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Abstract
In this paper, the complex projective synchronization in drive-response stochastic
switching networks with complex-variable systems is considered. The pinning control
scheme and the adaptive feedback algorithms are adopted to achieve complex
projective synchronization, and the structure of stochastic switching networks with
complex-variable systems makes our research more universal and practical. Using a
suitable Lyapunov function, we obtain some simple and practical sufficient conditions
which guarantee the complex projective synchronization in drive-response stochastic
switching networks with complex-variable systems. Illustrated examples have been
given to show the effectiveness and feasibility of the proposed methods.
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1 Introduction
Closely related with people’s life, network ranges from the Internet, the communication
network to the biological networks, neural networks in nature, etc. It can be manifested
in the form of complex networks. Generally speaking, it exists in nature and society. The
studies on complex networks have become one of the hottest topics in the scientific re-
search, and they have attracted wide attention of researchers working in the fields of infor-
mation science, mathematics, physics, biology, system control, engineering, economics,
society, military and so on [–]. In the studies on a variety of dynamical behaviors of
complex networks, synchronization, as a typical form of describing collective motion of
networks is one of the most important group dynamic behaviors of the network. Because
of scientific importance and universality of real networks as well as a wealth of theoretical
basis and challenge, it occupies a very important position in the studies of complex net-
works, and fruitful research results are achieved. In the literature, there are many widely
studied synchronization patterns, for example, complete synchronization [–], lag syn-
chronization [–], anti-synchronization [–], phase synchronization [, ], pro-
jective synchronization [–], and so on. Projective synchronization refers to the state
variable response network gradually tending to a percentage value of the drive network
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state variables under some control. Due to the flexibility of the synchronization state scal-
ing factor in projective synchronization, it is popular in the field of security digital com-
munication.

Recently, projective synchronization under various cases of complex dynamical net-
works has been studied [–]. In Ref. [], Li studied the generalized projective syn-
chronization between two different chaotic systems: Lorenz system and Chen’s system.
The proposed method combines backstepping methods and active control without hav-
ing to calculate the Lyapunov exponents and the eigenvalues of the Jacobian matrix, which
makes it simple and convenient. In Ref. [], Lü et al. proposed a method of the lag projec-
tive synchronization of a class of complex networks containing nodes with chaotic behav-
ior. Discrete chaotic systems are taken as nodes to constitute a complex network, and the
topological structure of the network can be arbitrary. Considering the lag effect between a
network node and a chaos signal of the target system, the control input of the network and
the identification law of adjustment parameters are designed based on the Lyapunov the-
orem. In Ref. [], Zhu et al. explored the mode-dependent projective synchronization
problem of a couple of stochastic neutral-type neural networks with distributed time-
delays. By using the Lyapunov stability theory and the adaptive control method, a suffi-
cient projective synchronization criterion for this neutral-type neural network model is
derived.

In the existing research, the most complex networks are usually described by the real
variable differential system. The two complex networks (the so-called drive-response net-
works) based on real number, real matrix, or even real function evolve along the same
or inverse directions [–]. However, the drive-response networks based on complex
number can often evolve in different directions with a constant intersection angle, for ex-
ample, y = ρejθ x, where x denotes the drive system, y denotes the response system, ρ > 
denotes the zoom rate, θ ∈ [, π ) denotes the rotation angle and j =

√
–. The state vari-

ables of the system defined in the complex field can describe a lot of practical problems.
For example, in Ref. [], authors use the state variables of a complex Lorenz system to
describe the physical properties of parameters of atom polarization amplitude in the laser
harmonic, electric field and population inversion, has realized the synchronization be-
tween two chaotic attractors, which fully illustrates that the complex system has the im-
portant application in the engineering. At the same time, if the projective synchroniza-
tion methods combined with complex system are applied in the field of secure commu-
nications, this will further enhance the security of secret communication. Recently, some
related works have come out, such as [, ]. In Refs. [, ], Wu and Fu introduced
the concept of complex projective synchronization based on Lyapunov stability theory,
several typical chaotic complex dynamical systems are considered and the correspond-
ing controllers are designed to achieve the complex projective synchronization. This syn-
chronization scheme has a large number of real-life examples. For instance, in a social
network or games of economic activities, behaviors of individuals (response systems) will
be affected not only by powerful one (drive system), but also by those with a similar role
as themselves []. Another example, in a distributed computers collaboration, each dis-
tributed computer (response system) not only receives unified command from a server
(drive system), but they also share resources between each other for collaboration [].

