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Abstract
In this paper, we consider the existence of homoclinic solutions for a class of nonlinear
difference systems involving classical (φ1,φ2)-Laplacian. First, we improve some
inequalities in known literature. Then, by using the variational method, some new
existence results are obtained. Finally, some examples are given to verify our results.
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1 Introduction and main results
Let R denote the real numbers and Z the integers. Given a < b in Z. Let Z[a, b] = {a, a +
, . . . , b}. Let T >  and N be fixed positive integers.

In this paper, we investigate the existence of homoclinic solutions for the following non-
linear difference systems involving classical (φ,φ)-Laplacian:

{
�φ(�u(t – )) + ∇u V (t, u(t), u(t)) = f(t),
�φ(�u(t – )) + ∇u V (t, u(t), u(t)) = f(t),

(.)

where t ∈ Z, um(t) ∈R
N , m = , , V (t, x, x) = –K(t, x, x) + W (t, x, x), K , W : Z×R

N ×
R

N → R and φm, m = , , satisfy the following condition:

(A) φm is a homeomorphism from R
N onto R

N such that φm() = , φm = ∇�m, with
�m ∈ C(RN , [, +∞]) strictly convex and �m() = , m = , .

Remark . Assumption (A) is given in [], which is used to characterize the classical
homeomorphism. If, furthermore, �m : RN → R is coercive (i.e., �m(x) → +∞ as |x| →
∞), there exists δm >  such that

�m(x) ≥ δm
(|x| – 

)
, x ∈R

N , (.)

where δm = min|x|= �m(x), m = ,  (see []).
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We call u = (u, u) a nontrivial homoclinic solution of system (.) if u satisfies system
(.), u �=  and u(t) →  as t → ∞.

It is well known that the variational method has become an important tool to study the
existence and multiplicity of solutions for various difference systems. Lots of contribu-
tions have been obtained (for example, see [–]). It is remarkable that, to the best of our
knowledge, few people investigated system (.). Recently, in [] and [], by using the vari-
ational approach, J Mawhin investigated the following second order nonlinear difference
systems with φ-Laplacian:

�φ
[
�u(n – )

]
= ∇uF

[
n, u(n)

]
+ h(n) (n ∈ Z), (.)

where φ = ∇�, � strictly convex, is a homeomorphism of RN onto the ball Ba ⊂ R
N or

of Ba onto R
N . By using the variational approach, under different conditions, the author

obtained that system (.) has at least one or N +  geometrically distinct T-periodic so-
lutions. It is interesting that J Mawhin considered three kinds of φ: () φ : RN → R

N is a
classical homeomorphism, for example, φ(x) = |x|p–x for some p >  and all x ∈R

N ; () φ :
R

N → Ba (a < +∞) is a bounded homeomorphism, for example, φ(x) = x√
+|x| ∈ B for all

x ∈ R
N ; () φ : Ba ⊂ R

N → R
N is a singular homeomorphism, for example, φ(x) = x√

–|x|
for all x ∈ B. Recently, in [], we generalized some results in [] for classical homeomor-
phism and bounded homeomorphism to system (.), which seem to be the first results
for system (.).

In , He and Chen [] investigated the existence of homoclinic solutions for the
following discrete p-Laplacian systems:

�
(∣∣�u(t – )

∣∣p–
�u(t – )

)
= ∇F

(
t, u(t)

)
+ f (t), t ∈ Z, u ∈R

N , (.)

where p > . They obtained homoclinic orbits as the limit of the subharmonics for system
(.).

In this paper, motivated by [, , , ] and [], we first improve some inequalities in []
and then investigate the existence of homoclinic solutions for system (.) with classical
homeomorphism. Next we make the following assumption:

(A) Let p > . Assume that there exist positive constants d, d, d, d such that

d|x|p ≤ �(x) ≤ d|x|p, d|y|p ≤ �(y) ≤ d|y|p, ∀x, y ∈R
N

and

(
φ(x), x

) ≤ p�(x),
(
φ(y), y

) ≤ p�(y), ∀x, y ∈R
N .

For every s ∈N, define

ls =

{
g : Z →R

N ,
+∞∑

t=–∞

∣∣g(t)
∣∣s < ∞

}
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with the norm

‖g‖ls =

( +∞∑
t=–∞

∣∣g(t)
∣∣s
)/s

.

Let p′ >  be such that 
p + 

p′ =  and

C∗ =
(

(T)–p′/p + min

{
(T + )p′+ + Tp′+ – 

(T)p′ (p′ + )
,

T
p′/p

})/p′

.

Next, we present our main results.

Theorem . Assume that (A) holds, fi �= , i = , , W and K satisfy the following condi-
tions:

(V) V (t, x, x) = –K(t, x, x) + W (t, x, x), where K , W : Z×R
N ×R

N → R, K(t, x, x)
and W (t, x, x) are T-periodic and for every t ∈ Z, K , W ∈ C(Z×R

N ×R
N ,R);

(H) there exist γ ∈ (, p) and a, a >  such that

K(t, x, x) ≥ a|x|γ + a|x|γ for all (t, x, x) ∈ Z[, T – ] ×R
N ×R

N ;

(H) K(t, , ) ≡  and

(
x,∇x K(t, x, x)

)
+

(
x,∇x K(t, x, x)

)
≤ pK(t, x, x) for all (t, x, x) ∈ Z[, T – ] ×R

N ×R
N ;

(H) (i) there exist r ∈ (, ],  < b < aCγ –p
∗ , and  < b < aCγ –p

∗ such that

W (t, x, x) ≤ b|x|p + b|x|p,

∀t ∈ Z[, T – ], |x| ≤ rC∗, |x| ≤ rC∗; (.)

(ii) there exist r > ,  < b < a(C∗r)γ –p, and  < b < a(C∗r)γ –p such that (.)
holds;

(H)

lim|x|+|x|→+∞
W (t, x, x)
|x|p + |x|p > d + d + p–A for all t ∈ Z[, T – ],

where

A = max
|x|≤,|x|≤,t∈Z[,T–]

K(t, x, x);

(H) there exist positive constants ξ , η, η and ν ∈ [,γ – ) such that

 ≤
(

p +


ξ + η|x|ν + η|x|ν
)

W (t, x, x)

≤ (∇x W (t, x, x), x
)

+
(∇x W (t, x, x), x

)
for all (t, x, x) ∈ Z[, T – ] ×R

N ×R
N ;
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(H) f, f ∈ lp′ ∩ l
p–ν

p–ν– and
(i) when r ∈ (, ],

max
{‖f‖lp′ ,‖f‖lp′

}
<


p– min

{
d, d, aCγ –p

∗ – b, aCγ –p
∗ – b

}
rp–;

(ii) when r ∈ (, +∞),

max
{‖f‖lp′ ,‖f‖lp′

}
<


p– min

{
d, d, a(C∗r)γ –p – b, a(C∗r)γ –p – b

}
rp–.

Then system (.) possesses a nontrivial homoclinic solution.

Theorem . Assume that (A) holds, fi �= , i = , , W and K satisfy (V), (H)-(H) and
the following conditions:

(H)′ f, f ∈ l and
(i) when r ∈ (, ],

max
{‖f‖l ,‖f‖l

}
<


p–C∗

min
{

d, d, aCγ –p
∗ – b, aCγ –p

∗ – b
}

rp–;

(ii) when r ∈ (, +∞),

max
{‖f‖l ,‖f‖l

}
<


p–C∗

min
{

d, d, a(C∗r)γ –p – b, a(C∗r)γ –p – b
}

rp–.

Then system (.) possesses a nontrivial homoclinic solution.

