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Abstract
This paper investigates the coupled systems of stochastic differential equations with
variable delays (CSDDEs) on networks. We analyze the existence and uniqueness of
solution by combining the method of graph theory with the Lyapunov function
analysis. Furthermore, we utilize the graph theory technique and the nonnegative
semimartingale convergence theorem to obtain the almost sure stability of sample
solutions and the sufficient principles to locate their limit sets, which correlate closely
with the topology property of CSDDEs. Finally we illustrate our main results by
examples from population dynamics and vibration systems.
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1 Introduction
Coupled systems of nonlinear differential equations on networks have been applied widely,
especially in the mechanical, electronic, and biological fields [–]. A network is always
described by a directed graph consisting of vertices and directed arcs connecting them.
At each vertex, the local dynamics is given by a system of differential equations called a
vertex system [, ]. The study of mathematical questions on coupled systems (including
synchronization, clustering and transitions) has been introduced by []. Among vari-
ous dynamical properties of the coupled systems on networks overall stability based on
given vertex systems is very important and interesting from the viewpoint of controlling
complex dynamical systems. However, the stability analysis for the coupled systems on
networks is generally a complex and formidable task. It is inspiring that for a coupled de-
terministic system Li et al. [, ] gave a systematic method to construct an appropriate
Lyapunov function making use of the graph-theoretic technique, and then applied this
method to epidemic models [, , , ], oscillator models [], and ecological models [],
obtaining the global stability.

On the other hand, stochastic differential equations (SDEs) have become a powerful
tool in the modeling of realistic systems due to various disturbances; refer to []. As a
matter of fact, the theory of SDEs has been developed very quickly since Itô introduced his
stochastic calculus. The stability theory of stochastic delay differential equations (SDDEs)
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has been studied extensively; see e.g. [–]. However, so far as we know there are few
papers to deal with almost sure asymptotic stability of the sample paths and their limit sets
for stochastic systems except for [–]. It is worthy to mention that Mao et al. [–]
made an important development by extending the LaSalle-type theorem from ordinary
differential equations (ODEs) to stochastic versions after LaSalle discovered the internal
relationship between Birkoff’s positive limit set and the Lyapunov function [].

Motivated by the previous works, the purpose of this paper is to investigate the coupled
systems of SDEs with variable delays (CSDDEs) on networks described by
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(
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dBi(t), t ≥ , i = , , . . . , l, (.)

with the initial data

xi(θ ) = ξi(θ ) ∈R
ni , –ri() ≤ θ ≤ , (.)

where ξ (t) = (ξ(t), ξ(t), . . . , ξl(t)) ∈ R
n × R

n × · · · × R
nl =: RN , x(t) = (x(t), x(t),

. . . , xl(t)) ∈ R
N , and B(t) = (B(t), B(t), . . . , Bl(t)) is a R

m ×R
m × · · · ×R

ml =: RM-valued
Brownian motion.

We analyze the existence and uniqueness of a solution to (.) by the combined method
of graph theory and Lyapunov function analysis. Furthermore, we utilize the graph theory
technique and the nonnegative semimartingale convergence theorem to investigate the
almost sure stability of sample solutions and give the sufficient principles to locate their
limit sets, which is helpful to understand the dynamical behaviors.

The paper is organized as follows: in Section , we prepare some notations and lem-
mas to be used. In Section  we discuss the existence of solution and its uniqueness. In
Section , we give the sufficient conditions for the almost sure asymptotic stability which
relate to the topology structure of the network closely. Moreover, we obtain the limit sets
of sample paths with probability . Finally, we illustrate our main results through some
examples.

2 Preliminaries
For convenience we first state some notations. Throughout the paper, let (�,F , {Ft}t≥, P)
be a complete probability space with a filtration {Ft}t≥ satisfying the usual conditions.
Let B(t), t ≥ , be a standard R

M-valued Brownian motion defined on this probability
space. For any constant sequence {ci} (i = , , . . . , l), define č = max≤i≤l ci, ĉ = min≤i≤l ci.
For each x = (x, x, . . . , xl) ∈R

N , define ‖x‖ = [
∑l

i= (xi)T · (xi)] 
 . For any positive constant

r, let C([–r, ];RN ) be the family of all continuous RN -valued functions ρ on [–r, ] with
a norm |ρ| = sup–r≤θ≤ ‖ρ(θ )‖. For h ∈ C(RN ;R), define Ker(h) = {x ∈ R

N |h(x) = }. Let
Cb
F

([–r, ];RN ) be the family of all F-measurable bounded C([–r, ];RN )-valued ran-
dom variables ξ . For each Vi ∈ C,(Rni ×R+;R+), define a function LVi from R

N ×R
N ×
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R+ to R by

LVi(x, y, t) =
∂Vi(xi, t)

∂t
+
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∂xi
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+
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∂x
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ni×ni

.

A function V (x, t) : RN ×R+ →R+ is said to be radially unbounded, if

lim‖x‖→∞ inf
≤t<∞ V (x, t) = ∞.

We denote by �(R+;R+) the family of all continuous functions ψ : R+ → R+ with the
property that for any δ >  we have lim inft→∞

∫ t+δ

t ψ(s) ds > ; see [] for details.
For self-completeness we cite the following concepts and theorems on graph theory

given by [, , ]. A directed digraph G = (V ,E) contains a vertex set denoted by
V = {, , . . . , l} and an arc set denoted by E . Denote by (j, i) an arc leading from initial
vertex j to terminal vertex i. A directed digraph G is weighted if each arc (j, i) is assigned a
positive weight aij. The weight w(G) of a subgraph G is the product of the weights on all its
arcs. Given a weighted digraph G with l vertices, define the weight matrix A = (aij) whose
entry aij equals the weight of arc (j, i) if it exists, and  otherwise. A weight matrix A is
cogredient to a matrix E if there exists some permutation matrix P such that PAPT = E.
A is reducible if it is cogredient to E =

[ B 
C D

]
, where B and D are square matrices, or if l = 

and A = . Otherwise, A is irreducible. A directed path H in G is a subgraph with distinct
vertices {i, i, . . . , ik} such that its set of arcs is {(im, im+) : m = , , . . . , k – }. If ik = i, we
call H a directed cycle. A connected subgraph T is a tree if it contains no cycle, directed or
undirected. A tree T is rooted at vertex i, called the root, if i is not a terminal vertex of any
arcs, and each of the remaining vertices is a terminal vertex of exactly one arc. A subgraph
Q is unicyclic if it is a disjoint union of rooted trees whose roots form a directed cycle.
A digraph G = (V ,E) is strongly connected if, for any pair of distinct vertices, there exists
a directed path from one to the other. The Laplacian matrix of (G, A) is defined as

L =

⎡
⎢⎢⎢⎢⎣

∑
i�= ai –a · · · –al

–a
∑

i�= ai · · · –al
...