Besides, in a lot of real network systems, nodes coupling way (the so-called topology) is
not fixed but changing over time. For example, in the urban traffic network, the city partial
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obstruction caused by a traffic accident in the main street can result in the change of ur-
ban traffic network structure; in an interpersonal network, along with the development of
society, economy etc., the relationships between different people are also changing. These
factors also lead to changes in the whole network topology, they all belong to the struc-
ture of switch network topology, and the existing research on the static dynamic network
synchronization methods is no longer suitable for this switch topology with time-varying
dynamic network, which requires us to design a new network synchronization method
[–].

Furthermore, a signal transmitted between the network nodes usually is affected by the
network bandwidth, transmission medium and measuring noise factors, which result in
time delays [, , , ], randomly missing or incomplete information [–]. There-
fore, it is important to study the effect of time delay and stochastic noise in complex pro-
jective synchronization of drive-response networks.

Based on the above, the complex projective synchronization in drive-response stochas-
tic switching networks with complex-variable systems is considered in this paper. The
complex projective synchronization is achieved via a pinning control scheme and an adap-
tive coupling strength method. Several simple and practical criteria for complex projective
synchronization are obtained by using the Lyapunov functional method, stochastic differ-
ential theory and linear matrix inequality (LMI) approaches.

Notation: Throughout this paper, Cn and Cm×n denote n-dimensional complex vectors
and the set of m × n complex matrices, respectively. For the Hermite matrix H , the nota-
tion H >  (H < ) means that the matrix H is positive definite (negative definite). For any
complex (real) matrix M, Ms = MT + M. For any complex number (or complex vector) x,
the notations xr and xi denote its real and imaginary parts, respectively, and x̄ denotes the
complex conjugate of x. λmin(A) (λmax(A)) represents the smallest (largest) eigenvalue of a
symmetric matrix A. ⊗ is the Kronecker product. The superscript T of xT or AT denotes
the transpose of the vector x ∈ R

n or the matrix A ∈ C
m×n. In is an identity matrix with n

nodes.

2 Model description and preliminaries
Consider a drive-response network coupled with  + N identical partially linear stochastic
complex network with coupling time delay, which is described as follows:

{
ẋ(t) = M(z(t))x(t),
ż(t) = f (x(t), z(t)),

()

dyi(t) =

{
M
(
z(t)
)
yi(t) + ε

N∑
k=

aik
(
r(t)
)
�yk(t) + ε

N∑
k=

bik
(
r(t)
)
�yk(t – τ )

}
dt

+ σi
(
y(t), y(t – τ )

)
dwi(t), i = , , . . . , N , ()

where x(t) = (x, x, . . . , xm)T ∈ C
m, and z(t) ∈ R is the drive system variable, yi(t) =

(yi, yi, . . . , yim)T ∈ C
m is the state variable of a node i in the response network. M(z(t)) ∈

R
m×m is a complex matrix function, ε > , ε >  is the coupling strength and � ∈ R

m×m

is the inner coupling matrix. τ is the coupling time delay; r(t) = r : [, +∞) → (, , . . . , M)
is a switching signal. Matrices A(r(t)) = (aij(r(t)))N×N and B(r(t)) = (bij(r(t)))N×N are the
zero-row-sum outer coupling matrices, which denote the network switching topology and
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are defined as follows: if there is a connection (information transmission) from node j to
node i (i �= j), then aij(r(t)) �=  and bij(r(t)) �= ; otherwise, aij(r(t)) =  and bij(r(t)) = ; and
wi(t) = (wi(t), wi(t), . . . , win(t))T ∈R

n is a bounded vector-form Weiner process satisfying

Ewij(t) = , Ew
ij(t) = , Ewij(t)wij(s) =  (s �= t).

