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Abstract
This paper investigates the bound of a reachable set for linear systems with discrete
and distributed delays. By utilizing the Lyapunov-Krasovskii functional, delay
decomposition technique, reciprocally convex method and free-weighting matrix
approach, some new results in the form of linear matrix inequalities are derived.
Finally, a tighter bound of the reachable set is obtained. Three numerical examples are
given to illustrate the effectiveness and advantage of the proposed results compared
with the existing criteria.
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1 Introduction
The bounding of a reachable set is of practical importance in the design of the controller
for ellipsoid dynamic systems with disturbance. It plays an important role for state es-
timation and parameter estimation in control theory [–]. Therefore, the reachable set
estimation and its related fields have been investigated by many researchers. For a dynamic
system, the reachable set is a set which bounds all the states starting from the origin by
inputs with peak values. The problem of reachable set bounding for time-delay systems
has received considerable attention in recent years, for instance, [–] and the references
therein. However, time delays cannot be avoided during practice, and they cause unde-
sirable dynamic network behaviors such as oscillation and instability [–]. Then, it is
natural to ask what about the reachable set of systems with time delays.

Boyd researched linear systems without time-delay, and an LMI condition for an ellip-
soid that bounds the reachable set was given in []. In [], Fridman and Shaked stud-
ied the uncertain linear systems with time-varying delays and bounded peak input, and
LMIs criteria of an ellipsoid that bounds the reachable set based on the Razumikhin theory
were firstly obtained. In [], Kim improved the condition by using the modified Lyapunov-
Razumikhin functional. More recently, Nam and Pathirana obtained a smaller reachable
set bound by the delay decomposition technique []. The maximal Lyapunov functional,
combined with the Razumikhin methodology, was utilized to give a non-ellipsoidal de-
scription of the reachable set in []. Moreover, the authors focused on reachable set
bounding for linear systems with discrete and distributed delays in [, ]. However, up to
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now, there have been only few literature works available about linear systems with mixed
delays. Hence, it is necessary to make further study on linear systems with mixed delays.

The paper [] considered non-differentiable time-varying delays, and differentiable
time-varying delays were considered in [–, –]. In [], the derivative of time delays
was assumed to be less than . As is well known, a large value of the derivative of time
delays may yield bigger reachable set bounding. In fact, the constraint for time-varying
delays may be relaxed, that is, a value of the derivative of delays may not necessarily be
less than .

Motivated by the above discussions, in this paper we aim to study the reachable set
bounding for linear systems with discrete and distributed delays. The constraint of delay
is relaxed. The value of derivatives of time delay is not necessary to be less than . We
construct Lyapunov functionals, combined with the delay decomposition technique, re-
ciprocally convex approach and free-weighting matrix method to derive a more accurate
description of the reachable set bound. To the best of our knowledge, it is the first time
to introduce triple integrations for reachable set bounds of linear systems with discrete
and distributed delays. Numerical examples are given to illustrate the effectiveness of the
obtained results, and reachable set bound is tighter than the ones in [–, –].

Notations: The following notations are used in our paper except where otherwise speci-
fied. Rn is the n-dimension Euclidean space, Rn×m denotes the set of n×m-dimension real
matrices; real matrix P >  (≥ ) means that P is a symmetric positive definite (positive
semi-definite) matrix. Superscript ‘T ’ denotes the transposition of a vector or a matrix;
� represents the elements below the main diagonal of a symmetric block matrix; I denotes
an identity matrix; ‘-’ in tables represents no feasible solution for matrix inequality.

2 Preliminaries
Consider the following delayed linear systems with disturbances:

ż(t) = Az(t) + Bz
(
t – τ (t)

)
+ D

∫ t

t–σ

z(s) ds + Ew(t), z(t) = , t ∈ [–d, ], ()

where z(t) ∈ Rn is the state vector, w(t) ∈ Rm is the disturbance, τ (t) is discrete time delay
and σ is distributed time delay, A ∈ Rn×n, B ∈ Rn×n, D ∈ Rn×n and E ∈ Rn×m, A, D, B and E
are known constant matrices.

τ (t) is time-varying discrete delay satisfying

 ≤ τ (t) ≤ τ , τ̇ (t) ≤ μ,

where τ and μ are constants. Moreover, d = max{τ ,σ }.
The disturbance w(t) ∈ Rm is the input with bounded peak value, that is,

wT (t)w(t) ≤ w
m, ()

where wm is a constant.
The following lemmas are useful in deriving the criteria.

