
Lu and Kong Advances in Difference Equations  (2015) 2015:151 
DOI 10.1186/s13662-015-0474-y

R E S E A R C H Open Access

Periodic solutions for a kind of prescribed
mean curvature Liénard equation with
a singularity and a deviating argument
Shiping Lu1 and Fanchao Kong2*

*Correspondence:
fanchaokong88@163.com
2Department of Mathematics,
Anhui Normal University, Wuhu,
241000, China
Full list of author information is
available at the end of the article

Abstract
In this paper, we study the existence of periodic solutions to the following prescribed
mean curvature Liénard equation with a singularity and a deviating argument:

( u′(t)√
1 + (u′(t))2

)′
+ f (u(t))u′(t) + g(u(t – σ )) = e(t),

where g has a strong singularity at x = 0 and satisfies a small force condition at x =∞.
By applying Mawhin’s continuation theorem, we prove that the given equation has at
least one positive T -periodic solution. We will also give an example to illustrate the
application of our main results.

Keywords: periodic solution; continuation theorem; prescribed mean curvature
Liénard equation; deviating argument; singularity

1 Introduction
In recent years, there have been many papers about the existence of periodic solutions for
the second order differential equations with a singularity, especially for the Liénard equa-
tions. And the existence of periodic solutions of the Liénard equations with a deviating
argument has also been studied widely (see [–]). For example, in [], Zhang studied
the following Liénard equation with a singularity:

x′′(t) + f
(
x(t)

)
x′(t) + g

(
t, x(t)

)
= , (.)

where f : R → R, g : R × (, +∞) → R is an L-Carathéodory function, g(t, x) is a
T-periodic function in the first argument and can be singular at x = , i.e., g(t, x) can
be unbounded as x → +. Equation (.) is of repulsive type (resp. attractive type) if
g(t, x) → –∞ (resp. g(t, x) → +∞) for x → +.

Let Eq. (.) be of repulsive type and set

g(x) =

T

∫ T


g(t, x) dt, x > .

Assume that

ϕ(t) = lim
x→+∞ sup

g(t, x)
x
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exists uniformly for a.e. t ∈ [, T], i.e., for any ε > , there is gε ∈ L(, T) such that

g(t, x) ≤ (
ϕ(t) + ε

)
x + gε

for all x >  and a.e. t ∈ [, T]. Assume that ϕ ∈ C(R, R) and ϕ(t + T) = ϕ(t), t ∈ R.

Theorem . Assume that the following conditions are satisfied:

(h) (Balance condition) There exist constants  < D < D such that if x is a positive con-
tinuous T-periodic function satisfying

∫ T


g
(
t, x(t)

)
dt = ,

then

D ≤ x(τ ) ≤ D for some τ ∈ [, T].

(h) (Degree condition) g(x) <  for all x ∈ (, D), and g(x) >  for all x > D.
(h) (Decomposition condition) g(t, x) = g(x) + g(t, x), where g ∈ C((, +∞), R) and g :

[, T]× [, +∞) → R is an L-Carathéodory function, i.e., g is measurable with respect
to the first variable, continuous with respect to the second one, and for any b >  there
is hb ∈ L((, T); [, +∞)) such that |g(t, x)| ≤ hb(t) for a.e. t ∈ [, T] and all x ∈ [, b].

(h) (Strong force condition at x = )
∫ 

 g(x) dx = –∞.
(h) (Small force condition at x = ∞)

∥∥ϕ+∥∥
 <

√


T
(
ϕ+ = max

{
ϕ+, 

})
.

Then Eq. (.) has at least one positive T-periodic solution.

Moreover, we notice that in [] Wang further studied the Liénard equation with a sin-
gularity and a deviating argument of the form

x′′(t) + f
(
x(t)

)
x′(t) + g

(
t, x(t – σ )

)
= , (.)

where  ≤ σ < T is a constant, f : R → R, g : R × (, +∞) → R is an L-Carathéodory
function, g(t, x) is a T-periodic function in the first argument and can be singular at x = ,
i.e., g(t, x) can be unbounded as x → +.