Now, two mathematical definitions for the generalized projective synchronization are
introduced as follows.

Definition  If there is a complex α such that

N∑
i=

E
∥∥yi(t) – αx(t)

∥∥ ≤ Ke–κt

for some K >  and some κ > , then the drive-response network () and () is said to
achieve complex projective synchronization in the mean-square, and the parameter α is
called a scaling factor.

Without loss of generality, let α = ρ(cos θ + j sin θ ), where ρ = |α| is the module of α and
θ ∈ [, π ) is the phase of α. Therefore, the projective synchronization is achieved when
θ =  or π . Furthermore, the complete synchronization is achieved when ρ =  and θ = ,
the anti-synchronization is achieved when ρ =  and θ = π [].

Definition  [] Matrix A = (aik)N
i,k is said to belong to class A, denoted as A ∈ A, if

() aik ≥ , i �= k, aii = –
∑N

k=,k �=i aik = –
∑N

k=,k �=i aki, i = , , . . . , N ;
() A is irreducible.

The following lemmas and assumption are used throughout the paper.

Lemma  [] Let m × m be a complex matrix, H be Hermitian, then
() xT Hx̄ is real for all x ∈ Cm;
() all the eigenvalues of H are real.

Lemma  [] If A = (aij)m×m is irreducible, aij = aji ≥  for i �= j, and
∑m

j= aij =  for all
i = , , . . . , m, then all eigenvalues of the matrix

⎛
⎜⎜⎜⎜⎝

a – ε a · · · am

a a · · · am
...

...
. . .

...
am am · · · amm

⎞
⎟⎟⎟⎟⎠

are negative for any positive constant ε.

Lemma  [, ] Consider an n-dimensional stochastic differential equation

dx(t) = f
(
t, x(t), x(t – τ )

)
dt + σ

(
t, x(t), x(t – τ )

)
dω(t). ()
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Let C,(C+ × C
n;R+) denote the family of all nonnegative functions V (t, x) on R+ × C

n,
which are twice continuously differentiable in x and once differentiable in t. If V ∈ C,(R+ ×
C

n;R+), define an operator LV from R+ ×C
n to R by

LV (t, x) = Vt(t, x) + Vx(t, x)f (t, x, y) +



Tr
[
σ (t, x, y)T Vxxσ (t, x, y)

]
,

where Vt(t, x) = ∂V (t, x)/∂t, Vx(t, x) = (∂V (t, x)/∂x, . . . , ∂V (t, x)/∂xn), Vxx(t, x) =
( ∂V (t,x)

∂xixj
)n×n. If V ∈ C,(R+ ×C

n;R+), then for any ∞ > t > t ≥ ,

EV
(
t, x(t)

)
= EV

(
t, x(t)

)
+ E

∫ t

t

LV
(
s, x(s)

)
ds

as long as the expectations of the integrals exist.

Assumption  [] Suppose that there exists a constant L such that the largest eigenvalue
of Ms(z(t)) satisfies

λmax
(
Ms(z(t)

))≤ L.

Remark  All the chaotic systems satisfy Assumption  due to z(t) is bounded [].

Assumption  Denote ei(t) = yi(t)–αx(t), suppose σi(e(t), e(t –τ )) = σi(y(t), y(t –τ )). Then
there exist positive definite constant matrices ϒi, ϒi for i = , , . . . , N such that

Tr
[
σ T

i
(
e(t), e(t – τ )

)
σi
(
e(t), e(t – τ )

)]

≤
N∑
j=

eT
j (t)ϒiej(t) +

N∑
j=

eT
j (t – τ )ϒiej(t – τ ).