...
. . .

...
–al –al · · · ∑

i�=l ali

⎤
⎥⎥⎥⎥⎦ . (.)
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Let ci denote the cofactor of the ith diagonal element of L. We mention the Kirchhoff’s
matrix tree theorem.

Lemma . [, ] Assume l ≥ . If (G, A) is strongly connected, then each ci > , i ∈ V .

Lemma . [] A weighted digraph (G, A) is strongly connected, if and only if A is irre-
ducible.

Lemma . [] Assume l ≥ . Let ci be given in Lemma .. Then the following identity
holds:

l∑
i,j=

ciaijUij(xi, xj) =
∑
Q∈Q

w(Q)
∑

(u,v)∈E(CQ)

Uvu(xv, xu).

Here for any i, j ∈ V , Uij(xi, xj) is an arbitrary function, Q is the set of all spanning unicyclic
graphs of (G, A), w(Q) is the weight of spanning unicycle graph Q, and CQ denotes the
directed cycle of Q.

Consider the CSDDEs (.) on t ≥  with initial data (.) satisfying ξi ∈ Cb
F

([–ri(), ];
R

ni ), i = , , . . . , l, where, for each  ≤ i, j ≤ l,

fi : Rni ×R
ni ×R+ →R

ni ,

gi : Rni ×R
ni ×R+ →R

ni×mi ,

Pij : Rni ×R
ni ×R

nj ×R
nj ×R+ →R

ni ,

f = (f, f, . . . , fl)T , g = (g, g, . . . , gl)T , Pj = (Pj, Pj, . . . , Plj)T are all Borel-measurable func-
tions. For CSDDEs (.), we propose the following assumptions.

Assumption  Time delays ri : R+ →R+, i = , . . . , l, are differentiable and their derivatives
are less than . That is to say, there exist constants di < , i = , . . . , l, such that

dri(t)
dt

≤ di, i = , , . . . , l.

For each  ≤ i ≤ l, Assumption  implies t – ri(t) is an increasing function of t, so

–ri() ≤ t – ri(t) ≤ t, ∀t ≥ . (.)

Assumption  For each  ≤ i, j ≤ l, fi, gi, and Pij satisfy the local Lipschitz conditions.
That is to say, for each h >  there are positive constants Ci(h) and C̄ij(h), such that

∥∥fi(xi, yi, t) – fi(x̄i, ȳi, t)
∥∥∨ ∥∥gi(xi, yi, t) – gi(x̄i, ȳi, t)

∥∥
≤ Ci(h)

(‖xi – x̄i‖ + ‖yi – ȳi‖
)
,∥∥Pij(xi, yi, xj, yj, t) – Pij(x̄i, ȳi, x̄j, ȳj, t)
∥∥

≤ C̄ij(h)
(‖xi – x̄i‖ + ‖yi – ȳi‖ + ‖xj – x̄j‖ + ‖yj – ȳj‖

)
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for all t ≥ , xi, x̄i, yi, ȳi ∈R
ni , xj, x̄j, yj, ȳj ∈R

nj with ‖xi‖∨‖x̄i‖∨‖yi‖∨‖ȳi‖∨‖xj‖∨‖x̄j‖∨
‖yj‖ ∨ ‖ȳj‖ ≤ h.

Assumption  sup≤t<∞(‖fi(, , t)‖ ∨ ‖gi(, , t)‖ ∨ ‖Pij(, , , , t)‖) < ∞, i, j = , , . . . , l.

3 Existence and uniqueness of solution
In order to investigate the sophisticated properties of the solution, we need the existence
and uniqueness of the global solution to CSDDEs (.) firstly, while their coefficients are
usually required to satisfy the linear growth condition and local Lipschitz condition (see
e.g. Friedman [] and Mao []). However, the coefficients of CSDDEs (.) may not satisfy
the linear growth condition, though they are locally Lipschitz continuous. We therefore
wonder what other alternative conditions proposed can avoid the explosion at a finite time.
We answer this question in the following theorem.

Theorem . Let Assumptions  and  hold. Assume for all  ≤ i, j ≤ l, there exist func-
tions Vi(xi, t) ∈ C,(Rni × R;R+) (radially unbounded), Fij ∈ C(RN × R

N × R+;R), qi ∈
C(R+;R+), pj ∈ C(Rnj × [–rj(),∞];R+), and nonnegative constants aij ≥  (A = (aij) is
irreducible), such that

LVi(x, y, t) ≤ qi(t)

[
 +

l∑
j=

Vj(xj, t) +
l∑

j=

Vj
(
yj, t – ri(t)

)]
–

l∑
j=

pj(xj, t)

+
l∑

j=

( – dj)pj
(
yj, t – rj(t)

)
+

l∑
j=

aijFij(x, y, t). (.)

Assuming that along each directed cycle CQ of weighted digraph (G, A), there exist functions
hQ ∈ C(R+;R+), kQ

j ∈ C(Rnj × [–rj(),∞];R+), j = , , . . . , l, such that

∑
(u,v)∈E(CQ)

Fvu(x, y, t) ≤ hQ(t)

[
 +

l∑
j=

Vj(xj, t) +
l∑

j=

Vj
(
yj, t – rj(t)

)]

–
l∑

j=

kQ
j (xj, t) +

l∑
j=

( – dj)kQ
j
(
yj, t – rj(t)

)
. (.)

Then for any given initial data ξ , CSDDEs (.)-(.) have a unique global solution on
[,∞).