Lemma . The following relation is known as the Leibniz rule:

d
dt

∫ b(t)

a(t)
f (t, s) ds = ḃ(t)f

[
t, b(t)

]
– ȧ(t)f

[
t, a(t)

]
+

∫ b(t)

a(t)

∂

∂t
f (t, s) ds.
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Lemma . [] Given constant symmetric matrices R, R, R, where R = RT
 , R = RT

 > ,
then R + RT

 R–
 R <  if and only if

(
R RT



R –R

)

< ,

or

(
–R R

RT
 R

)

< .

Lemma . [] For any constant matrix P = PT >  and h > h ≥  such that the follow-
ing integrations are well defined, then

–(h – h)
∫ t–h

t–h

zT (s)Pz(s) ds ≤ –
(∫ t–h

t–h

z(s) ds
)T

P
(∫ t–h

t–h

z(s) ds
)

.

Lemma . [] For any constant matrix R > , scalars h > h ≥  such that the following
integrations are well defined, then

–



(h – h)
∫ –h

–h

∫ t–h

t+θ

zT (s)Rz(s) ds dθ ≤ –
(∫ –h

–h

∫ t–h

t+θ

zT (s) ds dθ

)

· R
(∫ –h

–h

∫ t–h

t+θ

z(s) ds dθ

)
.

Lemma . [] Let f, f, . . . , fN : Rm �→ R have positive values in an open subset D of Rm.
Then the reciprocally convex combination of fi over D satisfies

min
{αi|αi>,

∑N
i= αi=}

N∑

i=


αi

fi(t) + max
gi,j(t)

∑

i�=j

gi,j(t),

subject to

{

gi,j(t) : Rm �→ R, gj,i(t) = gi,j(t),

[
fi(t) gi,j(t)

gi,j(t) fj(t)

]

≥ 

}

.

Lemma . [] For any vectors x, x, constant matrices Ti (i = , , , ), S and scalars
α > , β >  satisfying α + β = , then the following inequality holds:

–

α

xT
 Tx –


β

xT
 Tx –

β

α
xT

 Tx –
α

β
xT

 Tx ≤ –

[
x

x

]T [
T S
ST T

][
x

x

]

,

subject to

[
T + T S

ST T + T

]

≥ .
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Lemma . [] Let V be a Lyapunov function for system ()-(). If

V̇ + αV –
α

w
m

wT (t)w(t) ≤ ,

then V ≤ .

3 Main results
Theorem . If there exist matrices P > , Q > , R > , K > , K > , M > , M > ,
S, N with appropriate dimensions, and a scalar α >  such that the following inequalities
holds:

[
R + K S

ST R + K

]

≥ , ()

	 =

⎡

⎢
⎢⎢⎢
⎢⎢
⎢⎢
⎢⎢
⎢⎢
⎢
⎣

	 	 	 	  	 	 	

� 	 	 	 	 	  
� � 	  	   
� � � 	    
� � � � 	   
� � � � � 	 	 	

� � � � � � 	 
� � � � � � � – α

w
m

I

⎤

⎥
⎥⎥⎥
⎥⎥
⎥⎥
⎥⎥
⎥⎥
⎥
⎦

≤ , ()

where

	 = αP + PA + AT P + Q + σM + M – e–ατ K – e–ατ R,

	 = PB + e–ατ R – e–ατ S, 	 = e–ατ S, 	 = e–ατ K,

	 = AT NT , 	 = σPD, 	 = PE,

	 = –( – μ)e–ατ M – e–ατ K – e–ατ K – e–ατ R + e–ατ
(
ST + S

)
,

	 = e–ατ R – e–ατ S, 	 = e–ατ K,

	 = e–ατ K, 	 = BT NT ,

	 = –e–ατ Q – e–ατ K – e–ατ R, 	 = e–ατ K,

	 = –e–ατ K – e–ατ K, 	 = –e–ατ K – e–ατ K,

	 = τ R +


τ K +



τ K – N – NT , 	 = σND, 	 = NE,

	 = –σ e–ασ M.