Remark  Assumption  is easily satisfied, for instance, because of existing noise in
the process of information transmission, the noise strength σi(y(t), y(t – τ )) = |σ̄i ×∑N

k= aik(r(t))(yk(t) – yi(t)) + σ̃i
∑N

k= bik(r(t))(yk(t – τ ) – yi(t – τ ))|, which depends on
the states of the nodes, where σ̄i and σ̃i are constants, i = , , . . . , N , so that ϒi =
σ̄iN diag{a

i, a
i, . . . , a

iN }, ϒi = σ̃iN diag{b
i, b

i, . . . , b
iN }.

3 Main results
Our objective here is to achieve complex projective synchronization in the drive-response
network () and () by adopting different control schemes. Firstly, several sufficient condi-
tions for achieving complex projective synchronization in the drive-response network ()
and () by applying proper controllers ui(t) on the response network are obtained. Then
the controlled response network is

dyi(t) =

{
M
(
z(t)
)
yi(t) + ε

N∑
k=

aik
(
r(t)
)
�yk(t) + ε

N∑
k=

bik
(
r(t)
)
�yk(t – τ ) + ui(t)

}
dt

+ σi
(
y(t), y(t – τ )

)
dwi(t), i = , , . . . , N . ()
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Define the synchronization errors between the drive network () and the response net-
work () as ei(t) = yi(t) – αx(t) because of σi(e(t), e(t – τ )) = σi(y(t), y(t – τ )), then we have
the following error system:

dei(t) =

{
M
(
z(t)
)
ei(t) + ε

N∑
k=

aik
(
r(t)
)
�ek(t) + ε

N∑
k=

bik
(
r(t)
)
�ek(t – τ ) + ui(t)

}
dt

+ σi
(
e(t), e(t – τ )

)
dwi(t), i = , , . . . , N . ()

Next, we consider complex projective synchronization between () and () via pinning
control under the assumption A ∈ A, B ∈ A and � > . Especially, only one node is pin-
ning for achieving complex projective synchronization.

Theorem  Suppose that Assumption  holds, A(r) ∈ A, B(r) ∈ A for r = , , . . . , M and
� > . The complex projective synchronization in the drive-response network () and ()
with the following single controller

u(t) = –εd�e(t),

ui(t) = , i = , . . . , N ,
()

can be achieved if the following condition is satisfied:

γ + a + beγ τ < , ()

where γ > , a = minrλmin((L+α)INm +ε((A(r))s –D)⊗�)+ϒi, b = maxrλmax( 
α
ε

((B(r))⊗
�)sT ((B(r)) ⊗ �) + ϒi), d >  and D = diag(d, , . . . , ).

Proof Consider the Lyapunov functional candidate

V (t) =
N∑

i=

eT
i (t)ei(t).

Calculating LV (t) with respect to t along the solution of () and noticing the adaptive
feedback controllers (), for r(t) = r, one has

LV (t) =
N∑

i=

{[
eT

i (t)MT(z(t)
)

+ ε

N∑
k=

aik(r)eT
k (t)�T + ε

N∑
k=

bik(r)eT
k (t – τ )�T

]
ei(t)

+ eT
i (t)

[
M
(
z(t)
)
ei(t) + ε

N∑
k=

aik(r)�ek(t) + ε

N∑
k=

bik(r)�ek(t – τ )

]}

– εdeT
 (t)�e(t) +




N∑
i=

Tr
[
σi
(
e(t), e(t – τ )

)T
σi
(
e(t), e(t – τ )

)]

=
N∑

i=

[
eT

i (t)MT(z(t)
)
ei(t) + eT

i (t)M
(
z(t)
)
ei(t)

]

+ ε

N∑
i=

N∑
k=

aik(r)
[
eT

k (t)�T + eT
i (t)�

]
ek(t)
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+ ε

N∑
i=

N∑
k=

bik(r)
[
eT

k (t – τ )�T ek(t) + eT
i (t)�ek(t – τ )

]
– εdeT

 (t)�e(t)

+



N∑
i=

Tr
[
σi
(
e(t), e(t – τ )

)T
σi
(
e(t), e(t – τ )

)]

≤
N∑

i=

LeT
i (t)ei(t) + ε

N∑
i=

N∑
k=

aik(r)
[
eT

k (t)�T + eT
i (t)�

]
ek(t) – εdeT

 (t)�e(t)

+ ε

N∑
i=

N∑
k=

bik(r)
[
eT

k (t)�T + eT
i (t)�

]
ek(t – τ )

+
N∑

i=

eT
i (t)ϒiei(t) +

N∑
i=

eT
i (t – τ )ϒiei(t – τ ).