Theorem . Assume that the following conditions are satisfied:

(h) (Balance condition) There exist constants  < D < D such that if x is a positive con-
tinuous T-periodic function satisfying

∫ T


g
(
t, x(t)

)
dt = ,

then

D ≤ x(τ ) ≤ D for some τ ∈ [, T].
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(h) (Degree condition) g(x) <  for all x ∈ (, D), and g(x) >  for all x > D.
(h) (Decomposition condition) g(t, x) = g(x) + g(t, x), where g ∈ C((, +∞), R) and g :

[, T]× [, +∞) → R is an L-Carathéodory function, i.e., g is measurable with respect
to the first variable, continuous with respect to the second one, and for any b >  there
is hb ∈ L((, T); [, +∞)) such that |g(t, x)| ≤ hb(t) for a.e. t ∈ [, T] and all x ∈ [, b].

(h) (Strong force condition at x = )
∫ 

 g(x) dx = –∞.
(h′

) (Small force condition at x = ∞)

‖ϕ‖∞ <
(√

π

T

)

.

Then Eq. (.) has at least one positive T-periodic solution.

Nowadays, the prescribed mean curvature ( u′(t)√
+(u′(t))

)′ of a function u(t) frequently ap-

pears in different geometry and physics (see [–]). For example, in [], Obersnel stud-
ied the existence, regularity and stability properties of periodic solutions of a capillarity
equation in the presence of lower and upper solutions

–
(

u′
√

 + u′

)
= f (t, u).

This equation, together with its N-dimensional counterpart

– div

( ∇u√
 + |∇u|

)
= f (x, u),

plays an important role in various physical and geometrical questions. And the existence of
the periodic solutions and homoclinic solutions for the prescribed curvature mean equa-
tion also attracts many authors’ attention. In [], Feng discussed the periodic solution for
the prescribed mean curvature Liénard equation of the form

(
u′(t)√

 + (u′(t))

)′
+ f

(
u(t)

)
u′(t) + g

(
t, u

(
t – τ (t)

))
= e(t), (.)

estimated a priori bounds by eliminating the nonlinear term ( u′(t)√
+u′(t)

)′, and established

sufficient conditions on the existence of periodic solutions by using Mawhin’s continuation
theorem. Moreover, Liang and Lu [] studied the homoclinic solution for the prescribed
mean curvature Duffing-type equation of the form

(
u′(t)√

 + (u′(t))

)′
+ cu′(t) + f

(
u(t)

)
= p(t), (.)

where f ∈ C(R, R), p ∈ C(R, R), c >  is a given constant.
However, to the best of our knowledge, the studying of periodic solutions for the

prescribed mean curvature equation with a singularity is relatively infrequent, and the
method of finding a priori bounds is different from the other prescribed mean curvature
equations which have no singularities. So, it is worthwhile and interesting to explore this
topic.
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In this paper, we consider the following prescribed mean curvature Liénard equation
with a singularity and a deviating argument:

(
u′(t)√

 + (u′(t))

)′
+ f

(
u(t)

)
u′(t) + g

(
u(t – σ )

)
= e(t), (.)

where  ≤ σ < T , g : (, +∞) → R is a continuous function and can be singular at u = ,
i.e., g(u) can be unbounded as u → +. e(t) is T-periodic with

∫ T
 e(t) dt = . By ap-

plying Mawhin’s continuation theorem, we prove that Eq. (.) has at least one posi-
tive T-periodic solution. The interest is that the conditions imposed on f , g and the ap-
proaches to estimate a priori bounds of periodic solutions are not only different from (.)
and (.) but also different from (.) and (.). At last, a numerical example demonstrates
the validity of the method. To sum up, our results are essentially new.

The structure of the rest of this paper is as follows. In Section , we state some necessary
definitions and lemmas. In Section , we prove the main result. Finally, we give an example
of an application in Section .

2 Preliminary
In order to use Mawhin’s continuation theorem, we first recall it.

Let X and Y be two Banach spaces, a linear operator L : D(L) ⊂ X → Y is said to be a
Fredholm operator of index zero provided that

(a) Im L is a closed subset of Y ,
(b) dim Ker L = codim Im L < ∞.
Let X and Y be two Banach spaces, � ⊂ X be an open and bounded set, and L : D(L) ⊂

X → Y be a Fredholm operator of index zero. A continuous operator N : � ⊂ X → Y is
said to be L-compact in � provided that

(c) Kp(I – Q)N(�) is a relative compact set of X ,
(d) QN(�) is a bounded set of Y ,

where we define X = Ker L, Y = Im L, then we have the decompositions X = X ⊕ X,
Y = Y ⊕ Y. Let P : X → X, Q : Y → Y be continuous linear projectors (meaning P = P
and Q = Q), and Kp = L|–

Ker P∩D(L).