Then the reachable sets of system () are bounded by a ball B(, r) = {z ∈ Rn|‖z‖ ≤ r} with

r =
√

λmin(P)
. ()
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Proof Construct the following Lyapunov-Krasovskii functional:

V (zt) =
∑

i=

Vi(zt),

where

V(zt) = zT (t)Pz(t),

V(zt) =
∫ t

t–τ

eα(s–t)zT (s)Qz(s) ds,

V(zt) = τ

∫ 

–τ

∫ t

t+θ

eα(s–t)żT (s)Rż(s) ds,

V(zt) =
∫ 

–τ

∫ 

η

∫ t

t+θ

eα(s–t)żT (s)Kż(s) ds dθ dη,

V(zt) =
∫ 

–τ

∫ η

–τ

∫ t

t+θ

eα(s–t)żT (s)Kż(s) ds dθ dη,

V(zt) =
∫ t

t–σ

eα(s–t)(σ – t + s)zT (s)Mz(s) ds +
∫ t

t–τ (t)
eα(s–t)zT (s)Mz(s) ds.

Taking the time derivative of V (zt) along the trajectory of system (), we obtain

V̇(zt) = zT (t)Pż(t) = –αV(zt) + zT (t)Pż(t) + αzT (t)Pz(t)

= –αV(zt) + αzT (t)Pz(t) + zT (t)P
(

Az(t) + Bz
(
t – τ (t)

)

+ D
∫ t

t–σ

z(s) ds + Ew(t)
)

, ()

V̇(zt) = –αV(zt) + zT (t)Qz(t) – e–ατ zT (t – τ )Qz(t – τ ), ()

V̇(zt) = –αV(zt) + τ żT (t)Rż(t) – τ

∫ t

t–τ

eα(s–t)żT (s)Rż(s) ds

≤ –αV(zt) + τ żT (t)Rż(t) – e–ατ τ

∫ t

t–τ (t)
żT (s)Rż(s) ds

– e–ατ τ

∫ t–τ (t)

t–τ

żT (s)Rż(s) ds, ()

V̇(zt) = –αV(zt) +


τ ż(t)Kż(t) –

∫ 

–τ

∫ t

t+θ

eα(s–t)żT (s)Kż(s) ds dθ

≤ –αV(zt) +


τ ż(t)Kż(t) – e–ατ

∫ 

–τ

∫ t

t+θ

żT (s)Kż(s) ds dθ

= –αV(zt) +


τ ż(t)Kż(t) – e–ατ

∫ 

–τ (t)

∫ t

t+θ

żT (s)Kż(s) ds dθ

– e–ατ

∫ –τ (t)

–τ

∫ t–τ (t)

t+θ

żT (s)Kż(s) ds dθ

– e–ατ

∫ –τ (t)

–τ

∫ t

t–τ (t)
żT (s)Kż(s) ds dθ , ()
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V̇(zt) = –αV(zt) +


τ ż(t)Kż(t) –

∫ 

–τ

∫ t+θ

t–τ

eα(s–t)żT (s)Kż(s) ds dθ

≤ –αV(zt) +


τ ż(t)Kż(t) – e–ατ

∫ 

–τ

∫ t+θ

t–τ

żT (s)Kż(s) ds dθ

= –αV(zt) +


τ ż(t)Kż(t) – e–ατ

∫ 

–τ (t)

∫ t+θ

t–τ (t)
żT (s)Kż(s) ds dθ

– e–ατ

∫ 

–τ (t)

∫ t–τ (t)

t–τ

żT (s)Kż(s) ds dθ

– e–ατ

∫ –τ (t)

–τ

∫ t+θ

t–τ

żT (s)Kż(s) ds dθ , ()

V̇(zt) = –αV(zt) –
∫ t

t–σ

eα(s–t)zT (s)Mz(s) ds + σ zT (t)Mz(t)

+ zT (t)Mz(t) –
(
 – τ̇ (t)

)
zT(

t – τ (t)
)
e–ατ (t)Mz

(
t – τ (t)

)

≤ –αV(zt) – e–ασ

∫ t

t–σ

zT (s)Mz(s) ds + σ zT (t)Mz(t)

+ zT (t)Mz(t) – ( – μ)e–ατ zT(
t – τ (t)

)
Mz

(
t – τ (t)

)
. ()

Using Lemma ., we have

V̇(zt) ≤ –αV(zt) + τ żT (t)Rż(t)