Theorem . Assume that (A) holds, fi �= , i = , , W and K satisfy (V), (H), (H), (H)
and the following conditions:

(H)′ there exist a, a >  such that

K(t, x, x) ≥ a|x|p + a|x|p for all (t, x, x) ∈ Z[, T – ] ×R
N ×R

N ;

(H)′ there exist r >  and  < b < a,  < b < a such that

W (t, x, x) ≤ b|x|p + b|x|p, ∀|x| ≤ rC∗, |x| ≤ rC∗;

(H)′′ f, f ∈ lp′ ∩ l
p–ν

p–ν– and

max
{‖f‖lp′ ,‖f‖lp′

}
<


p– min{d, d, a – b, a – b}rp–.

Then system (.) possesses a nontrivial homoclinic solution.
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Theorem . Assume that (A) holds, fi �= , i = , , W and K satisfy (V), (H)′, (H),
(H)′, (H), (H) and the following condition:

(H)′′′ f, f ∈ l and

max
{‖f‖l ,‖f‖l

}
<


p–C∗

min{d, d, a – b, a – b}rp–.

Then system (.) possesses a nontrivial homoclinic solution.

Remark . Theorem . and Theorem . show that f, f can be large when r is large.

2 Preliminaries
Similar to [] and [], we will obtain the homoclinic orbit of system (.) as a limit of
solutions of a sequence of difference systems:

{
�φ(�u(t – )) + ∇u V (t, u(t), u(t)) = f,k(t),
�φ(�u(t – )) + ∇u V (t, u(t), u(t)) = f,k(t),

(.)

where fm,k : Z → R
N is a kT-periodic extension of restriction of fm to the interval

Z[–kT , kT – ], k ∈N, m = , .
Next, we present some basic notations. We use | · | to denote the usual Euclidean norm

in R
N . Define

V =
{

u = (u, u)τ =
{

u(t)
}|u(t) =

(
u(t), u(t)

)τ ∈R
N ,

um =
{

um(t)
}

, um(t) ∈R
N , m = , , t ∈ Z

}
.

H is defined as a subspace of V by

Hk =
{

u =
{

u(t)
} ∈ V|u(t + kT) = u(t), t ∈ Z

}
.

Define

Hm,k =
{

um =
{

um(t)
}|um(t + kT) = um(t), um(t) ∈R

N , t ∈ Z
}

, m = , .

Then Hk = H,k ×H,k . For um ∈Hm,k , set

‖um‖s,k =

( kT–∑
t=–kT

∣∣um(t)
∣∣s
)/s

, m = , , s > .

Moreover, l∞kT denote the space of all bounded real functions on Z[–kT , kT – ] endowed
with the norm

‖um‖l∞kT
= max

t∈Z[–kT ,kT–]

∣∣um(t)
∣∣, m = , .

For  < p < +∞, on Hm,k , we define

‖um‖Hm,k =

( kT–∑
t=–kT

∣∣�um(t)
∣∣p +

kT–∑
t=–kT

∣∣um(t)
∣∣p

)/p

, m = , .
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For u = (u, u)τ ∈Hk , define

‖u‖Hk = ‖u‖H,k + ‖u‖H,k .

Then (Hk ,‖u‖Hk ), (H,k ,‖u‖H,k ) and (H,k ,‖u‖H,k ) are reflexive Banach spaces.

Lemma . Let a, b ∈ Z, a ≥ , b ≥ , � > , um ∈Hm,k , m = , . Then, for every t ∈ Z,

∣∣um(t)
∣∣ ≤ (a + b + )–/�

( t+b∑
s=t–a

∣∣um(s)
∣∣�)/�

+ min

{
[(a + )p′+ + (b + )p′+ – ]/p′

(a + b + )p′ (p′ + )/p′ ,
max{a, b}

(a + b + )/p

}

·
( t+b∑

s=t–a

∣∣�um(s)
∣∣p

)/p

, (.)

where m = , .

Proof Fix t ∈ Z. For every τ ∈ Z[t – a, t – ], we have

um(t) = um(τ ) +
t–∑
s=τ

�um(s) (.)

and for every τ ∈ Z[t, t + b],

um(t) = um(τ ) –
τ–∑
s=t

�um(s). (.)

Summing (.) over Z[t – a, t – ] and (.) over Z[t, t + b], we have

aum(t) =
t–∑

τ=t–a
um(τ ) +

t–∑
τ=t–a

t–∑
s=τ

�um(s)

=
t–∑

τ=t–a
um(τ ) +

t–∑
s=t–a

(s – t + a + )�um(s) (.)

and

(b + )um(t) =
t+b∑
τ=t

um(τ ) –
t+b∑
τ=t

τ–∑
s=t

�um(s)

=
t+b∑
τ=t

um(τ ) –
t+b–∑

s=t
(t + b – s)�um(s). (.)

Set

φ(s) =

{
s – t + a + , t – a ≤ s ≤ t – ,
t + b – s, t ≤ s ≤ t + b.
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Combining (.) with (.) and using Hölder’s inequality, we obtain

(a + b + )
∣∣um(t)

∣∣
=

∣∣∣∣∣
t+b∑

τ=t–a
um(τ ) +

t–∑
s=t–a

(s – t + a + )�um(s) –
t+b–∑

s=t
(t + b – s)�um(s)

∣∣∣∣∣
≤

t+b∑
τ=t–a

∣∣um(τ )
∣∣ +

t–∑
s=t–a

(s – t + a + )
∣∣�um(s)

∣∣ +
t+b–∑

s=t
(t + b – s)

∣∣�um(s)
∣∣

=
t+b∑

τ=t–a

∣∣um(τ )
∣∣ +

t+b–∑
s=t–a

φ(s)
∣∣�um(s)

∣∣ =
t+b∑

τ=t–a

∣∣um(τ )
∣∣ +

t+b∑
s=t–a

φ(s)
∣∣�um(s)

∣∣

≤ (a + b + )(�–)/�

( t+b∑
τ=t–a

∣∣um(τ )
∣∣�)/�

+

( t+b∑
s=t–a

[
φ(s)

]p′
)/p′( t+b∑

s=t–a

∣∣�um(s)
∣∣p

)/p

= (a + b + )(�–)/�

( t+b∑
τ=t–a

∣∣um(τ )
∣∣�)/�

+

( t–∑
s=t–a

(s – t + a + )p′
+

t+b∑
s=t

(t + b – s)p′
)/p′( t+b∑

s=t–a

∣∣�um(s)
∣∣q

)/q

. (.)

Since

t–∑
s=t–a

(s – t + a + )p′
=

a∑
s=

sp′
<

(a + )p′+ – 
p′ + 

,

t+b∑
s=t

(t + b – s)p′
=

b∑
k=

kp′
<

(b + )p′+ – 
p′ + 

(.)

and

t–∑
s=t–a

(s – t + a + )p′
+

t+b∑
s=t

(t + b – s)p′

≤
t–∑

s=t–a
ap′

+
t+b∑
s=t

bp′ ≤
t+b∑

s=t–a
max

{
ap′

, bp′}
= max

{
ap′

, bp′}
(b + a + ). (.)

Equation (.) implies that

(a + b + )
∣∣um(t)

∣∣
≤ (a + b + )(�–)/�

( t+b∑
τ=t–a

∣∣um(τ )
∣∣�)/�

+
(

min

{
(a + )p′+ + (b + )p′+ – 

p′ + 
, max

{
ap′ , bp′}(b + a + )

})/p′

·
( t+b∑

s=t–a

∣∣�um(s)
∣∣p

)/p

,

which implies that (.) holds. Thus the proof is complete. �
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Corollary . Let um ∈Hm,k , m = , . Then

‖um‖l∞kT
≤ (T)–/�

( kT–∑
s=–kT

∣∣um(s)
∣∣�)/�

+ min

{
[(T + )p′+ + Tp′+ – ]/p′

(T)p′ (p′ + )/p′ ,
T /p′

/p

}( kT–∑
s=–kT

∣∣�um(s)
∣∣p

)/p

, (.)

where m = , .