Lemma . [] Let X and Y be two real Banach spaces, � be an open and bounded set of
X, and L : D(L) ⊂ X → Y be a Fredholm operator of index zero. The operator N : � ⊂ X →
Y is said to be L-compact in �. In addition, if the following conditions hold:

() Lx = λNx, ∀(x,λ) ∈ ∂� × (, );
() QNx = , ∀x ∈ Ker L ∩ ∂�;
() deg{JQN ,� ∩ Ker L, } = , where J : Im Q → Ker L is a homeomorphism,

then Lx = Nx has at least one solution in D(L) ∩ �.

In order to use Lemma ., let us consider the problem

{
u′(t) = φ(v(t)) = v(t)√

–v(t)
,

v′(t) = –f (u(t))φ(v(t)) – g(u(t – σ )) + e(t).
(.)

Obviously, if (u(t), v(t))� is a solution of (.), then u(t) is a solution of (.).
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Let

X = Y =
{

x : x(t) =
(
u(t), v(t)

)� ∈ C(R, R), x(t) = x(t + T)
}

,

where the normal ‖x‖ = max{‖u‖,‖v‖}, and ‖u‖ = maxt∈[,T] |u|, ‖v‖ = maxt∈[,T] |v|. It
is obvious that X and Y are Banach spaces.

Now we define the operator

L : D(L) ⊂ X → Y , Lx = x′ =
(
u′(t), v′(t)

)�,

where D(L) = {x|x = (u(t), v(t))� ∈ C(R, R), x(t) = x(t + T)}.
Let X = {x = (u(t), v(t))� ∈ C(R, R× (–, )), x(t) = x(t +T)}. Define a nonlinear operator

N : � ⊂ (X ∩ X) ⊂ X → Y as follows:

Nx =
(

v(t)√
 – v(t)

, –f
(
u(t)

) v(t)√
 – v(t)

– g
(
u(t – σ )

)
+ e(t)

)�
,

where � ⊂ X ⊂ X and � is an open and bounded set. Then problem (.) can be written
as Lx = Nx in �.

We know

Ker L =
{

x|x ∈ X, x′ =
(
u′(t), v′(t)

)� = (, )�
}

,

then ∀t ∈ R we have u′(t) = , v′(t) = . Obviously, u ∈ R, v ∈ R, thus Ker L = R, and it is
also easy to prove that Im L = {y ∈ Y ,

∫ T
 y(s) ds = }. Therefore, L is a Fredholm operator

of index zero.
Let

P : X → Ker L, Px =

T

∫ T


x(s) ds,

Q : Y → Im Q, Qy =

T

∫ T


y(s) ds.

Let Kp = L|–
Ker L∩D(L), then it is easy to see that

(Kpy)(t) =
∫ T


Gk(t, s)y(s) ds,

where

Gk(t) =

{
s–T

T ,  ≤ t ≤ s;
s
T , s ≤ t ≤ T .

For all � such that � ⊂ (X ∩ X) ⊂ X, we have Kp(I – Q)N(�) is a relative compact set of
X, QN(�) is a bounded set of Y , so the operator N is L-compact in �.

For the sake of convenience, we list the following assumptions which will be used by us
in studying the existence of periodic solutions to Eq. (.) in Section .
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(H) There exist positive constants D and D with D < D such that
() for each positive continuous T-periodic function x(t) satisfying∫ T

 g(x(t)) dt = , there exists a positive point τ ∈ [, T] such that
D ≤ x(τ ) ≤ D;

() g(x) <  for all x ∈ (, D) and g(x) >  for all x > D.
(H) g(x(t)) = g(x(t)) + g(x(t)), where g : (, +∞) → R is a continuous function and

() there exist positive constants m and m such that g(x) ≤ mx + m for all x in
(, +∞);

()
∫ 

 g(x) dx = –∞.
(H) There exist positive constants γ , c, c such that γ < f (x) ≤ c|x| + c for all x in

(, +∞).

Throughout this paper, define A := (
∫ T

 |e(t)| dt) 
 + supt∈[,T] |e(t)| < +∞.

3 Existence of periodic solutions
Theorem . Suppose that conditions (H)-(H) hold and σ = kT , where k is an integer.
Also,

AcT
γ  +

A
√

T(cD + c + mT)
γ

+ T(mD + m + A) < .

Then, there exist positive constants A, A and ρ , which are independent of λ such that

A < u(t) < A, ‖v‖ < ρ < ,

where u(t) is any solution to the equation Lz = λNz, λ ∈ (, ).