Proof Under Assumptions  and , CSDDEs (.)-(.) have a unique maximal local solu-
tion x(t) on t ∈ [[,σ∞[[ for any given initial data ξ , where σ∞ is the explosion time. We
then need only to show that σ∞ = ∞ a.s. Therefore, choose sufficiently large N , such that
N ≥ |ξi| (i = , , . . . , l), then for any n > N , define the stopping time

τn = inf
{

t ∈ [,σ∞) :
∥∥xi(t)

∥∥≥ n for some  ≤ i ≤ l
}

,

and set inf∅ = ∞. Clearly, the τn are increasing so we define the limit τ∞ = limk→∞ τn.
Obviously, τ∞ ≤ σ∞ a.s. Next, we use the stochastic Lyapunov analysis method to prove
τ∞ = ∞, then we will obtain the required equality σ∞ = ∞. Let ci is the cofactor of the ith
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diagonal element of Laplacian matrix of (G, A). From Lemma . and Lemma ., we know
each ci > . Then we define V (x, t) =

∑l
i= ciVi(xi, t). Utilizing inequalities (.), (.), and

Lemma ., we compute

LV (x, y, t)

=
l∑

i=

ciLVi(x, y, t)

≤
l∑

i=

ci

{
qi(t)

[
 +

l∑
j=

Vj(xj, t) +
l∑

j=

Vj
(
yj, t – rj(t)

)]
–

l∑
j=

pj(xj, t)

+
l∑

j=

( – dj)pj
(
yj, t – rj(t)

)}
+

l∑
i,j=

ciaijFij(x, y, t)

=
l∑

i=

ciqi(t) +

( l∑
i=

ci

) l∑
i=

Vi(xi, t)

+

( l∑
i=

ci

) l∑
i=

Vi
(
yi, t – ri(t)

)
–

l∑
i,j=

cipj(xj, t)

+
l∑

i,j=

ci( – dj)pj
(
yj, t – rj(t)

)
+
∑
Q∈Q

W (Q)
∑

(u,v)∈E(CQ)

Fvu(x, y, t)

≤
[ l∑

i=

ciqi(t) +
∑
Q∈Q

W (Q)hQ(t)

]
+

[ l∑
i=

ci +
∑
Q∈Q

W (Q)hQ(t)

] l∑
i=

Vi(xi, t)

+

[ l∑
i=

ci +
∑
Q∈Q

W (Q)hQ(t)

] l∑
i=

Vi
(
yi, t – ri(t)

)

–

( l∑
i=

ci

) l∑
i=

pi(xi, t) –
l∑

i=

∑
Q∈Q

W (Q)kQ
i (xi, t)

+

( l∑
i=

ci

) l∑
i=

( – di)pi
(
yi, t – ri(t)

)
+

l∑
i=

( – di)
∑
Q∈Q

W (Q)kQ
i
(
yi, t – ri(t)

)

≤ η(t)

[
ĉ +

l∑
i=

ciVi(xi, t) +
l∑

i=

ciVi
(
yi, t – ri(t)

)]

–
l∑

i=

φi(xi, t) +
l∑

i=

( – di)φi
(
yi, t – ri(t)

)
, (.)

where

η(t) =

ĉ

[ l∑
i=

ci
(
 + qi(t)

)
+
∑
Q∈Q

W (Q)hQ(t)

]
,

φi(xi, t) = pi(xi, t)
l∑

j=

cj +
∑
Q∈Q

W (Q)kQ
i (xi, t).
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For any n > N and t ≥ , utilizing Itô’s formula, we get

E
[
V
(
x(t ∧ τn), t ∧ τn

)]

= E

[ l∑
i=

ciVi
(
xi(t ∧ τn), t ∧ τn

)]

= E

[ l∑
i=

ciVi
(
xi(), 

)]
+ E

[∫ t∧τn



l∑
i=

ciLVi
(
xi(s), yi(s), s

)
ds

]
.

From Assumption , we know for each  ≤ i ≤ l, t – ri(t) is an increasing function and

 <


 – r′
i(s)

≤ 
 – di

≤ 
 – ď

.

Then inequality (.) implies

E
[
V
(
x(t ∧ τn), t ∧ τn

)]

≤
l∑

i=

ciEVi
(
xi(), 

)
+ E

∫ t∧τn


ĉη(s) ds + E

∫ t∧τn


η(s)

l∑
i=

ciVi
(
xi(s), s

)
ds

+ E

∫ t∧τn


η(s)

l∑
i=

ciVi
(
xi
(
s – ri(s)

)
, s – ri(s)

)
ds

– E

∫ t∧τn



l∑
i=

φi
(
xi(s), s

)
ds + E

∫ t∧τn



l∑
i=

( – di)φi
(
xi
(
s – ri(s)

)
, s – ri(s)

)
ds

≤
l∑

i=

ciEVi
(
ξi(), 

)
+ E

∫ t∧τn


ĉη(s) ds + E

l∑
i=

∫ t∧τn


ciη(s)Vi

(
xi(s), s

)
ds

+
l∑

i=

E

∫ t∧τn–ri(t∧τn)

–ri()

ci

 – r′
i(s)

η
(
s + ri(s)

)
Vi
(
xi(s), s

)
ds

–
l∑

i=

E

∫ t∧τn


φi
(
xi(s), s

)
ds +

l∑
i=

E

∫ t∧τn–ri(t∧τn)

–ri()

 – di

 – r′
i(s)

φi
(
xi(s), s

)
ds

≤
l∑

i=

ciEVi
(
ξi(), 

)
+ E

∫ t∧τn


ĉη(s) ds

+
l∑

i=

∫ 

–ri()

ci

 – di
Eη
(
s + ri(s)

)
Vi
(
ξi(s), s

)
ds

+
l∑

i=

∫ 

–ri()
Eφi
(
ξi(s), s

)
ds + E

∫ t∧τn



l∑
i=

ciη(s)Vi
(
xi(s), s

)
ds

+


 – ď
E

∫ t∧τn



l∑
i=

ciη
(
s + ri(s)

)
Vi
(
xi(s), s

)
ds

≤ C(t) +
 – ď
 – ď

[
sup

≤r≤t
η(r)

]∫ t


EV
(
x(s ∧ τn), s ∧ τn

)
ds, (.)
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where

C(t) =
l∑

i=

ciEVi
(
ξi(), 

)
+
∫ t


ĉη(s) ds +

l∑
i=

∫ 

–ri()
ciη
(
s + ri(s)

)
EVi
(
ξi(s), s

)
ds

+
l∑

i=

∫ 

–ri()
Eφi
(
ξi(s), s

)
ds.

The Gronwall inequality yields

E
[
V
(
x(r ∧ τn), r ∧ τn

)]≤ C(t)e
–ď
–ď

t(sup≤r≤t η(r)), ∀t ≥ . (.)