Proof Obviously, there exists t∗ ∈ Z[–kT , kT – ] such that

∣∣um
(
t∗)∣∣ = ‖um‖l∞kT

= max
t∈Z[–kT ,kT–]

∣∣um(s)
∣∣.

In Lemma ., let a = T and b = T – ,

∣∣um
(
t∗)∣∣ ≤ (T)–/�

(t∗+T–∑
s=t∗–T

∣∣um(s)
∣∣�)/�

+ min

{
[(T + )p′+ + Tp′+ – ]/p′

(T)p′ (p′ + )/p′ ,
T

(T)/p

}(t∗+T–∑
s=t∗–T

∣∣�um(s)
∣∣p

)/p

≤ (T)–/�

(t∗+kT–∑
s=t∗–kT

∣∣um(s)
∣∣�)/�

+ min

{
[(T + )p′+ + Tp′+ – ]/p′

(T)p′ (p′ + )/p′ ,
T

(T)/p

}(t∗+kT–∑
s=t∗–kT

∣∣�um(s)
∣∣p

)/p

= (T)–/�

( kT–∑
s=–kT

∣∣um(s)
∣∣�)/�

+ min

{
[(T + )p′+ + Tp′+ – ]/p′

(T)p′ (p′ + )/p′ ,
T /p′

/p

}( kT–∑
s=–kT

∣∣�um(s)
∣∣p

)/p

.

The proof is complete. �

Corollary . Let um ∈Hm,k , m = , . Then

‖um‖l∞kT
≤

(
(T)–p′/p + min

{
(T + )p′+ + Tp′+ – 

(T)p′ (p′ + )/p′ ,
T

p′/p

})/p′

·
( kT–∑

s=–kT

∣∣um(s)
∣∣p +

kT–∑
s=–kT

∣∣�um(s)
∣∣p

)/p

, (.)

where m = , .

Proof In Corollary ., let � = p and then use Hölder’s inequality. Then the proof is com-
pleted easily. �
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Remark . As a ≥ , Lemma ., Corollary ., and Corollary . improve Lemma .,
Corollary ., and Corollary . in [], respectively.

By Lemma . and Lemma . in [], we have the following two lemmas.

Lemma . (see []) For any u = (u, u), v = (v, v) ∈ Hk , the following two equalities
hold:

–
kT–∑

t=–kT

(
�φ

(
�u(t – )

)
, v(t)

)
=

kT–∑
t=–kT

(
�φ

(
�u(t)

)
,�v(t)

)
, (.)

–
kT–∑

t=–kT

(
�φ

(
�u(t – )

)
, v(t)

)
=

kT–∑
t=–kT

(
�φ

(
�u(t)

)
,�v(t)

)
. (.)

Lemma . (see []) Let L : Z[–kT , kT –]×R
N ×R

N ×R
N ×R

N →R, (t, x, x, y, y) →
L(t, x, x, y, y) and assume that L is continuously differential in (x, x, y, y) for all t ∈
Z[–kT , kT – ]. Then the function ϕk : Hk →R defined by

ϕk(u) = ϕk(u, u) =
kT–∑

t=–kT

L
(
t, u(t), u(t),�u(t),�u(t)

)

is continuously differentiable on Hk and

〈
ϕ′

k(u), v
〉

=
〈
ϕ′

k(u, u), (v, v)
〉

=
kT–∑

t=–kT

[(
Dx L

(
t, u(t), u(t),�u(t),�u(t)

)
, v(t)

)
+

(
Dy L

(
t, u(t), u(t),�u(t),�u(t)

)
,�v(t)

)
+

(
Dx L

(
t, u(t), u(t),�u(t),�u(t)

)
, v(t)

)
+

(
Dy L

(
t, u(t), u(t),�u(t),�u(t)

)
,�v(t)

)]
,

where u, v ∈Hk .

Let

L(t, x, x, y, y) = �(y) + �(y) + K(t, x, x) – W (t, x, x) +
(
f,k(t), x

)
+

(
f,k(t), x

)
and define ηk : Hk → [, +∞) by

ηk(u) = ηk(u, u) =
kT–∑

t=–kT

[
�

(
�u(t)

)
+ �

(
�u(t)

)
+ K

(
t, u(t), u(t)

)]
.

Then

ϕk(u) = ϕk(u, u)

=
kT–∑

t=–kT

[
�

(
�u(t)

)
+ �

(
�u(t)

)
+ K

(
t, u(t), u(t)

)
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– W
(
t, u(t), u(t)

)
+

(
f,k(t), u(t)

)
+

(
f,k(t), u(t)

)]
= ηk(u) +

kT–∑
t=–kT

[
–W

(
t, u(t), u(t)

)
+

(
f,k(t), u(t)

)
+

(
f,k(t), u(t)

)]
. (.)

It follows from (A), (V) and Lemma . that
〈
ϕ′

k(u), v
〉

=
〈
ϕ′

k(u, u), (v, v)
〉

=
kT–∑

t=–kT

[(
φ

(
�u(t)

)
,�v(t)

)
+

(
φ

(
�u(t)

)
,�v(t)

)
+

(∇u K
(
t, u(t), u(t)

)
, v(t)

)
+

(∇u K
(
t, u(t), u(t)

)
, v(t)

)
–

(∇u W
(
t, u(t), u(t)

)
, v(t)

)
–

(∇u W
(
t, u(t), u(t)

)
, v(t)

)
+

(
f,k(t), v(t)

)
+

(
f,k(t), v(t)

)]
, ∀u, v ∈Hk . (.)

By Lemma ., it is easy to see that critical points of ϕk in Hk are kT-periodic solutions
of system (.).

We shall use one linking method in [] to obtain the critical points of ϕ (the details can
be seen in []). Let (E,‖ ·‖) be a Banach space. Define a continuous map  : [, ]×E → E
by (t, x) = (t)x, where (t) satisfies the following conditions:

() () = I , the identity map.
() For each t ∈ [, ), (t) is a homeomorphism of E onto E and

–(t) ∈ C(E × [, ), E).
() ()E is a single point in E and (t)A converges uniformly to ()E as t →  for

each bounded set A ⊂ E.
() For each t ∈ [, ) and each bounded set A ⊂ E,

sup
≤t≤t

u∈A

{∥∥(t)u
∥∥ +

∥∥–(t)u
∥∥}

< ∞.

Let � be the set of all continuous maps  as defined above.

Definition . (see [], Definition .) We say that A links B[hm] if A and B are subsets
of E such that A ∩ B = ∅, and for each  ∈ �, there is t′ ∈ (, ] such that (t′)A ∩ B �= ∅.

Example  (see [], p.) Let B be an open set in E, and let A consist of two points e, e

with e ∈ B and e /∈ B̄. Then A links ∂B[hm].

We use the following theorem to prove our main results.

Theorem . (see [], Theorem . and Theorem .) Let E be a Banach space, ϕ ∈
C(E,R) and A and B be two subsets of E such that A links B[hm]. Assume that

sup
A

ϕ ≤ inf
B

ϕ

and

c := inf
∈�

sup
s∈[,]

u∈A

ϕ
(
(s)u

)
< ∞.
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Let ψ(t) be a positive, nonincreasing, locally Lipschitz continuous function on [,∞) sat-
isfying

∫ ∞
 ψ(r) dr = ∞. Then there exists a sequence {un} ⊂ E such that ϕ(un) → c and

ϕ′(un)/ψ(‖un‖) → , as n → ∞. Moreover, if c = supA ϕ, then there is a sequence {un} ⊂ E
satisfying ϕ(un) → c, ϕ′(un) → , and d(un, B) → , as n → ∞.