Proof Let � = {z ∈ �, Lz = λNz,λ ∈ (, )}. If z ∈ �, we have

{
u′(t) = λφ(v(t)) = λ v(t)√

–v(t)
,

v′(t) = –λf (u(t))φ(v(t)) – λg(u(t – σ )) + λe(t).
(.)

Integrating the second equation of (.) from  to T , we have

∫ T


g
(
u(t – σ )

)
dt = . (.)

Combining with (H)(), we can see that there exist positive constants D, D and τ ∈ [, T]
such that

D ≤ u(τ ) ≤ D. (.)

Therefore, we have

‖u‖ = max
t∈[,T]

∣∣u(t)
∣∣

≤ max
t∈[,T]

∣∣∣∣u(τ ) +
∫ t

τ

u′(s) ds
∣∣∣∣
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≤ D +
∫ T



∣∣u′(s)
∣∣ds

≤ D +
√

T
∥∥u′∥∥

. (.)

Multiplying the second equation of (.) by u′(t) and integrating on the interval [, T], we
have

 =
∫ T


v′(t)u′(t) dt

= –λ

∫ T


f
(
u(t)

)(
u′(t)

) dt – λ

∫ T


g
(
u(t – σ )

)
u′(t) dt + λ

∫ T


e(t)u′(t) dt

= –λ

∫ T


f
(
u(t)

)(
u′(t)

) dt – λ

∫ T


g
(
u(t – σ )

)
du(t – σ ) + λ

∫ T


e(t)u′(t) dt

= –λ

∫ T


f
(
u(t)

)(
u′(t)

) dt + λ

∫ T


e(t)u′(t) dt.

It follows from (H) that

γ

∫ T



∣∣u′(t)
∣∣ dt ≤

∫ T



∣∣e(t)
∣∣∣∣u′(t)

∣∣dt. (.)

From the inequality above, we get

∥∥u′∥∥
 ≤ A

γ
. (.)

Substituting (.) into (.), we obtain

‖u‖ ≤ D +
A

√
T

γ
:= M. (.)

Furthermore, from the second equation of (.), we can get

∫ T



∣∣v′(t)
∣∣dt ≤ λ

∫ T



∣∣f (u(t)
)∣∣∣∣u′(t)

∣∣dt

+ λ

∫ T



∣∣g(u(t – σ )
)∣∣dt + λ

∫ T



∣∣e(t)
∣∣dt.

It follows from (H) that

∫ T



∣∣v′(t)
∣∣dt ≤ c

∫ T



∣∣u(t)
∣∣∣∣u′(t)

∣∣dt + c

∫ T



∣∣u′(t)
∣∣dt

+
∫ T



∣∣g(u(t – σ )
)∣∣dt +

∫ T



∣∣e(t)
∣∣dt

≤ c‖u‖
√

T
∥∥u′∥∥

 + c
√

T
∥∥u′∥∥



+
∫ T



∣∣g(u(t – σ )
)∣∣dt + AT . (.)
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Write

I+ =
{

t ∈ [, T] : g
(
u(t – σ )

)≥ 
}

; I– =
{

t ∈ [, T] : g
(
u(t – σ )

)≤ 
}

.

Then we can get from (.) and (H)() that

∫ T



∣∣g(u(t – σ )
)∣∣dt =

∫

I+

g
(
u(t – σ )

)
dt –

∫

I–

g
(
u(t – σ )

)
dt

= 
∫

I+

g
(
u(t – σ )

)
dt

≤ m

∫ T


u(t – σ ) dt + 

∫ T


m dt

≤ mT‖u‖ + Tm. (.)

Substituting (.) into (.) and combining with (.) and (.), we obtain

∫ T



∣∣v′(t)
∣∣dt ≤ c‖u‖

√
T
∥∥u′∥∥

 + c
√

T
∥∥u′∥∥



+ mT‖u‖ + Tm + AT

≤ AcT
γ  +

A
√

T(cD + c + mT)
γ

+ T(mD + m + A). (.)

Integrating the first equation of (.) on the interval [, T], we have

∫ T



v(t)√
 – v(t)

dt = .

Then we can see that there exists η ∈ [, T] such that v(η) = . It implies that

∣∣v(t)
∣∣ =

∣∣∣∣
∫ t

η

v′(s) ds + v(η)
∣∣∣∣≤

∫ T



∣∣v′(s)
∣∣ds.