– e–ατ τ

τ (t)
(
zT (t) – zT(

t – τ (t)
))

R
(
z(t) – z

(
t – τ (t)

))

– e–ατ τ

τ – τ (t)
(
zT(

t – τ (t)
)

– zT (t – τ )
)
R
(
z
(
t – τ (t)

)
– z(t – τ )

)

= –αV(zt) + τ żT (t)Rż(t)

– e–ατ 
β

(
zT (t) – zT(

t – τ (t)
))

R
(
z(t) – z

(
t – τ (t)

))

– e–ατ 
β

(
zT(

t – τ (t)
)

– zT (t – τ )
)
R
(
z
(
t – τ (t)

)
– z(t – τ )

)
, ()

where β = τ (t)
τ

, β = τ–τ (t)
τ

and β + β = .
Using Lemma ., we get

V̇(zt) ≤ –αV(zt) +


τ ż(t)Kż(t)

– e–ατ 
(τ (t))

(∫ 

–τ (t)

∫ t

t+θ

żT (s) ds dθ

)
K

(∫ 

–τ (t)

∫ t

t+θ

ż(s) ds dθ

)

– e–ατ 
(τ – τ (t))

(∫ –τ (t)

–τ

∫ t–τ (t)

t+θ

żT (s) ds dθ

)

· K

(∫ –τ (t)

–τ

∫ t–τ (t)

t+θ

ż(s) ds dθ

)

– e–ατ τ – τ (t)
τ (t)

(∫ t

t–τ (t)
żT (s) ds dθ

)
K

(∫ t

t–τ (t)
żT (s) ds dθ

)
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= –αV(zt) +


τ ż(t)Kż(t)

– e–ατ

(
zT (t) –


τ (t)

∫ t

t–τ (t)
zT (s) ds

)
K

(
z(t) –


τ (t)

∫ t

t–τ (t)
z(s) ds

)

– e–ατ

(
z
(
t – τ (t)

)
–


τ – τ (t)

∫ t–τ (t)

t–τ

z(s) ds
)T

K

(
z
(
t – τ (t)

)

–


τ – τ (t)

∫ t–τ (t)

t–τ

z(s) ds
)

– e–ατ β

β

(
zT (t) – zT(

t – τ (t)
))

K
(
z(t) – z

(
t – τ (t)

))
, ()

V̇(zt) ≤ –αV(zt) +


τ ż(t)Kż(t)

– e–ατ 
(τ (t))

(∫ 

–τ (t)

∫ t+θ

t–τ (t)
żT (s) ds dθ

)
K

(∫ 

–τ (t)

∫ t+θ

t–τ (t)
żT (s) ds dθ

)

– e–ατ τ (t)
τ – τ (t)

(∫ t–τ (t)

t–τ

żT (s) ds dθ

)
K

(∫ t–τ (t)

t–τ

ż(s) ds dθ

)

– e–ατ 
(τ – τ (t))

(∫ –τ (t)

–τ

∫ t+θ

t–τ

żT (s) ds dθ

)
K

(∫ –τ (t)

–τ

∫ t+θ

t–τ

ż(s) ds dθ

)

= –αV(zt) +


τ ż(t)Kż(t)

– e–ατ

(


τ (t)

∫ t

t–τ (t)
zT (s) ds – z

(
t – τ (t)

))

· K

(


τ (t)

∫ t

t–τ (t)
z(s) ds – z

(
t – τ (t)

))

– e–ατ β

β

(
zT(

t – τ (t)
)

– zT (t – τ )
)
K

(
z
(
t – τ (t)

)
– z(t – τ )

)

– e–ατ

(


τ – τ (t)

∫ t–τ (t)

t–τ

zT (s) ds – zT (t – τ )
)

· K

(


τ – τ (t)

∫ t–τ (t)

t–τ

z(s) ds – z(t – τ )
)

. ()

From Lemma . and inequality (), one can obtain

–e–ατ 
β

(
zT (t) – zT(

t – τ (t)
))

R
(
z(t) – z

(
t – τ (t)

))

– e–ατ 
β

(
zT(

t – τ (t)
)

– zT (t – τ )
)
R
(
z
(
t – τ (t)

)
– z(t – τ )

)

– e–ατ β

β

(
zT (t) – zT(

t – τ (t)
))