On the other hand, define μ : R+ → R+ by

μ(a) = inf‖x‖≥a,≤t<∞ V (x, t) for a ≥ . (.)

Clearly, μ(‖x(t)‖) ≤ V (x(t), t). Since Vi(xi, t), i = , , . . . , l is radially unbounded,

lim
a→∞μ(a) = ∞.

It therefore follows from (.) that

C(t)e
–ď
–ď

t(sup≤r≤t η(r)) ≥ Eμ
(∥∥x(t ∧ τn)

∥∥)≥ μ(n)P(τn ≤ t).

Letting n → ∞, we have

P(τ∞ ≤ t) = , ∀t > .

Then t → ∞, and we obtain

P(τ∞ < ∞) = .

That is, τ∞ = ∞ a.s. We, therefore, must have σ∞ = ∞ a.s. This completes the proof. �

Corollary . Suppose that the assumptions of Theorem . are satisfied except that in-
equalities (.) and (.) are replaced by

LVi(xi, yi, t) ≤ γi(t) +
l∑

j=

αij(t)Vj(xj, t) +
l∑

j=

βij(t)Vj
(
yj, t – rj(t)

)
+

l∑
j=

aijFij(x, y, t)

and

∑
(u,v)∈E(CQ)

Fvu(x, y, t) ≤ δQ(t) +
l∑

j=

θQ
j (t)Vj(xj, t) +

l∑
j=

ϑQ
j (t)Vj

(
yj, t – rj(t)

)
,

where γi(t),αij(t),βij(t), δQ(t), θQ
j (t),ϑQ

j (t) ∈ C(R+;R+). Then the result of Theorem . still
holds.
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Proof Define qi(t) = max≤j≤l{γi(t),αij(t),βij(t)}, hQ(t) = max≤j≤l{δQ(t), θQ
j (t),ϑQ

j (t)},
pj(xj, t) = kQ

j (xj, t) ≡ , then the required assertion follows from Theorem .. �

Theorem . Suppose that all of the assumptions of Theorem . are satisfied, moreover,
for each  ≤ i ≤ l, Vi(xi, t) ∈ C,(Rni

+ ×R;R+) (radially unbounded) satisfies

lim
x(j)

i →+
inf

≤t<∞ Vi(xi, t) = ∞, j = , , . . . , ni, (.)

where xi = (x()
i , x()

i , . . . , x(ni)
i ). Then for any given initial data ξ (ξ (t) ∈ R

N
+ ), CSDDEs (.)-

(.) have a unique global solution x(t) on [,∞) and x(t) ∈ R
N
+ for all t ∈ [,∞) a.s.

Proof Let N >  be sufficiently large for


N

< min
≤i≤l,≤j≤ni ,–ri()≤t≤

ξ
(j)
i (t) ≤ max

≤i≤l,≤j≤ni ,–ri()≤t≤
ξ

(j)
i (t) < N .

For each integer n ≥ N , define the stopping time

τn = inf
{

t ∈ [,σ∞) : x(j)
i (t) ∈ (/n, n) for some  ≤ i ≤ l and some  ≤ j ≤ ni

}
. (.)

The left proof is a modification of that of Theorem . directly, we omit it for avoiding
duplication. �

Example . (n-Dimensional stochastic diffusion population model) Consider the envi-
ronmentally perturbed n-dimensional diffusion population system given by the SDEs

dxi(t) =

[
xi(t)

(
ai(t) – bi(t)xi

(
t – ri(t)

))
+

n∑
j=,j �=i

dij
(
x

j (t) – x
i (t)
)]

dt

+
l∑

j=

σij(t)xi(t) dBj(t), i = , , . . . , n, (.)

where ai(t), bi(t),σij(t) ∈ C(R+;R+), dij ≥  are the diffusion coefficients and ri(t) satisfy
Assumption . The above system describes the phenomenon that species always migrate
from high concentration regions to low concentration ones, i.e., the movement is a func-
tion of species density []. Let dii = . In order to yield the existence of the global positive
solution we define C-functions Vi : R+ → R+, i = , , . . . , n, by

Vi(xi) = xi –  – log xi.

Obviously, Vi is radially unbounded and limxi→+ inf≤t<∞ Vi(xi) = ∞. By Itô’s formula,
compute

LVi(x, y, t) = xi(ai – biyi) +
n∑

j=

dij
(
x

j – x
i
)

–

[
ai – biyi +

n∑
j=

dij

(x
j

xi
– xi

)]
+




l∑
j=

σ 
ij
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=
n∑

j=

dij

(
x

j –
x

j

xi

)
–

n∑
j=

dij
(
x

i – xi
)

+ aixi

–

(
ai –




l∑
j=

σ 
ij

)
– bixiyj + biyi

=
n∑

j=

dij

(
x

j –
x

j

xi
– x

i +
x

i
xj

)
–

n∑
j=

dij
x

i
xj

+

(
ai +

n∑
j=

dij

)
xi –

(
ai –




l∑
j=

σ 
ij

)
– bixiyj + biyi

≤
n∑

j=

dij

(
x

j –
x

j

xi
– x

i +
x

i
xj

)
+

(
ai +

n∑
j=

dij

)
xi +




l∑
j=

σ 
ij + biyi

=:
l∑

j=

uijFij(x) +

(
ai +

n∑
j=

dij

)
xi +




l∑
j=

σ 
ij + biyi, (.)

dropping (t) from a, b, σ , where

uij =

{
dij, j �= i,
δi, j = i,

Fij(x) = x
j –

x
j

xi
– x

i +
x

i
xj

,

here δi may be any nonnegative constant for i = , , . . . , n, because Fii(x) ≡ .
Utilizing the inequality for x > , (x –  – log x) > x, we have

(
ai(t) +

n∑
j=

dij

)
xi +




l∑
j=

σ 
ij (t) ≤ K(t)

(
 + Vi(xi)

)
, bi(t)yi ≤ K(t)Vj(yj),

where K(t) ∈ C(R+;R+). Obviously,

∑
(u,v)∈E(CQ)

Fvu(x) = .

Then by Theorem ., we obtain the following result.

Corollary . If Assumption  hold, moreover, there is a series of nonnegative constants
(δ, δ, . . . , δn) such that

G =

⎛
⎜⎜⎜⎜⎝

δ d · · · dn

d δ · · · dn
...