Remark . Since A links B, by Definition ., it is easy to know that c ≥ infB ϕ. By [],
if we let ψ(r) = 

+r , the sequence {un} is the Cerami sequence that is {un} satisfying

ϕ(un) → c,
(
 + ‖un‖

)∥∥ϕ′(un)
∥∥ → , as n → ∞.

3 Proofs
Lemma . Suppose that (H) holds. Then

K(t, x, x) ≤ p–K
(

t,
x

|x| ,
x

|x|
)(|x|p + |x|p

)
for all t ∈ Z[, T – ], |x| ≥ ;

K(t, x, x) ≥ 


K
(

t,
x

|x| ,
x

|x|
)(|x|p + |x|p

)
for all t ∈ Z[, T – ], |x| ≤ .

Proof Define the function ξ ∈ (, +∞) → K(t, ξ–x, ξ–x)(ξp + ξp). Then we have

(
K

(
t, ξ–x, ξ–x

)(
ξp + ξp))′

ξ

= –
(∇x K

(
t, ξ–x, ξ–x

)
, ξ–x

)(
ξp + ξp)

–
(∇x K

(
t, ξ–x, ξ–x

)
, ξ–x

)(
ξp + ξp) + K

(
t, ξ–x, ξ–x

)(
pξp– + pξp–)

≥ –
(∇x K

(
t, ξ–x, ξ–x

)
, ξ–x

)(
ξp– + ξp–)

–
(∇x K

(
t, ξ–x, ξ–x

)
, ξ–x

)(
ξp– + ξp–) + pK

(
t, ξ–x, ξ–x

)(
ξp– + ξp–)

≥ .

Hence the function ξ ∈ (, +∞) → K(t, ξ–x, ξ–x)(ξp + ξp) is nondecreasing. Moreover,
note that

|x|p + |x|p


≤ |x|p ≤ (|x| + |x|
)p ≤ p–(|x|p + |x|p

)
.

Then the proof can be completed easily. �

Lemma . Suppose that (H) holds. Then, for any u ∈Hk ,

ηk(u) ≥ min
{

d‖u‖p
H,k

, aCγ –p
∗ ‖u‖γ

H,k

}
+ min

{
d‖u‖p

H,k
, aCγ –p

∗ ‖u‖γ

H,k

}
, ∀k ∈ N.

Proof It follows from (A), (H), γ ∈ (, p) and Corollary . that

ηk(u) =
kT–∑

t=–kT

[
�

(
�u(t)

)
+ �

(
�u(t)

)
+ K

(
t, u(t), u(t)

)]

≥
kT–∑

t=–kT

[
d

∣∣�u(t)
∣∣p + d

∣∣�u(t)
∣∣p + a

∣∣u(t)
∣∣γ + a

∣∣u(t)
∣∣γ ]
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≥
kT–∑

t=–kT

[
d

∣∣�u(t)
∣∣p + d

∣∣�u(t)
∣∣p + a‖u‖γ –p

l∞kT

∣∣u(t)
∣∣p + a‖u‖γ –p

l∞kT

∣∣u(t)
∣∣p]

≥
kT–∑

t=–kT

[
d

∣∣�u(t)
∣∣p + d

∣∣�u(t)
∣∣p + a

(
C∗‖u‖H,k

)γ –p∣∣u(t)
∣∣p

+ a
(
C∗‖u‖H,k

)γ –p∣∣u(t)
∣∣p]

≥ min
{

d, a
(
C∗‖u‖H,k

)γ –p}‖u‖p
H,k

+ min
{

d, a
(
C∗‖u‖H,k

)γ –p}‖u‖p
H,k

= min
{

d‖u‖p
H,k

, aCγ –p
∗ ‖u‖γ

H,k

}
+ min

{
d‖u‖p

H,k
, aCγ –p

∗ ‖u‖γ

H,k

}
. �

Proof of Theorem . We divide the proof into the following Lemmas .-..

Lemma . Under the assumptions of Theorem ., for every k ∈ N, system (.) has a
nontrivial solution uk in Hk .

Proof We first construct A and B which satisfy the assumptions in Theorem ..
(i) When r ∈ (, ], by Corollary ., (H), (H)(i), Hölder’s inequality and γ < p, for u ∈

Hk with ‖u‖Hk = r, we have ‖u‖l∞kT
≤ C∗‖u‖H,k ≤ rC∗ and ‖u‖l∞kT

≤ C∗‖u‖H,k ≤ rC∗,

ϕk(u) ≥ ηk(u) – b

kT–∑
t=–kT

∣∣u(t)
∣∣p – b

kT–∑
t=–kT

∣∣u(t)
∣∣p

–

( kT–∑
t=–kT

∣∣f,k(t)
∣∣p′

)/p′( kT–∑
t=–kT

∣∣u(t)
∣∣p

)/p

–

( kT–∑
t=–kT

∣∣f,k(t)
∣∣p′

)/p′( kT–∑
t=–kT

∣∣u(t)
∣∣p

)/p

≥
kT–∑

t=–kT

[
d

∣∣�u(t)
∣∣p + d

∣∣�u(t)
∣∣p + a

∣∣u(t)
∣∣γ + a

∣∣u(t)
∣∣γ ]

– b

kT–∑
t=–kT

∣∣u(t)
∣∣p

– b

kT–∑
t=–kT

∣∣u(t)
∣∣p –

( kT–∑
t=–kT

∣∣f,k(t)
∣∣p′

)/p′( kT–∑
t=–kT

∣∣u(t)
∣∣p

)/p

–

( kT–∑
t=–kT

∣∣f,k(t)
∣∣p′

)/p′( kT–∑
t=–kT

∣∣u(t)
∣∣p

)/p

≥
kT–∑

t=–kT

d
∣∣�u(t)

∣∣p +
kT–∑

t=–kT

d
∣∣�u(t)

∣∣p

+ a
(
C∗‖u‖H,k

)γ –p
kT–∑

t=–kT

∣∣u(t)
∣∣p – b

kT–∑
t=–kT

∣∣u(t)
∣∣p

– b

kT–∑
t=–kT

∣∣u(t)
∣∣p + a

(
C∗‖u‖H,k

)γ –p
kT–∑

t=–kT

∣∣u(t)
∣∣p

– ‖f‖lp′ ‖u‖H,k – ‖f‖lp′ ‖u‖H,k

≥ min
{

d, a(C∗r)γ –p – b
}‖u‖p

H,k
+ min

{
d, a(C∗r)γ –p – b

}‖u‖p
H,k
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– ‖f‖lp′ ‖u‖H,k – ‖f‖lp′ ‖u‖H,k

≥ min
{

d, aCγ –p
∗ – b

}‖u‖p
H,k

+ min
{

d, aCγ –p
∗ – b

}‖u‖p
H,k

– ‖f‖lp′ ‖u‖H,k – ‖f‖lp′ ‖u‖H,k

≥ min
{

d, d, aCγ –p
∗ – b, aCγ –p

∗ – b
} 

p–

(‖u‖H,k + ‖u‖H,k

)p

– max
{‖f‖lp′ ,‖f‖lp′

}(‖u‖H,k + ‖u‖H,k

)
. (.)

(H)(i) implies that there exists α >  such that

ϕk(u) ≥ α >  for all u ∈Hk with ‖u‖Hk = r,∀k ∈ N.

(ii) When r ∈ (, +∞), by Corollary ., (H), (H)(ii), Hölder’s inequality and γ < p, for
u ∈Hk with ‖u‖Hk = r, we have

ϕk(u) ≥ min
{

d, a(C∗r)γ –p – b
}‖u‖p

H,k
+ min

{
d, a(C∗r)γ –p – b

}‖u‖p
H,k

– ‖f‖lp′ ‖u‖H,k – ‖f‖lq′ ‖u‖H,k

≥ min
{

d, d, a(C∗r)γ –p – b, a(C∗r)γ –p – b
} 

p–

(‖u‖H,k + ‖u‖H,k

)p

– max
{‖f‖lp′ ,‖f‖lp′

}(‖u‖H,k + ‖u‖H,k

)
. (.)