K
(
z(t) – z

(
t – τ (t)

))

– e–ατ β

β

(
zT(

t – τ (t)
)

– zT (t – τ )
)
K

(
z
(
t – τ (t)

)
– z(t – τ )

)

≤ –e–ατ

[
z(t) – z(t – τ (t))

z(t – τ (t)) – z(t – τ )

]T [
R S

ST R

][
z(t) – z(t – τ (t))

z(t – τ (t)) – z(t – τ )

]

. ()
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It is clear that the following equation holds:

żT (t)N
(

–ż(t) + Az(t) + Bz
(
t – τ (t)

)
+ D

∫ t

t–σ

z(s) ds + Ew(t)
)

= . ()

Combining ()-(), one gets

V̇ (zt) + αV (zt) –
α

w
m

wT (t)w(t) ≤ 
σ

∫ t

t–σ

ξT (t)	ξ (t) ds, ()

where

ξT (t) =
[

zT (t), zT(
t – τ (t)

)
, zT (t – τ ),


τ (t)

∫ t

t–τ (t)
zT (s) ds,


τ – τ (t)

∫ t–τ (t)

t–τ

zT (s) ds, żT (t), zT (s), wT (t)
]

.

Since () and () hold, we can conclude that V̇ + αV – α

w
m

wT (t)w(t) ≤ .
Therefore, one can obtain V (zt) ≤  by Lemma ..
Using the spectral properties of a symmetric positive definite matrix P, the following

inequality holds:

λmin(P)
∥∥z(t)

∥∥ ≤ V (zt). ()

This further implies that ‖z(t)‖ ≤ r = √
λmin(P)

due to (). This completes the proof.
�

If D =  in system (), the following corollary is true.

Corollary . If there exist matrices P > , Q > , R > , K > , K > , M > , S, N with
appropriate dimensions, and a scalar α >  such that the following inequalities holds:

[
R + K S

ST R + K

]

≥ , ()

	 =

⎡

⎢
⎢⎢⎢
⎢⎢
⎢⎢
⎢⎢
⎢
⎣

	 	 	 	  	 	

� 	 	 	 	 	 
� � 	  	  
� � � 	   
� � � � 	  
� � � � � 	 
� � � � � � – α

w
m

I

⎤

⎥
⎥⎥⎥
⎥⎥
⎥⎥
⎥⎥
⎥
⎦

≤ , ()

where

	 = αP + PA + AT P + Q + M – e–ατ K – e–ατ R,

	 = PB + e–ατ R – e–ατ S, 	 = e–ατ S,
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	 = e–ατ K, 	 = AT NT , 	 = PE,

	 = –( – μ)e–ατ M – e–ατ K – e–ατ K – e–ατ R + e–ατ
(
ST + S

)
,

	 = e–ατ R – e–ατ S, 	 = e–ατ K,

	 = e–ατ K, 	 = BT NT ,

	 = –e–ατ Q – e–ατ K – e–ατ R, 	 = e–ατ K,

	 = –e–ατ K – e–ατ K, 	 = –e–ατ K – e–ατ K,

	 = τ R +


τ K +



τ K – N – NT .

Then the reachable sets of system () are bounded by a ball B(, r) = {z ∈ Rn|‖z‖ ≤ r} with

r =
√

λmin(P)
. ()

Proof By setting D = , M =  in the proof of Theorem ., one can easily get the conclu-
sion in the corollary. �

Furthermore, consider the following uncertain polytopic time-delayed linear systems
with disturbances:

ż(t) = (A + A)z(t) + (B + B)z
(
t – τ (t)

)
+ (E + E)w(t),

z(t) = , t ∈ [–τM, ].
()

The uncertainties are expressed as a linear convex-hull of known matrices Ai, Bi and Ei,

A =
N∑

i=

θi(t)Ai, B =
N∑

i=

θi(t)Bi, E =
N∑

i=

θi(t)Ei

with θi(t) ∈ [, ] and
∑N

i= θi(t) = , ∀t > .
As for system (), the following corollary is true.