...
. . .

...
dn dn · · · δn

⎞
⎟⎟⎟⎟⎠ (.)

is irreducible. Then SDE (.) with initial data (.) have a unique global solution x(t) on
[,∞) and x(t) ∈ R

n
+ for all t ∈ [,∞) a.s.
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4 The almost sure stability
One of the important issues in the study of coupled systems is the automatic control with
consequent emphasis being placed on the analysis of stability. In this paper, we will mainly
discuss the almost surely asymptotic stability of the CSDDEs. The main result is as follows.

Theorem . Let Assumptions - hold. For all  ≤ i, j ≤ l, there exists a radially un-
bounded function Vi(xi, t) ∈ C,(Rni × R;R+), βi ∈ L(R+;R+), wi ∈ C(RN × R;R+), w̄ij ∈
C(Rnj × [–rj(),∞];R+), αi ∈ �(R+;R+), hi ∈ C(RN ;R+), Fij ∈ C(RN × R

N × R+;R) and
constants aij ≥  (A = (aij) is irreducible) such that

LVi(x, y, t) ≤ βi(t) – wi(x, t) +
l∑

j=

( – dj)w̄ij
(
yj, t – rj(t)

)
+

l∑
j=

aijFij(x, y, t), (.)

where

wi(x, t) –
l∑

j=

w̄ij(xj, t) ≥ αi(t)hi(x). (.)

Assume along each directed cycle CQ of a weighted digraph (G, A) that there are functions
βQ ∈ L(R+;R+), wQ ∈ C(RN × R;R+), w̄Q

j ∈ C(Rnj × [–rj(),∞];R+), αQ ∈ �(R+;R+),
hQ ∈ C(RN ;R+) such that

∑
(u,v)∈E(CQ)

Fvu(x, y, t) ≤ βQ(t) – wQ(x, t) +
l∑

j=

( – dj)w̄Q
j
(
yj, t – rj(t)

)
, (.)

where

wQ(x, t) –
l∑

j=

w̄Q
j (xj, t) ≥ αQ(t)hQ(x). (.)

Then S = (
⋂l

i= Ker(hi))∩ (
⋂

Q∈Q Ker(hQ)) �= ∅ and for any initial data ξ , the CSDDEs (.)-
(.) has a unique global solution on [,∞) denoted by x(t; ξ ) satisfying

lim
t→∞ d

(
x(t, ξ ), S

)
=  a.s. (.)

Proof For any given initial data, the global existence of the unique solution on t ≥  is a
direct application of Theorem .. Next, we borrow the technique in [] and combine it
with the graph method from [] to get the limit set. Because the proof is rather technical,
we divide it into three steps.

Step . Write the solution xi(t; ξ ) = xi(t) for simplicity. Let ci be the cofactor of the ith
diagonal element of Laplacian matrix of (G, A), and compute

l∑
i=

ciLVi(x, y, t)

≤
l∑

i=

ciβi(t) +
∑
Q∈Q

W (Q)
∑

(u,v)∈E(CQ)

Fvu(x, y, t)
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–
l∑

i=

ci

[
wi(x, t) –

l∑
j=

( – dj)w̄ij
(
yj, t – rj(t)

)]

≤ ζ (t) –
l∑

i=

ci

[
wi(x, t) –

l∑
j=

( – dj)w̄ij
(
yj, t – rj(t)

)]

–
∑
Q∈Q

W (Q)

[
wQ(x, t) –

l∑
j=

( – dj)w̄Q
j
(
yj, t – rj(t)

)]
,

dropping (t) from x and y, where

ζ (t) =
l∑

i=

ciβi(t) +
∑
Q∈Q

W (Q)βQ(t) ∈ L(R+;R+).

Then

l∑
i=

ciVi
(
xi(t), t

)

≤
l∑

i=

ciVi
(
ξi(), 

)
+
∫ t


ζ (s) ds +

l∑
i,j=

ci

∫ 

–rj()
w̄ij
(
ξj(s), s

)
ds

+
l∑

j=

∑
Q∈Q

W (Q)
∫ 

–rj()
w̄Q

j
(
ξj(s), s

)
ds –

l∑
i=

ci

∫ t


αi(s)hi

(
x(s)
)

ds

–
∑
Q∈Q

W (Q)
∫ t


αQ(s)hQ(x(s)

)
ds +

l∑
i=

Mi(t), (.)

where

Mi(t) =
∫ t


ci

∂Vi

∂xi

(
xi(s), s

)
gi
(
xi(s), xi

(
s – ri(s)

)
, s
)

dBi(s).

Next, we prove
∑l

i= Mi(t) is a local martingale. Choose sufficiently large N , such that
N ≥ |ξi| (i = , , . . . , l), then for any n > N , define the stopping time

τn = inf
{

t ≥  :
∥∥xi(t)

∥∥≥ n for some  ≤ i ≤ l
}

.

So this stopping sequence τn ↑ ∞ a.s. From Assumptions  and , we know that, for
each i, gi is local bounded. Notice that ∂Vi

∂xi
(xi(s), s) is continuous in s and gi(xi(s), xi(s –

ri(s)), s)I{≤s≤τn} is uniformly bounded in s ∈ [, t], where IA is the indicator function of
set A. So Mi(t ∧ τn) =

∫ t
 ci

∂Vi
∂xi

(xi(s), s)gi(xi(s), xi(s – ri(s)), s)I{≤s≤τn} dBi(s) is a martingale
(see [] for the details of the martingale proof ). Thus each Mi(t) is a local martingale.
Then the required assertion follows.

Using the nonnegative semimartingale convergence theorem (cf. Liptser and Shiryayev
[] or Mao []) we get

lim sup
t→∞

l∑
i=

ciVi
(
xi(t), t

)
< ∞ a.s. (.)
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On the other hand, the left side of (.) is positive, taking the expectations on the right
hand and letting t → ∞, we obtain

l∑
i=

ciE

∫ ∞


αi(s)hi

(
x(s)
)

ds +
∑
Q∈Q

W (Q)E
∫ ∞


αQ(s)hQ(x(s)

)
ds < ∞. (.)

This implies

∫ ∞


αi(s)hi

(
x(s)
)

ds < ∞, i = , , . . . , l a.s., (.)

∫ t


αQ(s)hQ(x(s)

)
ds < ∞, Q ∈Q a.s. (.)