Let e(t) = (eT
 (t), eT

 (t), . . . , eT
N (t))T , then one has

LV (t) ≤ eT (t)
((

(L + α)INm + ε
((

A(r)
)s – D

)⊗ �
)

+ ϒi
)
e(t)

+ eT (t – τ )
(


α

ε

(
B(r) ⊗ �

)sT(B(r) ⊗ �
)

+ ϒi

)
e(t – τ ).

In view of condition (), we have

LV (t) ≤ aV (t) + bV (t – τ ). ()

Define

W (t) = eγ tV (t)

and use equation () to compute the operator

LW (t) = eγ t[γ V (t) + LV (t)
]

≤ eγ t[γ V (t) + aV (t) + bV (t – τ )
]
,

which, after applying the generalized Itô formula, gives

eγ t
EV (t) = EV () + E

∫ t


LW (s) ds ()

for any t ≥ . Hence we have

eγ t
EV (t) ≤ EV () + E

∫ t


eγ s[γ V (s) + aV (s) + bV (s – τ )

]
ds

≤ EV () + (γ + a)
∫ t


eγ s

EV (s) ds + beγ τ

∫ t


eγ (s–τ )

EV (s – τ ) ds. ()

By changing variable s – τ = u, we have

∫ t


eγ (s–τ )

EV (s – τ ) ds =
∫ t–τ

–τ

eγ u
EV (u) du ≤

∫ t

–τ

eγ u
EV (u) du. ()
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Substituting equation () into equation (), we get

eγ t
EV (t) ≤ EV () +

(
γ + a + beγ τ

)∫ t

–τ

eγ u
EV (u) du.

By using Gronwall’s inequality, we get

eγ t
EV (t) ≤ Ke–κt ,

where K = EV ()e(γ +a+beγ τ )τ and κ = –(γ + a + beγ τ ). In light of condition (), the proof is
completed. �

Remark  In Theorem , the coupling matrix A must be strongly connected and the cou-
pling matrix B is not necessarily a symmetrical or irreducible matrix. From condition ()
of Theorem , we can determine the control strength ε and ε to reach complex project
synchronization.

If considering the system without delay, that is, τ = , we can derive the following con-
trolled response network and the error system:

dyi(t) =

{
M
(
z(t)
)
yi(t) + ε

N∑
k=

aik
(
r(t)
)
�yk(t) + ui(t)

}
dt

+ σi
(
y(t)

)
dwi(t), i = , , . . . , N ()

and

dei(t) =

{
M
(
z(t)
)
ei(t) + ε

N∑
k=

aik
(
r(t)
)
�ek(t) + ui(t)

}
dt

+ σi
(
e(t)
)

dwi(t), i = , , . . . , N , ()

then, without loss of generality, one has the following corollary.

Corollary  Suppose that Assumption  holds, A(r) ∈ A, � >  for r = , , . . . , M. The com-
plex projective synchronization in the drive-response network () and () with the following
single controller:

{
u(t) = –εd�e(t),
ui(t) = , i = , . . . , N ,

can be achieved if a <  is satisfied where a = minr λmin(LINm + ε((A(r))s – D) ⊗ �) + ϒi,
d >  and D = diag(d, , . . . , ).

Theorem  and Corollary  state that a drive-response stochastic coupled networks can
achieve complex projective synchronization by controlling only a fraction of the nodes,
provided that its control strength is sufficiently large. It is usually much larger than the
value needed. Clearly it is a natural idea to make the control strength as small as possi-
ble. Next, we will realize complex projective synchronization for relatively small control
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strengths by using adaptive adjustments. Let
⎧⎪⎨
⎪⎩

u(t) = –εd(t)�e(t),
ui(t) = , i = , . . . , N ,
ḋ(t) = δ

∑N
i= eT

i (t)ei(t),

where δ >  is the adaptive gain.