(H)(ii) implies that there exists α >  such that

ϕk(u) ≥ α >  for all u ∈Hk with ‖u‖Hk = r,∀k ∈ N.

By Lemma . and the T-periodicity of K , there exists a constant B >  such that

K(t, x, x) ≤ p–A
(|x|p + |x|p

)
+ B for all (t, x, x) ∈ Z×R

N ×R
N , (.)

where

A = max
|x|≤,|x|≤,t∈Z[,T–]

K(t, x, x).

By (H), we know that there exist ε >  and L >  such that

W (t, x, x) ≥ (
d + d + p–A + ε

)(|x|p + |x|p
)

for all t ∈ Z[, T – ] and ∀|x| ≥ L. (.)

By (.) and the T-periodicity of W , there exists a constant B >  such that

W (t, x, x) ≥ (
d + d + p–A + ε

)(|x|p + |x|p
)

– B (.)

for all (t, x, x) ∈ Z[, T – ] ×R
N ×R

N . For any k ∈N, define w(k) ∈Hk by

w(k)(t) =
(
w(k)

 (t), w(k)
 (t)

)
=

{
(, , . . . , , , , . . . , ) if t = ,
 if t ∈ Z[–kT , kT – ]/{},
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where

w(k)
i (t) =

{
(, , . . . , ) if t = ,
 if t ∈ Z[–kT , kT – ]/{}, i = , .

Since K(t, , ) ≡  and W (t, , ) ≡ , which are implied by (H) and (H), then by (.)
and (.) we have

ϕk
(
ξw(k)) =

kT–∑
t=–kT

[
�

(
ξ�w(k)

 (t)
)

+ �
(
ξ�w(k)

 (t)
)

+ K
(
t, ξw(k)

 (t), ξw(k)
 (t)

)

– W
(
t, ξw(k)

 (t), ξw(k)
 (t)

)
+ ξ

(
f,k(t), w(k)

 (t)
)

+ ξ
(
f,k(t), w(k)

 (t)
)]

≤ d|ξ |p
kT–∑

t=–kT

∣∣�w(k)
 (t)

∣∣p + d|ξ |p
kT–∑

t=–kT

∣∣�w(k)
 (t)

∣∣p

+ K
(
, ξw(k)

 (), ξw(k)
 ()

)
– W

(
, ξw(k)

 (), ξw(k)
 ()

)
+ ξ

(
f,k(), w(k)

 ()
)

+ ξ
(
f,k(), w(k)

 ()
)

= d|ξ |p(∣∣�w(k)
 (–)

∣∣p +
∣∣�w(k)

 ()
∣∣p) + d|ξ |p(∣∣�w(k)

 (–)
∣∣p +

∣∣�w(k)
 ()

∣∣p)
+ K

(
, ξw(k)

 (), ξw(k)
 ()

)
– W

(
, ξw(k)

 (), ξw(k)
 ()

)
+ ξ

(
f,k(), w(k)

 ()
)

+ ξ
(
f,k(), w(k)

 ()
)

≤ d|ξ |p + d|ξ |p + p–A|ξ |p + p–A|ξ |p

+ B –
(
d + d + p–A + ε

)(|ξ |p + |ξ |p)
+ B + |ξ |∣∣f,k()

∣∣ + |ξ |∣∣f,k()
∣∣

≤ –ε|ξ |p + |ξ |∣∣f,k()
∣∣ + |ξ |∣∣f,k()

∣∣ + B + B. (.)

So there exists ξ ∈ R such that ‖ξw(k)‖ > r and ϕk(ξw(k)) < . Moreover, it is clear that
ϕk() = . Let e = ξw(k) and

A = {, e}, B =
{

u ∈Hk : ‖u‖Hk < r
}

.

Then  ∈ B and e /∈ B̄. So by Example  in Section , we know that A links ∂B[hm]. So by
Theorem . and Remark ., we have

ck = inf
∈�

sup
s∈[,]

u∈A

ϕk
(
(s)u

) ≥ inf
∂B

ϕk > α > , (.)

and there exists a sequence {un = (u(n)
 , u(n)

 )}∞n= ⊂Hk such that

ϕk(un) → ck ,
(
 + ‖un‖Hk

)∥∥ϕ′
k(un)

∥∥ → .

Then there exists a constant Ck >  such that

∣∣ϕk(un)
∣∣ ≤ Ck ,

(
 + ‖un‖Hk

)∥∥ϕ′
k(un)

∥∥ ≤ Ck for all n ∈N. (.)
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It follows from (H) and the T-periodicity and continuity of W , ∇x W and ∇x W that

[(∇x W (t, x, x), x
)

+
(∇x W (t, x, x), x

)
– pW (t, x, x)

](
ζ + η|x|ν + η|x|ν

)
≥ W (t, x, x) ≥ , ∀(t, x, x) ∈ Z×R

N ×R
N . (.)

So by (.) and p – ν > , there exists C >  such that

[(∇x W (t, x, x), x
)

+
(∇x W (t, x, x), x

)
– pW (t, x, x)

]
≥ W (t, x, x)

ζ + η|x|ν + η|x|ν

≥ (d + d + p–A + ε)(|x|p + |x|p) – B

ζ + η|x|ν + η|x|ν

≥ (d + d + p–A + ε) 
p– (|x| + |x|)p – B

ζ +  max{η,η}(|x| + |x|)ν

≥ (d + d + p–A + ε) 
p–

 max{η,η}
(|x| + |x|

)p–ν – C

≥ (d + d + p–A + ε) 
p–

 max{η,η}
(|x|p–ν + |x|p–ν

)
– C, ∀x ∈R

N . (.)

Hence, it follows from (H), (.) and (.) that

pCk + Ck

≥ pϕk(un) –
〈
ϕ′

k(un), un
〉

= pϕk
(
u(n)

 , u(n)


)
–

〈
ϕ′

k
(
u(n)

 , u(n)


)
,
(
u(n)

 , u(n)


)〉

≥
kT–∑

t=–kT

[(∇u W
(
t, u(n)

 (t), u(n)
 (t)

)
, u(n)

 (t)
)

+
(∇u W

(
t, u(n)

 (t), u(n)
 (t)

)
, u(n)

 (t)
)

– pW
(
t, u(n)

 (t), u(n)
 (t)

)]

+ (p – )
kT–∑

t=–kT

(
f,k(t), u(n)

 (t)
)

+ (p – )
kT–∑

t=–kT

(
f,k(t), u(n)

 (t)
)

≥ (d + d + p–A + ε) 
p–

 max{η,η}
kT–∑

t=–kT

(∣∣u(n)
 (t)

∣∣p–ν +
∣∣u(n)

 (t)
∣∣p–ν) – kTC

– (p – )
kT–∑

t=–kT

∣∣f,k(t)
∣∣∣∣u(n)

 (t)
∣∣ – (p – )

kT–∑
t=–kT

∣∣f,k(t)
∣∣∣∣u(n)

 (t)
∣∣

≥ (d + d + p–A + ε) 
p–

 max{η,η}
kT–∑

t=–kT

(∣∣u(n)
 (t)

∣∣p–ν +
∣∣u(n)

 (t)
∣∣p–ν) – kTC

– (p – )

( kT–∑
t=–kT

∣∣f,k(t)
∣∣ p–ν

p–ν–

) p–ν–
p–ν

( kT–∑
t=–kT

∣∣u(n)
 (t)

∣∣p–ν

)/(p–ν)

– (p – )

( kT–∑
t=–kT

∣∣f,k(t)
∣∣ p–ν

p–ν–

) p–ν–
p–ν

( kT–∑
t=–kT

∣∣u(n)
 (t)