Step . From (.) and α ∈ �(R+,R+), it is not difficult to prove that, for each  ≤ i ≤ l
and each Q ∈Q,

lim inf
t→∞ hi

(
x(t)
)

= , lim inf
t→∞ hQ(x(t)

)
=  a.s. (.)

We now claim that, for each  ≤ i ≤ l and each Q ∈Q,

lim sup
t→∞

hi
(
x(t)
)

= , lim sup
t→∞

hQ(x(t)
)

=  a.s. (.)

If this is false, then there is some i ∈ L such that

P

{
lim sup

t→∞
hi
(
x(t)
)

> 
}

> , (.)

or there is some Q ∈Q such that

P

{
lim sup

t→∞
hQ
(
x(t)
)

> 
}

> . (.)

Without loss of generality we suppose (.) holds. Hence there is a small constant  <
ε < 

 such that

P
(
A

i

)≥ ε, (.)

where

A
i =
{

lim sup
t→∞

hi
(
x(t)
)

> ε

}
.

For each i ∈ L, define μi : R+ → R+ by

μi(a) = inf‖xi‖≥a,≤t<∞ Vi(xi, t) for a ≥ . (.)

So by (.) and the continuity of both xi(t) and Vi(xi, t), we have

sup
≤t<∞

μi
(∥∥xi(t)

∥∥)≤ sup
≤t<∞

Vi
(
xi(t), t

)
< ∞ a.s. (.)
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On the other side, the radial unboundedness of each Vi(xi, t) implies

sup
≤t<∞

∥∥x(t)
∥∥ < ∞ a.s. (.)

Recalling the boundedness of the initial data we can then find a positive number χ , which
depends on ε, sufficiently large such that |ξ | < χ , and

P
(
A)≥  – ε, (.)

where

A =
{

sup
≤t<∞

∥∥x(t)
∥∥ < χ

}
.

It is easy to see from (.) and (.) that

P
(
A

i ∩ A)≥ ε. (.)

For any fixed number η > , let us now define a sequence of stopping times

τ = inf
{

t ≥  :
∥∥x(t)

∥∥≥ χ
}

,

σ 
i = inf

{
t ≥  : hi

(
x(t)
)≥ ε

}
,

σ 
i = inf

{
t ≥ σ 

i + η : hi
(
x(t)
)≤ ε

}
,

σ k+
i = inf

{
t ≥ σ k

i : hi
(
x(t)
)≥ ε

}
, k = , , . . . ,

σ k+
i = inf

{
t ≥ σ k+

i + η : hi
(
x(t)
)≤ ε

}
, k = , , . . . .

Throughout this paper we set inf∅ = ∞. From (.), for each ω ∈ A
i ∩ A, we have

τ (ω) = ∞ and σ k
i (ω) < ∞, k = , , . . . . (.)

By Hölder’s inequality and Doob’s martingale inequality (see []), from the CSDDEs (.),
for any T > , we have

E

[
IA,k

i
sup

≤t≤T

∥∥xi
(
τ ∧ (σ k–

i + t
))

– xi
(
τ ∧ σ k–

i

)∥∥
]

≤ (T + )TKχ , (.)

where A,k
i = {τ ∧ σ k–

i < ∞}, Kχ >  is a constant only dependent on χ . Since hi (·) is
uniformly continuous in the closed ball S̄χ

i = {x ∈R
ni : ‖x‖ ≤ χ}, we can therefore choose

δ = δ(ε) >  such that, for any pair xi, x̄i ∈ S̄χ

i with ‖xi – x̄i‖ < δ, we have

∥∥hi (xi) – hi (x̄i)
∥∥ < ε. (.)

We furthermore choose a positive constant T (< η) sufficiently small such that

(T + )TKχ

δ < ε,
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then from (.) and (.), we have

P
(
A

i ∩ A ∩ A,k
i

)≤ P
(
A,k

i ∩ A,k
i

)
< ε, (.)

where

A,k
i =

{
sup

≤t≤T

∥∥xi
(
τ ∧ (σ k–

i + t
))

– xi
(
τ ∧ σ k–

i

)∥∥≥ δ
}

.

Recalling (.) and (.), we further compute

P
(
A

i ∩ A ∩ A,k
i

)≥ P
(
A

i ∩ A ∩ (A,k
i

)c)≥ ε, (.)

where

A,k
i =

{
sup

≤t≤T

∥∥hi
(
xi
(
σ k–

i + t
))

– hi
(
xi
(
σ k–

i

))∥∥ < ε

}
.

On the other side, it follows from αi ∈ �(R+, R+) that for T >  there exist two constants
ε = ε(T) >  and t = t(ε) >  such that

∫ t+T

t
αi (s) ds ≥ ε, whenever t ≥ t.

By the definition of σ k
i , there exists a positive integer N such that, for any ω ∈ A

i ∩ A,

σ k–
i ≥ t, whenever k ≥ N + .

Therefore, by (.), we compute

∞ > E

∫ ∞


αi (s)hi

(
x(s)
)

ds

≥ εE

[ ∞∑
k=

IA
i

∩A

∫ σk
i

σk–
i

αi (s) ds

]

≥ εE

[ ∞∑
k=N+

IA
i

∩A∩A,k
i

∫ σk–
i

+T

σk–
i

αi (s) ds

]

≥ εε

∞∑
k=N+

ε = ∞, (.)

which is a contradiction. Thus (.) must hold, implying for each i and Q,

lim
t→∞ hi

(
x(t)
)

= , lim
t→∞ hQ(x(t)

)
=  a.s. (.)

Step . Observe from (.) that there exists an A ⊂ � with P(A) =  such that, for
each  ≤ i ≤ l and each Q ∈Q,

lim
t→∞ hi

(
x(t,ω)

)
= , lim

t→∞ hQ(x(t,ω)
)

=  and

sup
≤t<∞

∥∥x(t,ω)
∥∥ < ∞, ∀ω ∈ A.

(.)



Wang et al. Advances in Difference Equations  (2015) 2015:133 Page 16 of 22

Fix an ω ∈ A, then {x(t,ω)}t≥ is bounded in R
N . So there must be an increasing sequence

{tj}j≥ such that {x(tj,ω)}j≥ converges to some x∗ ∈ R
N . Hence

hi
(
x∗) = lim

j→∞ hi
(
x(tj,ω)

)
= , i = , , . . . , l,

hQ(x∗) = lim
t→∞ hQ(x(tj,ω)

)
= , Q ∈Q,

which implies x∗ ∈ (
⋂l

i= Ker(hi)) ∩ (
⋂

Q∈Q Ker(hQ)), so S �= ∅. We shall now show that

lim
t→∞ d

(
x(t,ω), S

)
=  for all ω ∈ A. (.)