Theorem  Suppose that Assumption  holds, P is a positive definite matrix, the complex
projective synchronization in the drive-response network () and () with controllers ()
can be achieved if the following conditions are satisfied:

IN ⊗ (
(L + α)Im + P + ϒi

)
+ ε

((
A(r)

)s – D∗)⊗ � <  for r = , , . . . , M,


α

ε

((

B(r)
)⊗ �

)sT((B(r)
)⊗ �

)
– IN ⊗ (P – ϒi) <  for r = , , . . . , M

()

for a small positive constant δ and D∗
 = diag(d∗

 , , . . . , ).

Proof Consider the Lyapunov functional candidate

V (t) =
N∑

i=

eT
i (t)ei(t) +


δ

(
d(t) – d∗) +

N∑
i=

∫ t

t–τ

eT
i (s)Pei(s) ds.

Calculating LV (t) with respect to t along the solution of () and noticing the adaptive
feedback controllers (), for r(t) = r, one has

LV (t) =
N∑

i=

{[
eT

i (t)MT(z(t)
)

+ ε

N∑
k=

aik(r)eT
k (t)�T

+ ε

N∑
k=

bik(r)eT
k (t – τ )�T – eT

i (t)d(t)

]
ei(t)

+ eT
i (t)

[
M
(
z(t)
)
ei(t) + ε

N∑
k=

aik(r)�ek(t)

+ ε

N∑
k=

bik(r)�ek(t – τ ) – d(t)ei(t)

]
+ eT

i (t)Pei(t) – eT
i (t – τ )Pei(t – τ )

}

+

δ

(
d(t) – d∗)δeT

 (t)�e(t) +



N∑
i=

Tr
[
σi
(
e(t), e(t – τ )

)T
σi
(
e(t), e(t – τ )

)]

=
N∑

i=

[
eT

i (t)MT(z(t)
)
ei(t) + eT

i (t)M
(
z(t)
)
ei(t) + eT

i (t)Pei(t)
]

+ ε

N∑
i=

N∑
k=

aik(r)
[
eT

k (t)�T + eT
i (t)�ek(t)

]

+ ε

N∑
i=

N∑
k=

bik(r)
[
eT

k (t – τ )�T + eT
i (t)�ek(t – τ )

]

– d∗eT
 (t)�e(t) – eT

i (t – τ )Pei(t – τ )
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+



N∑
i=

Tr
[
σi
(
e(t), e(t – τ )

)T
σi
(
e(t), e(t – τ )

)]

≤
N∑

i=

eT
i (t)(LIm + P)ei(t) + ε

N∑
i=

N∑
k=

aik(r)
[
eT

k (t)�T + eT
i (t)�ek(t)

]

–
N∑

i=

eT
i (t – τ )Pei(t – τ ) – d∗eT

 (t)�e(t)

+ ε

N∑
i=

N∑
k=

bik(r)
[
eT

k (t – τ )�T + eT
i (t)�ek(t – τ )

]

+
N∑

i=

eT
i (t)ϒiei(t) +

N∑
i=

eT
i (t – τ )ϒiei(t – τ ).

Let e(t) = (eT
 , eT

 , . . . , eT
N ), then one has

LV (t) ≤ eT (t)
(
IN ⊗ ((L + α)Im + P + ϒi

)
+ ε

((
A(r)

)s – D∗)⊗ �
)
e(t)

+ eT (t – τ )
(


α

ε

(
B(r) ⊗ �

)sT(B(r) ⊗ �
)

– IN ⊗ (P – ϒi)
)

e(t – τ ).

In light of condition () of Theorem , we can get LV (t) < . In view of the LaSalle in-
variance principle of stochastic differential equation, which was developed in [], we
have limt→∞ V (t) = , which in turn illustrates that limt→∞ ei(t) =  and, at the same time,
limt→∞ d(t) = d∗. The proof is completed. �

4 Numerical simulations
In this section, we conduct some numerical simulations to illustrate the effectiveness of
the theorems of the previous section.

