

|x|∞ = max
t∈[ξ̄ ,ξ̄+T]

∣
∣x(t)

∣
∣

≤ max
t∈[ξ̄ ,ξ̄+T]

{
A|x|∞ + B +




(∫ t

ξ̄

∣∣x′(s)
∣∣ds +

∫ ξ̄

t–T

∣∣x′(s)
∣∣ds

)}

≤ A|x|∞ + B +



∫ T



∣
∣x′(s)

∣
∣ds.
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In view of (H), we have

|x|∞ ≤ B
 – A

+
∫ T

 |x′(s)|ds
( – A)

. (.)

On the other hand, noticing Cpr[ T
(–A) ]p– + β∞mT

(–A)p < , we easily see that there is a suffi-
ciently small constant ε >  such that

Cp(r + ε)
[

T
( – A)

]p–

+
β∞mT
( – A)p < . (.)

By assumption (H) and for such ε, we know there exists a constant ρ > d (independent
of λ) such that

∣∣F(u)
∣∣ ≤ (r + ε)|u|p–, |u| > ρ. (.)

Let

� =
{

t : t ∈ [, T],
∣∣x(t – τ )

∣∣ ≤ ρ
}

, � =
{

t : t ∈ [, T],
∣∣x(t – τ )

∣∣ > ρ
}

.

Multiplying both sides of (.) by x(t) and integrating them with [, T], noticing (.), we
get

∫ T



∣
∣x′(t)

∣
∣p dt = –

∫ T



(
ϕp

(
x′(t)

))′x(t) dt

= λ

∫ T


f
(
x(t – τ )

)
x′(t – τ )x(t) dt

+ λ

∫ T


β(t)g

(
t, x(t – τ )

)
x(t) dt – λ

∫ T


e(t)x(t) dt

≤
(∫

�

+
∫

�

)∣∣F
(
x(t – τ )

)
x′(t)

∣∣dt

+ β∞|x|∞
(∫

E

+
∫

E

)∣∣g
(
x(t – τ )

)∣∣dt + e∞|x|∞T

≤ [
Mρ + (r + ε)|x|p–

∞
] ∫ T



∣∣x′(t)
∣∣dt + β∞mT |x|p∞

+ β∞MgT |x|∞ + e∞T |x|∞, (.)

where Mρ = max|u|≤ρ |F(u)|, e∞ = maxt∈[,T] |e(t)|.
Substituting (.) into (.) yields

∫ T



∣∣x′(t)
∣∣p dt ≤ (r + ε)

[
B

 – A
+

∫ T
 |x′(t)|dt
( – A)

]p– ∫ T



∣∣x′(t)
∣∣dt

+ β∞mT
[

B
 – A

+
∫ T

 |x′(t)|dt
( – A)

]p

+
[

Mρ +
β∞MgT
( – A)

+
e∞T

( – A)

]∫ T



∣
∣x′(t)

∣
∣p dt
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+ (β∞Mg + e∞)
BT

 – A

≤ Cp(r + ε)
[(

B
 – A

)p–

+
(∫ T



∣
∣x′(t)

∣
∣dt

( – A)

)p–]∫ T



∣
∣x′(t)

∣
∣dt

+
β∞mT
( – A)p

(∫ T



∣∣x′(t)
∣∣dt

)p

+
[

Mρ +
β∞MgT
( – A)

+
e∞T

( – A)

]
T


q

(∫ T



∣
∣x′(t)

∣
∣p dt

) 
p

+ (β∞Mg + e∞)
BT

 – A
+

p–β∞mBpT
( – A)p

≤
[

Cp(r + ε)
[

T
( – A)

]p–

+
β∞mT
( – A)p

]∫ T



∣
∣x′(t)

∣
∣p dt

+ θ

(∫ T



∣∣x′(t)
∣∣p dt

) 
p

+ θ, (.)

where

Cp =

{
,  < p ≤ ,
p–, p > ,

θ = Cp(r + ε)
(

B
 – A

)p–

T

q +

[
Mρ +

β∞MgT
( – A)

+
e∞T

( – A)

]
T


q ,

θ = (β∞Mg + e∞)
BT

 – A
+

p–β∞mBpT
( – A)p ,

e∞ = max
t∈[,T]

∣∣e(t)
∣∣.