Combining with (.) gives

∣∣v(t)
∣∣ ≤

∫ T



∣∣v′(s)
∣∣ds

≤ AcT
γ  +

A
√

T(cD + c + mT)
γ

+ T(mD + m + A)

:= ρ. (.)

Since AcT
γ  + A

√
T(cD+c+mT)

γ
+ T(mD + m + A) < , then we have

‖v‖ = max
t∈[,T]

∣∣v(t)
∣∣≤ ρ < . (.)

Then from (.) we can also have

∥∥u′∥∥
 ≤ max

t∈[,T]

|v(t)|√
 – v(t)

≤ ρ

 – ρ := B. (.)
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On the other hand, from the second equation of (.) and by (H), we can see that

v′(t + σ ) = –λf
(
u(t + σ )

)
u′(t + σ ) – λ

[
g
(
u(t)

)
+ g

(
u(t)

)]
+ λe(t + σ ). (.)

Multiplying both sides of Eq. (.) by u′(t), we have

v′(t + σ )u′(t) = –λf
(
u(t + σ )

)
u′(t + σ )u′(t) – λ

[
g
(
u(t)

)
+ g

(
u(t)

)]
u′(t)

+ λe(t + σ )u′(t). (.)

Let τ ∈ [, T] be as in (.). For any t ∈ [τ , T], integrating Eq. (.) on the interval [τ , T],
we have

λ

∫ u(t)

u(τ )
g(u) du = λ

∫ t

τ

g
(
u(t)

)
u′(t) dt

= –
∫ t

τ

v′(t + σ )u′(t) dt – λ

∫ t

τ

f
(
u(t + σ )

)
u′(t + σ )u′(t) dt

– λ

∫ t

τ

g
(
u(t)

)
u′(t) dt + λ

∫ t

τ

e(t + σ )u′(t) dt.

Then from the inequality above, we get

∣∣∣∣
∫ u(t)

u(τ )
g(u) du

∣∣∣∣ =
∣∣∣∣
∫ t

τ

g
(
u(t)

)
u′(t) dt

∣∣∣∣

≤
∫ T



∣∣v′(t + σ )
∣∣∣∣u′(t)

∣∣dt +
∫ T



∣∣f (u(t + σ )
)∣∣∣∣u′(t + σ )

∣∣∣∣u′(t)
∣∣dt

+
∫ T



∣∣g
(
u(t)

)∣∣∣∣u′(t)
∣∣dt +

∫ T



∣∣e(t + σ )
∣∣∣∣u′(t)

∣∣dt. (.)

Set FM = max|u|≤M |f (u)| and GM = max|u|≤M |g(u)|, then we have

∫ T



∣∣f (u(t + σ )
)∣∣∣∣u′(t + σ )

∣∣∣∣u′(t)
∣∣dt

≤ FM

(∫ T



∣∣u′(t + σ )
∣∣ dt

) 

(∫ T



∣∣u′(t)
∣∣ dt

) 


= FM

∥∥u′∥∥
 (.)

and

∫ T



∣∣g
(
u(t)

)∣∣∣∣u′(t)
∣∣dt ≤ GM

∥∥u′∥∥
T . (.)

Substituting (.) and (.) into (.) and combining with (.) and (.), we obtain

∣∣∣∣
∫ u(t)

u(τ )
g(u) du

∣∣∣∣ ≤ ∥∥u′∥∥


∫ T



∣∣v′(t + σ )
∣∣dt + FM

∥∥u′∥∥


+ GM

∥∥u′∥∥
T + A

∥∥u′∥∥
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≤ ρB +
FM A

γ  + GM BT +
A

γ

< +∞.

According to (H)(), we can see that there exists a constant M >  such that, for t ∈ [τ , T],

u(t) ≥ M. (.)

For the case t ∈ [, τ ], we can handle it similarly.
Let us define

 < A = min{D, M}

and

A = max{D, M},

then by (.), (.) and (.) we can obtain

A < u(t) < A. (.)

Therefore, from (.) and (.), we can see that the proof of Theorem . is now com-
plete. �

Theorem . Assume that all the conditions in Theorem . hold, then Eq. (.) has at
least one positive T-periodic solution.

Proof Set

� =
{

x = (u, v)� ∈ X : A < u(t) < A,‖v‖ < ρ <
ρ + 



}
.