∣∣p–ν

)/(p–ν)

. (.)
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The fact p – ν >  and the above inequality show that
∑kT–

t=–kT |u(n)
 (t)|p–ν and∑kT–

t=–kT |u(n)
 (t)|p–ν are bounded. By (A), (H), (H), (.), (.), (.), Hölder’s inequality

and Corollary ., we have

d
∥∥u(n)


∥∥p
H,k

+ d
∥∥u(n)


∥∥p
H,k

= d

kT–∑
t=–kT

∣∣�u(n)
 (t)

∣∣p + d

kT–∑
t=–kT

∣∣u(n)
 (t)

∣∣p + d

kT–∑
t=–kT

∣∣�u(n)
 (t)

∣∣p + d

kT–∑
t=–kT

∣∣u(n)
 (t)

∣∣p

≤ ϕk
(
u(n)) –

kT–∑
t=–kT

K
(
t, u(n)

 (t), u(n)
 (t)

)

+
kT–∑

t=–kT

W
(
t, u(n)

 (t), u(n)
 (t)

)
+ d

kT–∑
t=–kT

∣∣u(n)
 (t)

∣∣p

+ d

kT–∑
t=–kT

∣∣u(n)
 (t)

∣∣p –
kT–∑

t=–kT

(
fk(t), u(n)

 (t)
)

–
kT–∑

t=–kT

(
fk(t), u(n)

 (t)
)

≤ ϕk
(
u(n))

+
kT–∑

t=–kT

[(∇u W
(
t, u(n)

 (t), u(n)
 (t)

)
, u(n)

 (t)
)

+
(∇u W

(
t, u(n)

 (t), u(n)
 (t)

)
, u(n)

 (t)
)

– pW
(
t, u(n)

 (t), u(n)
 (t)

)](
ζ + η

∣∣u(n)
 (t)

∣∣ν + η
∣∣u(n)

 (t)
∣∣ν)

+ d

kT–∑
t=–kT

∣∣u(n)
 (t)

∣∣p + d

kT–∑
t=–kT

∣∣u(n)
 (t)

∣∣p +

( kT–∑
t=–kT

∣∣u(n)
 (t)

∣∣p
) 

p (∑
t∈Z

∣∣f(t)
∣∣p′

) 
p′

+

( kT–∑
t=–kT

∣∣u(n)
 (t)

∣∣p
) 

p (∑
t∈Z

∣∣f(t)
∣∣p′

) 
p′

≤ Ck + d

kT–∑
t=–kT

∣∣u(n)
 (t)

∣∣p + d

kT–∑
t=–kT

∣∣u(n)
 (t)

∣∣p +
∥∥u(n)


∥∥
H,k

(∑
t∈Z

∣∣f(t)
∣∣p′

) 
p′

+
∥∥u(n)


∥∥
H,k

(∑
t∈Z

∣∣f(t)
∣∣p′

) 
p′

+
(
ζ + η

∥∥u(n)


∥∥ν

l∞kT
+ η

∥∥u(n)


∥∥ν

l∞kT

)

·
kT–∑

t=–kT

[(∇u W
(
t, u(n)

 (t), u(n)
 (t)

)
, u(n)

 (t)
)

+
(∇u W

(
t, u(n)

 (t), u(n)
 (t)

)
, u(n)

 (t)
)

– pW
(
t, u(n)

 (t), u(n)
 (t)

)]

≤ Ck + d
∥∥u(n)


∥∥ν

l∞kT

kT–∑
t=–kT

∣∣u(n)
 (t)

∣∣p–ν + d
∥∥u(n)


∥∥ν

l∞kT

kT–∑
t=–kT

∣∣u(n)
 (t)

∣∣p–ν

+
∥∥u(n)


∥∥
H,k

(∑
t∈Z

∣∣f(t)
∣∣p′

) 
p′

+
∥∥u(n)


∥∥
H,k

(∑
t∈Z

∣∣f(t)
∣∣p′

) 
p′

+
(
ζ + η

∥∥u(n)


∥∥ν

l∞kT
+ η

∥∥u(n)


∥∥ν

l∞kT

)
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·
[

(p + )Ck + (p – )
∥∥u(n)


∥∥
H,k

(∑
t∈Z

∣∣f(t)
∣∣p′

) 
p′

+ (p – )
∥∥u(n)


∥∥
H,k

(∑
t∈Z

∣∣f(t)
∣∣p′

) 
p′ ]

≤ Ck + dCν
∗
∥∥u(n)


∥∥ν

H,k

kT–∑
t=–kT

∣∣u(n)
 (t)

∣∣p–ν + dCν
∗
∥∥u(n)


∥∥ν

H,k

kT–∑
t=–kT

∣∣u(n)
 (t)

∣∣p–ν

+
∥∥u(n)


∥∥
H,k

(∑
t∈Z

∣∣f(t)
∣∣p′

) 
p′

+
∥∥u(n)


∥∥
H,k

(∑
t∈Z

∣∣f(t)
∣∣p′

) 
p′

+
(
ζ + ηCν

∗
∥∥u(n)


∥∥ν

H,k
+ ηCν

∗
∥∥u(n)


∥∥ν

H,k

)

·
[

(p + )Ck + (p – )
∥∥u(n)


∥∥
H,k

(∑
t∈Z

∣∣f(t)
∣∣p′

) 
p′

+ (p – )
∥∥u(n)


∥∥
H,k

(∑
t∈Z

∣∣f(t)
∣∣p′

) 
p′ ]

. (.)

Since ν < p – , (.) and the boundedness of
∑kT–

t=–kT |u(n)
 (t)|p–ν and

∑kT–
t=–kT |u(n)

 (t)|p–ν

imply that ‖u(n)
 ‖H,k and ‖u(n)

 ‖H,k are bounded. Since H is a finite-dimensional space,
{u(n) = (u(n)

 , u(n)
 )} has a convergence subsequence, still denoted by {u(n) = (u(n)

 , u(n)
 )}, such

that u(n) = (u(n)
 , u(n)

 ) → uk = (uk , uk) as n → ∞. Moreover, by the continuity of ϕk and
ϕ′

k , we obtain ϕ′
k(uk) =  and ϕk(uk) = ck > . It is clear that uk �=  and so uk is a desired

nontrivial solution of system (.). The proof is complete. �

Lemma . Let {uk = (uk , uk)}k∈N be the solutions of system (.). Then there exists M > 
such that ‖uk‖l∞kT

≤ M and ‖uk‖l∞kT
≤ M.

Proof First, we prove that the sequence {ck}k∈N is bounded. For every k ∈ N, define k :
[, ] ×Hk →Hk by

k(s)v = ( – s)v, v ∈Hk .