In view of (.) and 
p < , it follows from (.) that there is a constant M >  such that

∫ T



∣∣x′(t)
∣∣p dt ≤ M, (.)

which implies that there exists a constant M >  such that

∣∣x′∣∣∞ ≤ M. (.)

From (.) and (.), we can see that there exists a constant M such that

|x|∞ ≤ B
 – A

+
T


q M


p

( – A)
� M. (.)

According to (.) and (.), set � = {x : |x′|∞ < M + , |x|∞ < M + }, then we see that
(.) has no solution on ∂� for λ ∈ (, ], and when x(t) = M +  or –M – , from (H),
we can get

–

T

∫ T


β(t)g(M + ) dt < ,
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–

T

∫ T


β(t)g(–M – ) dt < .

So, condition (A) of Lemma . is also satisfied.
Denote

H(x,μ) = μx +
 – μ

T

∫ T


β(t)g(x) dt,

and when x ∈ ∂� ∩ R, μ ∈ [, ], in view of
∫ T

 β(s) ds > , we have

xH(x,μ) = μx +
( – μ)x

T

∫ T


β(t)g(x) dt > .

Thus, H(x,μ) is a homotopic transformation and

deg {̃F ,� ∩ R, } = deg

{
–


T

∫ T


β(t)g(x) dt,� ∩ R, 

}

= deg {x,� ∩ R, } �= .

Therefore, condition (A) of Lemma . is also satisfied. By using Lemma ., we conclude
that (.) has at least one T-periodic solution x(t) on �̄ with |x|∞ ≤ M. This completes
the proof of Theorem .. �

4 Generalization
As a matter of fact, (.) can also be extended to the time-varying case, which admits the
following form:

(
ϕp

(
x′(t)

))′ + f
(
x(t – τ )

)
x′(t – τ ) + β(t)g

(
x
(
t – δ(t)

))
= e(t), (.)

where δ(t + T) ≡ δ(t), δ′(t) < , and
∫ T

 β(s) ds �=  (the case of
∫ T

 β(s) ds >  will be con-
sidered in this section, and the other case,

∫ T
 β(s) ds < , can be studied in the same way).

Then, according to Mawhin’s continuation theorem, the following result is obtained with
a similar process to Theorem ..

Theorem . Assume that the following conditions hold:

(C) There exist constants r > , r > , and d ≥  such that

r|u|p– ≤ ∣
∣g(u)

∣
∣ ≤ r|u|p– and ug(u) > , ∀|u| > d.

(C) There are constant r >  and d ≥  such that |f (u)| ≤ r|u|p–, ∀|u| > d.
(C) There is a constant ε >  such that

M :=

⎧
⎪⎨

⎪⎩

[ (|β–|∞+ε)rT
r

∫ T
 (β++ε)dt

]


p– 
–p
p– < ,  < p ≤ ,

[ (|β–|∞+ε)rT
r

∫ T
 (β++ε)dt

]


p– < , p > ,

where β+ = maxt∈[,T] {β(t), }, β– = maxt∈[,T] {–β(t), }.
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Figure 1 Phase diagram of the system for τ = 0.02.

Then (.) has at least one T-periodic solution if

CprTp– + p–rθ |β|∞Tp < ( – M)p–,

where θ = maxt∈[,T]


–δ′(γ (t)) and γ (t) denotes the inverse of function t – δ(t).

5 Example
For convenience, as an application of Theorem ., we consider the following example:

(
ϕ

(
x′(t)

))′ + f
(
x(t – τ )

)
x′(t – τ ) +

(
sin t +




)
g
(
x(t – τ )

)
= cos t, (.)

where p = , f (t) = t sin t
, , β(t) = sin t + 

 , g(u) = u

, + , e(t) = cos t, then F(u) =
∫ u

 f (s) ds = 
, (–u cos u + u sin u +  cos u – ), and β∞ = 

 . So we can choose m =


, , m = 
, , d =  √, r = 

, , ε = 
 so that the conditions of Theorem . hold.

Therefore, by Theorem . we find that (.) has at least one π
 -periodic solution, which

can also be illustrated by numerical simulation.
By using MATLAB© .. (Ra) toolkit: dde, which can be used to solve delay

differential equations with constant delays, (.) is simulated on tspan = [., .] with
history = [., –.] for t ≤  (see Figure ). It can be found from Figure  that the equation
admits one periodic solution with periodicity ., which is around π

 . Therefore, the
results achieved in this paper are significant.
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