Corollary . If there exist matrices P > , Q > , R > , K > , K > , M > , S, N with
appropriate dimensions, and a scalar α >  satisfying the following inequalities for all i =
, , . . . , N :

[
R + K S

ST R + K

]

≥ , ()

	i =

⎡

⎢
⎢⎢
⎢⎢
⎢⎢
⎢⎢⎢
⎢
⎣

	i 	i 	i 	i  	i 	i

� 	i 	i 	i 	i 	i 
� � 	i  	i  
� � � 	i   
� � � � 	i  
� � � � � 	i 
� � � � � � – α

w
m

I

⎤

⎥
⎥⎥
⎥⎥
⎥⎥
⎥⎥⎥
⎥
⎦

≤ , ()
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where

	i = αP + P(A + Ai) + (A + Ai)T P + Q + M – e–ατ K – e–ατ R,

	i = P(B + Bi) + e–ατ R – e–ατ S, 	i = e–ατ S,

	i = e–ατ K,	i = (A + Ai)T NT , 	i = P(E + Ei),

	i = –( – μ)e–ατ M – e–ατ K – e–ατ K – e–ατ R + e–ατ
(
ST + S

)
,

	i = e–ατ R – e–ατ S, 	i = e–ατ K,

	i = e–ατ K, 	i = (B + Bi)T NT ,

	i = –e–ατ Q – e–ατ K – e–ατ R, 	i = e–ατ K,

	i = –e–ατ K – e–ατ K, 	i = –e–ατ K – e–ατ K,

	i = τ R +


τ K +



τ K – N – NT .

Then the reachable sets of system () are bounded by a ball B(, r) = {z ∈ Rn|‖z‖ ≤ r} with

r =
√

λmin(P)
. ()

Proof Replacing A, B, E with
∑N

i= θi(t)(A + Ai),
∑N

i= θi(t)(B + Bi),
∑N

i= θi(t)(E + Ei) in the
proof of Corollary ., respectively, one can easily obtain the conclusion. �

Remark  In this paper, the delay decomposition technique, free-weighting matrix ap-
proach and reciprocally convex method are used to construct a Lyapunov functional.
Triple integrals are introduced in the Lyapunov functional for the first time to investigate
bounding of a reachable set for linear systems with discrete and distributed delays, which
may lead to tighter bounding. It will be verified by the following numerical examples.

Remark  In order to guarantee negative definite, μ is required to be less than  in [].
It should be noted that the values of derivatives of time delays are not necessary to be
less than  in Theorem . because the term 	 = –( – μ)e–ατ M – e–ατ K – e–ατ K –
e–ατ R + e–ατ (ST + S) can be negative definite by choosing appropriate K, K, R, S, M

when μ > . Obviously, the results in this paper have a wider scope of application than the
ones in [].

Remark  The reachable set of system () can be minimized by solving the following op-
timization problem for a scalar δ > :

min δ̄

(
δ̄ =


δ

)

s.t.

⎧
⎨

⎩
(a) P ≥ δI,

(b) ()-() or ()-() or ()-().

()

Remark  It should be noted that the matrix inequalities in Theorem . and Corollar-
ies .-. cannot be simplified to LMIs. However, when α is fixed, the matrix inequalities
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reduced to LMIs, and Matlab’s Toolbox is employed to solve the matrix inequalities in
Theorem . and Corollaries .-..

4 Examples
In this section, two numerical examples are presented to show the validity of the main
results derived in this paper.

Example  Consider the following time-delayed system with parameters:

ż(t) =

[
 

– –

]

z(t) +

[
 –.

. .

]

z
(
t – τ (t)

)

+

[
. .
 –.

]∫ t

t–σ

z(s) ds +

[



]

w(t), ()

and wT (t)w(t) ≤ .
In order to compare with previous results, r’s for different values of σ with τ = ., μ =

. are listed in Table . r’s for different values of τ with σ = ., μ = . are listed in Table .
r’s for different values of μ with τ = ., σ = . are listed in Table . It is shown that tighter
bounds are obtained than the ones in [, ] by the proposed method in this paper.

Solving system () with parameters σ = ., μ = ., τ = . by Theorem ., we have

P =

[
. .
. .

]

, r =
√

.. ()

To give a direct comparison, we plotted the ellipsoid of the reachable set in Figure . The
solid line is the result computed by the proposed method in this paper and the dotted line
is the one obtained by [].