If this is false, then there is some ω̄ ∈ A, such that

lim
t→∞ d

(
x(t, ω̄), S

)
=  for all ω ∈ A.

Then there exists either an i,  ≤ i ≤ l such that

lim sup
t→∞

d
(
x(t, ω̄), Ker(hi )

)
> , (.)

or a Q ∈Q such that

lim sup
t→∞

d
(
x(t, ω̄), Ker

(
hQ

))
> . (.)

Without loss of generality we suppose inequality (.) holds. Then there is a constant
ε >  and a sequence {x(tj, ω̄)}j≥ of {x(t, ω̄)}t≥ such that

d
(
x(tj, ω̄), Ker(hi )

)≥ ε, ∀j ≥ .

Since {x(tj, ω̄)}j≥ is bounded, we can find a subsequence {x(tjk , ω̄)}k≥ which converges
to z. Clearly, z /∈ Ker(hi ), so hi (z) > . However, by (.),

hi (z) = lim
k→∞

hi
(
x(tjk , ω̄)

)
= ,

which contradicts hi (z) > . Hence (.) must hold and the required assertion (.) fol-
lows from P(A) = . The proof is therefore complete. �

Theorem . implies the solutions to the CSFDEs (.) will asymptotically approach the
set S almost surely. Then we deduce some useful corollaries.

Corollary . Let Assumptions - hold. For all  ≤ i, j ≤ l, there exists a radially
unbounded function Vi(xi, t) ∈ C,(Rni × R;R+), βi ∈ L(R+;R+), αi ∈ �(R+;R+), ᾱij ∈
C([–rj(),∞),R+), hi ∈ C(RN ;R+), h̄ij ∈ C(Rnj ;R+), Fij ∈ C(RN × R

N × R+;R) and con-
stants aij ≥  (A = (aij) is irreducible) such that

LVi(x, y, t) ≤ βi(t) – αi(t)hi(x) +
l∑

j=

( – dj)ᾱij
(
t – rj(t)

)
h̄ij(yj) +

l∑
j=

aijFij(x, y, t),
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where

αi(t) ≥ ᾱij(t), hi(x) ≥ h̄i(x) :=
l∑

j=

h̄ij(xj), ∀i ∈ L.

Assume along each directed cycle CQ of weighted digraph (G, A), there are functions βQ ∈
L(R+;R+), αQ ∈ �(R+;R+), ᾱQ

j ∈ C([–rj(),∞),R+), hQ ∈ C(RN ;R+), h̄Q
j ∈ C(Rnj ;R+)

such that

∑
(u,v)∈E(CQ)

Fvu(x, y, t) ≤ βQ(t) – αQ(t)hQ(x) +
l∑

j=

( – dj)ᾱQ
j
(
t – rj(t)

)
h̄Q

j (yj),

where

αQ(t) ≥ ᾱQ
j (t), hQ(x) ≥ h̄Q(x) :=

l∑
j=

h̄Q
j (xj), ∀Q ∈ Q.

Then

S̄ :=

( l⋂
i=

Ker(hi – h̄i)

)
∩
(⋂
Q∈Q

Ker
(
hQ – h̄Q)) �= ∅ (.)

and for any initial data ξ , the CSDDEs (.)-(.) have a unique global solution on [,∞)
denoted by x(t, ξ ) satisfying

lim
t→∞ d

(
x(t, ξ ), S

)
=  a.s.

Proof Define wi(x, t) = αi(t)hi(x), w̄ij(xj, t) = ᾱij(t)h̄ij(xj), wQ(x, t) = αQ(t)hQ(x), and w̄Q
j (xj,

t) = ᾱQ
j (t)h̄Q

j (xj), then we have

wi(x, t) –
l∑

j=

w̄ij(xj, t)

= αi(t)

(
hi(x) –

l∑
j=

h̄ij(xj)

)
+

l∑
j=

(
αi(t) – ᾱij(t)

)
h̄ij(xj)

≥ αi(t)

(
hi(x) –

l∑
j=

h̄ij(xj)

)
= αi(t)

(
hi(x) – h̄i(x)

)
, (.)

wQ(x, t) –
l∑

j=

w̄Q
j (xj, t)

= αQ(t)

(
hQ(x) –

l∑
j=

h̄Q
j (xj)

)
+

l∑
j=

(
αQ(t) – ᾱQ

j (t)
)
h̄Q

j (xj)

≥ αQ(t)

(
hQ(x) –

l∑
j=

h̄Q
j (xj)

)
= αQ(t)

(
hQ(x) – h̄Q(x)

)
. (.)

Hence, the result is obtained by Theorem . directly. �
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Notice that if hi(x) ≡ h̄i(x) and hQ(x) ≡ h̄Q(x), the result of above corollary is useless.
Therefore, the stronger conditions are needed to locate the limit set of the CSDDEs (.).

Corollary . Let all the assumptions of Corollary . hold, moreover, assume there are
subsets I,J ⊆ L and P ⊆ Q such that, for each i ∈ I, j ∈ J, Q ∈ P, (αi(t) – ᾱij(t)), (αQ(t) –
ᾱQ

j (t)) ∈ �(R+;R+). Then

S̃ := S̄ ∩
( ⋂

i∈I,j∈J
Ker(h̄ij)

)
∩
( ⋂

j∈J,Q∈P
Ker
(
h̄Q

j
)) �= ∅, (.)

where S̄ is defined as equality (.) and for any initial data ξ , the CSDDEs (.)-(.) have
a unique global solution on [,∞) denoted by x(t, ξ ) satisfying

lim
t→∞ d

(
x(t, ξ ), S̃

)
=  a.s.

Proof Obviously, the conditions of Corollary . are satisfied. So the conclusions of Corol-
lary . still hold. By inequalities (.) and (.), we get

wi(x, t) –
l∑

j=

w̄ij(xj, t) ≥
l∑

j=

(
αi(t) – ᾱij(t)

)
h̄ij(xj),

wQ(x, t) –
l∑

j=

w̄Q
j (xj, t) ≥

l∑
j=

(
αQ(t) – ᾱQ

j (t)
)
h̄Q

j (xj).