Consider a drive-response network coupled with the following complex Lorenz systems:

{
ẋ = M(z)x,
ż = –bz + 

 (x̄x + xx̄),
()

where

M(z) =

(
–σ σ

r – z –a

)
,

which exhibit chaotic behavior when σ = , b = ., r =  + .j and a =  – .j. Fig-
ure  shows a chaotic attractor of the complex Lorenz system with initial values x() =
. + .j, x() = . + .j, z = ., which is the synchronization orbit in the
following simulations; and the noise strength σi(y(t), y(t – τ )) = .

∑N
k= aik(r)(yk(t) –

yi(t)) + .
∑N

k= bik(r)(yk(t – τ ) – yi(t – τ )), so we have ϒi < .I, ϒi < .I.
According to (), one can easily calculate the eigenvalues of Ms(z(t)): λ, = –(σ + ) ±√
(σ – ) + |σ – z + r|. From Figure , it is found that  ≤ z ≤ , and then one can

choose L =  such that Assumption  holds.
Firstly, consider complex projective synchronization in a drive-response network cou-

pled with  +  identical complex Lorenz systems with switching topology via adaptive
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Figure 1 A chaotic attractor of the complex Lorenz system with initial values x1(0) = 2.040 + 2.020j,
x2(0) = 5.062 + 4.067j, z = 5.1.

feedback control, where the outer coupling matrices A(r) and B(r) for r = (, ) are

A() =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

–         
 –        
  –       
   –      
    –     
     –    
      –   
       –  
        – 
         –

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

A() =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

–         
 –        
  –       
   –      
    –     
     –    
      –   
       –  
        – 
         –

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

B() =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

–         
 –        
  –       
   –      
    –     
     –    
      –   
       –  
        – 
         –

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,
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Figure 2 The evolution of the synchronization trajectory yi (i = 1, 2, . . . , 10) by pinning control.

B() =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

–         
 –        
  –       
   –      
    –     
     –    
      –   
       –  
        – 
         –

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

respectively. Choosing α =  + .j, � = diag(, ), d = . By a simple calculation, one has
that the largest eigenvalue of As – D is –., and then one can choose α = , ε = 
and ε =  such that a = –. and b = .. Let τ = ., we can get γ = . such that
condition () holds. The initial values of complex state variables yi(t) (i = , , . . . , ) are
chosen as yi() =  + i + j( + i) and yi() = ( + i) + j( + i). Figures  and  show the
evolution of synchronization trajectory and errors by pinning control, respectively.

Finally, consider complex projective synchronization in a drive-response network cou-
pled with  +  identical complex Lorenz systems via a single controller and adaptive cou-
pling strength. In numerical simulations, we choose P = Imσ = . and the initial values
of ε(t) as ε() = .. The other parameters are chosen the same as those in the above exam-
ple such that condition () holds. Figures  and  show the evolution of synchronization
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Figure 3 The evolution of the synchronization errors yi (i = 1, 2, . . . , 10) by pinning control.

Figure 4 The evolution of the synchronization trajectory yi (i = 1, 2, . . . , 10) by adaptive control.
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Figure 5 The evolution of the synchronization errors yi (i = 1, 2, . . . , 10) by adaptive control.

Figure 6 The evolution of adaptive control
strength d(t).

trajectory and errors by adaptive control, respectively. From Figure , one can see that the
needed control strength value is much less than that calculated by inequality () in the
above example.

5 Conclusion
The complex projective synchronization in drive-response stochastic coupled networks
with complex-variable systems and linear coupling time delays are considered in this pa-
per. Since drive-response systems may evolve in different directions with a constant inter-
section angle in many real situations, and they not simultaneously evolve along the same
or inverse direction based on real number, real matrix, or even real function in a com-
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plex plane, we focus on the projective synchronization of this situation considering the
time delay and stochastic disturbance for response systems through two theorems and
one corollary. Eventually, several numerical simulations have verified the validity of those
results.
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