Then the condition () of Lemma . is satisfied.
Suppose that there exists x ∈ ∂� ∩ Ker L such that QNx = 

T
∫ T

 Nx(s) ds = (, )�, i.e.,
⎧⎨
⎩


T
∫ T


v(t)√
–v(t)

dt = ,

T
∫ T

 [–f (u(t)) v(t)√
–v(t)

– g(u(t – σ )) + e(t)] dt = .
(.)

Since Ker L = R, and u ∈ R, v ∈ R are constant, combining with the first equation of (.),
we obtain

v =  < ρ.

From the second equation of (.), we have


T

∫ T


g
(
u(t – σ )

)
dt = .

From (H)() we can see that

A < D ≤ u(t) ≤ D < A.
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It is in contradiction to x ∈ ∂�. So ∀x ∈ Ker L ∩ ∂�, we have QNx = . Then the condition
() of Lemma . is satisfied.

In the following, we prove that the condition () of Lemma . is also satisfied.
Let

z = Ax = A

(
u
v

)
=

(
u – A+A


v

)
,

then we have

x = z +

(
A+A




)
.

Define J : Im Q → Ker L is a linear isomorphism,

J(u, v) =

(
v

–u

)

and define

H(μ, x) = μAx + ( – μ)JQNx, ∀(x,μ) ∈ � × [, ].

Then

H(μ, x) =

(
μu – μ(A+A)


μv

)
+

 – μ

T

(∫ T
 [ f (u)v√

–v + g(u)] dt
∫ T


v√

–v dt

)
. (.)

Now we claim that H(μ, x) is a homotopic mapping. Assume, by way of contradiction, that
there exist μ ∈ [, ] and x =

( u
v

) ∈ ∂� such that H(μ, x) = .
Substituting μ and x into (.), we have

H(μ, x) =

⎛
⎝

μu – μ(A+A)
 + ( – μ)f (u) v√

–v


+ ( – μ)g(u)

μv + ( – μ) v√
–v



⎞
⎠ . (.)

Since H(μ, x) = , then we can see that

μv + ( – μ)
v√

 – v


= .

Combining with μ ∈ [, ], we obtain v = . Thus u = A or A.
If u = A, it follows from (H)() that g(u) < , then substituting v =  into (.), we

have

μu –
μ(A + A)


+ ( – μ)f (u)

v√
 – v



+ ( – μ)g(u)

= μu –
μ(A + A)


+ ( – μ)g(u)

< μ

(
u –

A + A



)
< . (.)
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If u = A, it follows from (H)() that g(u) > , then substituting v =  into (.), we
have

μu –
μ(A + A)


+ ( – μ)f (u)

v√
 – v



+ ( – μ)g(u)

= μu –
μ(A + A)


+ ( – μ)g(u)

> μ

(
u –

A + A



)
> . (.)

Combining with (.) and (.), we can see that H(μ, x) = , which contradicts the
assumption. Therefore H(μ, x) is a homotopic mapping and x�H(μ, x) = , ∀(x,μ) ∈ (∂�∩
Ker L) × [, ]. Then

deg(JQN ,� ∩ Ker L, ) = deg
(
H(, x),� ∩ Ker L, 

)

= deg
(
H(, x),� ∩ Ker L, 

)

= deg(Ax,� ∩ Ker L, )

=
∑

x∈A–()

sgn
∣∣A′(x)

∣∣

=  = .

Thus, the condition () of Lemma . is also satisfied.
Therefore, by applying Lemma ., we can conclude that Eq. (.) has at least one positive

T-periodic solution. �

4 Example
As an application, we consider the following example:

(
u′(t)√

 + (u′(t))

)′
+
[

u(t)
 + u(t)

+ 
]

u′(t) + g
(
u(t)

)
=




sin t. (.)

Corresponding to Theorem . and (.), we have

f
(
u(t)

)
=

u(t)
 + u(t)

+ , g
(
u(t)

)
= g

(
u(t)

)
+ g

(
u(t)

)
=




u(t) –


u(t)
,

e(t) =



sin t.

Then we can have and choose

T =
π


, γ = , c =




, c = ,

m =



, m =




, D = , D = 

and

A :=
(∫ T



∣∣e(t)
∣∣ dt

) 


+ sup
t∈[,T]

∣∣e(t)
∣∣ <




< +∞.
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Then we can see that (H)() and (H)() hold. Meanwhile,

AcT
γ  +

A
√

T(cD + c + mT)
γ

+ T(mD + m + A) ≈ . < .

Hence, by applying Theorem ., we can see that Eq. (.) has at least one positive
T-periodic solution.
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