By Theorem ., the required assertions are obtained. �

From Theorem ., S is the limit set of solutions to the CSDDEs (.). Therefore, the
asymptotic properties of the solutions, such as the asymptotic boundedness, can be ob-
tained more precisely from the information of S.

Corollary . Let all the assumptions of Theorem . hold. If S is bounded, then with the
initial data ξ , the solution has the property

lim
t→∞

∥∥x(t, ξ )
∥∥≤ C a.s.,

where C = supx∈S ‖x‖.

If S only contains the origin of RN , we can obtain the following result on the globally
asymptotic stability with probability .

Corollary . Let all the assumptions of Theorem . hold. If hi(x) = , hQ(x) = , i ∈ L,
Q ∈Q iff x = , then the solution with the initial data ξ has the property

lim
t→∞ x(t, ξ ) =  a.s.

Furthermore, if the rate of Vi(xi) tending to infinity is known, the rate of the solutions
converging to Ker(h) is obtained. Exponential stability is a simple application of Theo-
rem ., which is arranged in the following corollary.
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Corollary . Let all the assumptions of Theorem . hold. Assume for each i ∈ L, there
are pairs of positive constants λi and pi, such that

Vi(xi, t) ≥ eλit‖xi‖pi . (.)

Then the solution with the initial data ξ has the property

lim
t→∞


t

ln
∥∥x(t, ξ )

∥∥≤ –
λ̂

p̂
a.s.

Proof From (.) in the proof of Theorem ., for almost all ω ∈ �, the solution x(t, ξ )
satisfies

lim sup
t→∞

l∑
i=

ciVi
(
xi(t, ξ ), t

)
< ∞ a.s.

Equation (.) implies

Keλ̂t∥∥x(t, ξ )
∥∥p̂ ≤

l∑
i=

cieλit
∥∥xi(t, ξ )

∥∥pi ≤
l∑

i=

ciVi
(
xi(t, ξ ), t

)
a.s.,

where K is a positive constant. Then the required assertion follows directly. �

Example . (Coupled stochastic oscillators with unbounded delays) Given a network
represented by digraph Q with l vertices, a couple system can be built by assigning the ith
vertex (i = , , . . . , l) its own oscillator satisfying the Itô equation

z̈i(t) + pi(t)żi(t) + fi
(
zi(t)

)
= –qi(t)żi(t – θit)Ḃi(t), (.)

and then coupling these oscillators based on directed arcs in the digraph. For each i, define
xi = (x()

i , x()
i )T = (zi, żi)T , then we obtain the following self-excited coupled system (SCS)

on Q:

dxi(t) =

(
x()

i (t)
–pi(t)x()

i (t) – fi(x()
i (t)) –

∑l
j= aij(x()

i (t) – x()
j (t))

)
dt

+

(


–qi(t)x()
i (t – θit)

)
dBi(t),  ≤ i ≤ l, (.)

where, for each  ≤ i, j ≤ l, θi ∈ (, ), pi(·), qi(·), fi(·) ∈ C(R;R), x()
i fi(x()

i ) >  for x()
i �= ,∫∞

 fi(u) du = ∞, aij ≥ , and A = (aij) is irreducible. Then the total energy function

Vi(xi, t) = (x()
i )

 +
∫ x()

i
 fi(u) du is radially unbounded. Compute

LVi(x, y, t) =: –wi(x, t) +
l∑

j=

( – θj)w̄ij(yj, t) +
l∑

j=

aijFij(x, y, t), (.)
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where wi(x, t) = pi(t)(x()
i ),

w̄ij(xj, t) =

{


(–θj)
(qj(t)x()

j ), j = i,
, j �= i,

Fij(x, y, t) =


(
x()

j
) –



(
x()

i
) –



(
x()

i – x()
j
).

Compute

wi(x, t) –
l∑

j=

( – θj)w̄i,j(xj, t) =
[

pi(t) –


( – θi)
q

i (t)
](

x()
i
).

Assume along each directed cycle CQ of the weighted digraph (G, A),

∑
(u,v)∈E(CQ)

Fvu(x, y, t) ≤ –



∑
(u,v)∈E(CQ)

(
x()

u – x()
v
).

Suppose that there exists a  ≤ k ≤ l such that pk(t) – 
(–θk ) q

k(t) ∈ �(R+;R+), by Theo-
rem ., the point (x, x) ∈ S satisfies x()

k = . By the strong connectivity of (Q, A), each
vertex i belongs to a connective circle CQ including vertex k. Using Theorem . again, we
know x()

i = , i = , , . . . , l. Denote by (x(t), x(t)) the global solution of SCS (.) with
an initial value, then

lim
t→∞ x()

i (t) =  a.s. i = , , . . . , l.

Furthermore, by the second equation of (.), the stochastic oscillator has the property

lim
t→∞ x()

i (t) =  a.s. i = , , . . . , l.

For example, see Figure  for a computer simulation of the paths of three independent
oscillators described by (.), where f(x) = x|x|, θ = ., p =  + . cos t, q = . sin t;
f(x) = x, θ = ., p = . + .e–t , q = . – e– 

 t ; f(x) = x, θ = ., p =  + e–t ,
q = . + e–t .

Couple these oscillators based on directed arcs in the digraph described by Figure ,
simulate the paths of the coupled oscillators and obtain Figure , which supports the main
results clearly.

Figure 1 Computer simulation of the paths of x(1)
1 (t), x(1)

2 (t) and x(1)
3 (t) for the three discrete-time

independent oscillators described by (4.37) using the Euler-Maruyama method with step size 0.02
and initial values x(1)

1 (0) = 1, x(2)
1 (0) = 0.6, x(1)

2 (0) = 0.4, x(2)
2 (0) = 0.7, x(1)

3 = –0.5, x(2)
3 (0) = –0.5.
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Figure 2 A strongly connected digraph with three vertices
where a13 = 3, a21 = 2, a23 = 4, a32 = 1,
a11 = a12 = a22 = a31 = a33 = 0.

Figure 3 Computer simulation of the paths of x(1)
1 (t), x(1)

2 (t), and x(1)
3 (t) for the discrete-time coupled

oscillators described by (4.38) using the Euler-Maruyama method with the same step size, parameters
and initial values as those of Figure 1.
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