Then  ∈ �. Note that the set A = {, e}. So (.) and the argument of (.) imply that

ϕk(uk) = ck ≤ sup
s∈[,]u∈A

ϕk
(
( – s)u

)
= sup

s∈[,]
ϕk

(
( – s)e

)
= sup

s∈[,]
ϕk

(
( – s)e

)

= sup
s∈[,]

{ kT–∑
t=–kT

[
�

(
( – s)�w(k)

 (t)
)

+ �
(
( – s)�w(k)

 (t)
)

+ K
(
t, ( – s)w(k)

 (t), ( – s)w(k)
 (t)

)
– W

(
t, ( – s)w(k)

 (t), ( – s)w(k)
 (t)

)
+ ( – s)

(
f,k(t), w(k)

 (t)
)

+ ( – s)
(
f,k(t), w(k)

 (t)
)]}
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≤ sup
s∈[,]

{
–ε| – s|p + | – s|∣∣f,k()

∣∣ + | – s|∣∣f,k()
∣∣ + B + B

}
≤ ∣∣f()

∣∣ +
∣∣f()

∣∣ + B + B := M, (.)

where M is independent of k ∈ N, which implies that the sequence {ck}k∈N is bounded.
Moreover, ϕ′

k(uk) = . Then it follows from (A), (H), and (.) that

pM ≥ pck = pϕk(uk) –
〈
ϕ′

k(uk), uk
〉

= pϕk(uk , uk) –
〈
ϕ′

k(uk , uk), (uk , uk)
〉

≥
kT–∑

t=–kT

[(∇u W
(
t, uk(t), uk(t)

)
, uk(t)

)
+

(∇u W
(
t, uk(t), uk(t)

)
, uk(t)

)
– pW

(
t, uk(t), uk(t)

)]
+ (p – )

kT–∑
t=–kT

(
fk(t), uk(t)

)
+ (p – )

kT–∑
t=–kT

(
fk(t), uk(t)

)

≥
kT–∑

t=–kT

W (t, uk(t), uk(t))
ξ + η|uk(t)|ν + η|uk(t)|ν + (p – )

kT–∑
t=–kT

(
fk(t), uk(t)

)

+ (p – )
kT–∑

t=–kT

(
fk(t), uk(t)

)
.

So

kT–∑
t=–kT

W (t, uk(t), uk(t))
ξ + η|uk(t)|ν + η|uk(t)|ν

≤ pM – (p – )
kT–∑

t=–kT

(
fk(t), uk(t)

)
– (p – )

kT–∑
t=–kT

(
fk(t), uk(t)

)
.

Then

ηk(uk) = ϕk(uk) +
kT–∑

t=–kT

W (t, uk(t), uk(t))
ξ + η|uk(t)|ν + η|uk(t)|ν

(
ξ + η

∣∣uk(t)
∣∣ν + η

∣∣uk(t)
∣∣ν)

–
kT–∑

t=–kT

(
f,k(t), uk(t)

)
–

kT–∑
t=–kT

(
f,k(t), uk(t)

)

≤ ϕk(uk) +
(
ξ + η‖uk‖ν

l∞kT
+ η‖uk‖ν

l∞kT

) kT–∑
t=–kT

W (t, uk(t), uk(t))
ξ + η|uk(t)|ν + η|uk(t)|ν

–
kT–∑

t=–kT

(
f,k(t), uk(t)

)
–

kT–∑
t=–kT

(
f,k(t), uk(t)

)
≤ ϕk(uk) +

(
ξ + ηCν

∗‖uk‖ν
H,k

+ ηCν
∗‖uk‖ν

H,k

)

·
[

pM – (p – )
kT–∑

t=–kT

(
f,k(t), uk(t)

)
– (p – )

kT–∑
t=–kT

(
f,k(t), uk(t)

)]
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–
kT–∑

t=–kT

(
f,k(t), uk(t)

)
–

kT–∑
t=–kT

(
f,k(t), uk(t)

)
= M + pξM + pηCν

∗M‖uk‖ν
H,k

+ pηCν
∗M‖uk‖ν

H,k

– (p – )ξ
kT–∑

t=–kT

(
f,k(t), uk(t)

)
– (p – )ξ

kT–∑
t=–kT

(
f,k(t), uk(t)

)

– (p – )ηCν
∗‖uk‖ν

H,k

kT–∑
t=–kT

(
f,k(t), uk(t)

)

– (p – )ηCν
∗‖uk‖ν

H,k

kT–∑
t=–kT

(
f,k(t), uk(t)

)

– (p – )ηCν
∗‖uk‖ν

H,k

kT–∑
t=–kT

(
f,k(t), uk(t)

)

– (p – )ηCν
∗‖uk‖ν

H,k

kT–∑
t=–kT

(
f,k(t), uk(t)

)

–
kT–∑

t=–kT

(
f,k(t), uk(t)

)
–

kT–∑
t=–kT

(
f,k(t), uk(t)

)

≤ ( + pξ )M +
[
(p – )ξ + 

](∑
t∈Z

∣∣f(t)
∣∣p′

)/p′( kT–∑
t=–kT

∣∣uk(t)
∣∣p

)/p

+
[
(p – )ξ + 

](∑
t∈Z

∣∣f(t)
∣∣p′

)/p′( kT–∑
t=–kT

∣∣uk(t)
∣∣p

)/p

+ pηCν
∗M‖uk‖ν

H,k
+ pηCν

∗M‖uk‖ν
H,k

+ (p – )ηCν
∗‖uk‖ν

H,k

((∑
t∈Z

∣∣f(t)
∣∣p′

)/p′( kT–∑
t=–kT

∣∣uk(t)
∣∣p

)/p

+
(∑

t∈Z

∣∣f(t)
∣∣p′

)/p′( kT–∑
t=–kT

∣∣uk(t)
∣∣p

)/p)

+ (p – )ηCν
∗‖uk‖ν

H,k

((∑
t∈Z

∣∣f(t)
∣∣p′

)/p′( kT–∑
t=–kT

∣∣uk(t)
∣∣p

)/p

+
(∑

t∈Z

∣∣f(t)
∣∣p′

)/p′( kT–∑
t=–kT

∣∣uk(t)
∣∣p

)/p)

≤ ( + pξ )M +
[
(p – )ξ + 

](∑
t∈Z

∣∣f(t)
∣∣p′

)/p′

‖uk‖H,k

+
[
(p – )ξ + 

](∑
t∈Z

∣∣f(t)
∣∣p′

)/p′

‖uk‖H,k

+ pηCν
∗M‖uk‖ν

H,k
+ pηCν

∗M‖uk‖ν
H,k

+ (p – )ηCν
∗‖uk‖ν

H,k
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·
((∑

t∈Z

∣∣f(t)
∣∣p′

)/p′

‖uk‖H,k +
(∑

t∈Z

∣∣f(t)
∣∣p′

)/p′

‖uk‖H,k

)

+ (p – )ηCν
∗‖uk‖ν

H,k

·
((∑

t∈Z

∣∣f(t)
∣∣p′

)/p′

‖uk‖H,k +
(∑

t∈Z

∣∣f(t)
∣∣p′

)/p′

‖uk‖H,k

)

≤ ( + pξ )M +
[
(p – )ξ + 

](∑
t∈Z

∣∣f(t)
∣∣p′

)/p′

‖uk‖H,k

+
[
(p – )ξ + 

](∑
t∈Z

∣∣f(t)
∣∣p′

)/p′

‖uk‖H,k

+ pηCν
∗M‖uk‖ν

H,k
+ pηCν

∗M‖uk‖ν
H,k

+ (p – )ηCν
∗‖uk‖ν+

H,k

(∑
t∈Z

∣∣f(t)
∣∣p′

)/p′

+ (p – )ηCν
∗‖uk‖ν

H,k
‖uk‖H,k

(∑
t∈Z

∣∣f(t)
∣∣p′

)/p′

+ (p – )ηCν
∗‖uk‖ν+

H,k

(∑
t∈Z

∣∣f(t)
∣∣p′

)/p′

+ (p – )ηCν
∗‖uk‖ν

H,k
‖uk‖H,k

(∑
t∈Z

∣∣f(t)
∣∣p′

)/p′

≤ ( + pξ )M +
[
(p – )ξ + 

](∑
t∈Z

∣∣f(t)
∣∣p′

)/p′

‖uk‖H,k

+
[
(p – )ξ + 

](∑
t∈Z

∣∣f(t)
∣∣p′

)/p′

‖uk‖H,k

+ pηCν
∗M‖uk‖ν

H,k
+ pηCν

∗M‖uk‖ν
H,k

+ (p – )ηCν
∗‖uk‖ν+

H,k

(∑
t∈Z

∣∣f(t)
∣∣p′

)/p′

+ (p – )ηCν
∗

(
ν

ν + 
‖uk‖ν+

H,k
+


ν + 

‖uk‖ν+
H,k

)(∑
t∈Z

∣∣f(t)
∣∣p′

)/p′

+ (p – )ηCν
∗‖uk‖ν+

H,k

(∑
t∈Z

∣∣f(t)
∣∣p′

)/p′

+ (p – )ηCν
∗

(
ν

ν + 
‖uk‖ν+

H,k
+


ν + 

‖uk‖ν+
H,k

)(∑
t∈Z

∣∣f(t)
∣∣p′

)/p′

. (.)

Thus (.) and Lemma . imply that

( + pξ )M +
[
(p – )ξ + 

](∑
t∈Z

∣∣f(t)
∣∣p′

)/p′

‖uk‖H,k

+
[
(p – )ξ + 

](∑
t∈Z

∣∣f(t)
∣∣p′

)/p′

‖uk‖H,k
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+ pηCν
∗M‖uk‖ν

H,k
+ pηCν

∗M‖uk‖ν
H,k

+ (p – )ηCν
∗‖uk‖ν+

H,k

(∑
t∈Z

∣∣f(t)
∣∣p′

)/p′

+ (p – )ηCν
∗

(
ν

ν + 
‖uk‖ν+

H,k
+


ν + 

‖uk‖ν+
H,k

)(∑
t∈Z

∣∣f(t)
∣∣p′

)/p′

+ (p – )ηCν
∗‖uk‖ν+

H,k

(∑
t∈Z

∣∣f(t)
∣∣p′

)/p′

+ (p – )ηCν
∗

(
ν

ν + 
‖uk‖ν+

H,k
+


ν + 

‖uk‖ν+
H,k

)(∑
t∈Z

∣∣f(t)
∣∣p′

)/p′

≥ min
{

d‖u‖p
H,k

, aCγ –p
∗ ‖u‖γ

H,k

}
+ min

{
d‖u‖p

H,k
, aCγ –p

∗ ‖u‖γ

H,k

}
.

Note that p > γ > ν + . So (H) implies there exists M >  (independent of k) such that

‖uk‖H,k ≤ M, ‖uk‖H,k ≤ M for every k ∈N.

By Corollary .,

‖uk‖l∞kT
≤ C∗M, ‖uk‖l∞kT

≤ C∗M for every k ∈N.

Let M = max{C∗M, C∗M}. Thus the proof is complete. �

Lemma . Let {uk} be determined by Lemma .. Then there exists a subsequence {ukj =
(ukj , ukj )} of {uk}k∈N convergent to a certain function u∞ = (u∞, u∞) and when f �=  and
f �= , u∞ is a nontrivial solution of system (.) such that u∞(t) →  and �u∞(t – ) → 
as t → ±∞.

Proof Note that

‖uk‖H,k ≤ M, ‖uk‖H,k ≤ M for every k ∈N.

Then, similar to the argument in [] or [], one can prove that {umk}k∈N has a conver-
gent subsequence {umkj} such that umkj → um∞ and um∞(t) →  and �um∞(t – ) → 
as t → ±∞, where m = , . Let u∞ = (u∞, u∞). By (.) and the continuity of �m,
K(t, ·, ·), W (t, ·, ·) and ϕ′

k , similar to the argument in [] or [], the proof is easy to be
completed. �

�

Proof of Theorem . The proof is easy to be completed by replacing

kT–∑
t=–kT

(
fm(t), um(t)

) ≤
( kT–∑

t=–kT

∣∣fm(t)
∣∣p′

)/p′( kT–∑
t=–kT

∣∣um(t)
∣∣p

)/p

≤ ‖um‖Hm,k

(∑
t∈Z

∣∣fm(t)
∣∣p′

)/p′
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with

kT–∑
t=–kT

(
fm(t), um(t)

) ≤ ‖um‖l∞kT

kT–∑
t=–kT

∣∣fm(t)
∣∣ ≤ C∗‖um‖Hm,k

∑
t∈Z

∣∣fm(t)
∣∣, m = , ,

in the proofs of Lemma . and Lemma .. �

Proofs of Theorem . and Theorem . We only note that in the proof of Lemma ., when
γ = p, we do not need to consider the case that r ∈ (, ] alone and it is sufficient that r > .
Other proofs are the same as those of Theorem . and Theorem ., respectively. �

4 Examples
We first give two examples about � which satisfy assumption (A).

(I) An example with N = . Define �m : R →R
N , m = , , by

�(x) =

{
α|x|p, x ≥ ,
α|x|p, x < ,

�(y) =

{
β|y|p, y ≥ ,
β|y|p, y < ,

where α,α ∈ [d, d], β,β ∈ [d, d]. Then it is easy to verify that �m, m = , , satisfies
(A).

(II) As described in [], the following classical case with p-Laplacian also satisfies the
assumption (A). Define �m : RN →R

N , m = , , by

�(x) = α|x|p, �(y) = β|y|p,

where α ∈ [d, d], β ∈ [d, d].
Next, we present some examples of K and W which satisfy those assumptions in Theo-

rem .. There are lots of examples of K . For example, let

K(t, x, x) = a(t)|x|γ + a(t)|x|γ , (t, x, x) ∈ Z[, T – ] ×R
N ×R

N ,

where γ ∈ (, p), ai, i = ,  : Z → R
+ are T-periodic. Let ai = mint∈Z[,T–] ai(t). Then it is

easy to see that K satisfies (H) and (H).
For W , we assume that

W (t, x, x) = b(t)
(|x|p + |x|p

)
ln

(|x|p + |x|p +
)
, (t, x, x) ∈ Z[, T –]×R

N ×R
N ,

where b : Z→ R
+ is T-periodic. Let b+ = maxt∈Z[,T–]{b(t)}. Then

W (t, x, x) ≤ b+(|x|p + |x|p
)

ln
(|rC∗|p + |rC∗|p + 

)
for all t ∈ Z[, T – ], |x| ≤ rC∗, |x| ≤ rC∗.

Let b = b = b+ ln(|rC∗|p + |rC∗|p + ). If r is sufficiently small, then (H)(i) holds. It is easy
to see that

lim|x|+|x|→+∞
W (t, x, x)
|x|p + |x|p = +∞ for all t ∈ Z[, T – ].
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So (H) holds. Let ν ∈ (,γ – ). Note that

pξ
(|x|p + |x|p

) ≥ ln
(|x|p + |x|p + 

)
, p

(
η|x|ν + η|x|ν

) ≥ ln
(|x|p + |x|p + 

)
for all (x, x) ∈R

N ×R
N , when we choose sufficiently large ξ , η and η. Hence

pξ
(|x|p + |x|p

)
+ p

(|x|p + |x|p
)(

η|x|ν + η|x|ν
)

≥ ln
(|x|p + |x|p + 

)
+ ln

(|x|p + |x|p + 
)(|x|p + |x|p

)
⇐⇒ p

(
ξ + η|x|ν + η|x|ν

)(|x|p + |x|p
)

≥ ln
(|x|p + |x|p + 

)(|x|p + |x|p + 
)

⇐⇒ p
(
ξ + η|x|ν + η|x|ν

)(|x|p + |x|p
)

≥ (|x|p + |x|p
)

ln
(|x|p + |x|p + 

)(|x|p + |x|p + 
)

⇐⇒ p(|x|p + |x|p)

|x|p + |x|p + 
≥ (|x|p + |x|p) ln(|x|p + |x|p + )

ξ + η|x|ν + η|x|ν
⇐⇒ (∇x W (t, x, x), x

)
+

(∇x W (t, x, x), x
)

– pW (t, x, x)

≥ W (t, x, x)
ξ + η|x|ν + η|x|ν

for all (t, x, x) ∈ Z[, T – ] ×R
N ×R

N , which implies (H) holds.
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