Table 1 Computed r’s of Example 1 for different values of σ with τ = 0.2, μ = 0.5

σ 0.2 0.4 0.6 0.7 0.8

[1]
√
10.0502

√
11.5762

√
13.7431

√
14.9492

√
16.3729

[2]
√
5.8645

√
6.4724

√
7.3010

√
7.7887

√
8.3381

Theorem 3.1
√
2.2624 2

√
.9329

√
3.0799

√
3.2658

√
3.3009

Table 2 Computed r’s of Example 1 for different values of τ with σ = 0.1, μ = 0.5

τ 0.1 0.3 0.5 0.7 0.9

[1]
√
9.3269

√
9.5769

√
9.8531

√
10.1593

√
10.5000

[2]
√
5.5456

√
5.7058

√
5.9109

√
6.1423

√
6.4505

Theorem 3.1
√
3.0762

√
3.9978

√
4.1181

√
4.4765

√
5.0025

Table 3 Computed r’s of Example 1 for different values of μ with σ = 0.1, τ = 0.2

μ 0.0 0.1 0.5 0.8 0.9 2

[1]
√
8.0664

√
8.2338

√
9.4488

√
13.4135

√
21.2778 -

[2]
√
5.5885

√
5.5992

√
5.6198

√
5.6198

√
5.6198

√
5.6198

Theorem 3.1
√
4.0411

√
4.0928

√
4.2011

√
4.4049

√
4.5205

√
5.1675
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Figure 1 Bounding ellipsoids computed by
different methods.

Table 4 Computed r’s of Example 2 for different values of τ with μ = 0

τ 0.1 0.3 0.5 0.7 0.9

[3]
√
0.83

√
1.28

√
1.94

√
2.90

√
4.46

[8]
√
0.74

√
0.92

√
1.36

√
2.30

√
3.51

[4]
√
0.68

√
0.80

√
0.97

√
1.64

√
3.22

[6]
√
0.66

√
0.75

√
0.94

√
1.61

√
3.14

[7]
√
0.66

√
0.75

√
0.94

√
1.61

√
3.14

[1]
√
0.66

√
0.75

√
0.94

√
1.61

√
3.14

Corollary 3.1
√
0.41

√
0.71

√
0.92

√
1.25

√
2.74

Example  Consider the following uncertain time-delayed system with parameters:

ż(t) =

[
– 
 –.

]

z(t) +

[
– 
– –.

]

z
(
t – τ (t)

)
+

[
–.



]

w(t), ()

and wT (t)w(t) ≤ .
By employing the method of Corollary . in this paper, r’s for different values of τ with

μ =  are listed in Table . It is clear that the bounds obtained in this paper are better than
the ones of [, , , –].

Example  Consider the following uncertain time-delayed system with parameters:

A + A =

[
– 
 –.

]

, A + A =

[
– 
 –.

]

,

B + B =

[
– 
– –.

]

, B + B =

[
– 
– –.

]

,

E + E =

[
–.



]

= E + E, wT (t)w(t) ≤ .

()

By solving optimization problems (), computed δ̄’s for the case  ≤ τ (t) ≤ . with
different values of μ are listed in Table . It is clear that the proposed method in this paper
yields tighter bounds than the one in [, ].
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Table 5 Computed δ̄’s of Example 3 for the case 0 ≤ τ (t) ≤ 0.75, τ̇ (t) ≤ μ

μ 0 0.1 0.2 0.3 0.4 0.5 0.6 0.9 2

[6] 3.34 3.79 4.53 5.88 8.85 18.36 127.70 - -
[3] 2.28 2.35 2.45 2.57 2.68 2.85 4.62 5.57 13.39
Corollary 3.2 2.03 2.33 2.34 2.45 2.60 2.72 4.37 4.92 8.73

5 Conclusions
In this paper, the problem of reachable set bounding for linear systems with both discrete
and distributed delays has been investigated. By using Lyapunov-Krasovskii functional
theory, delay decomposition technique, reciprocally convex method and free-weighting
matrix approach, new reachable set bounds are obtained. Triple integrations are intro-
duced for the first time in Lyapunov functionals to study reachable set bounding for lin-
ear systems with mixed delays. Meanwhile, delay decomposition technique is employed,
which leads to tighter reachable set bounds. The results have been given to illustrate the
advantages over the ones in [–, –]. The foregoing results have great potential to be
useful for further study in this area, such as linear neutral systems and nonlinear systems.
Meanwhile, it is expected that the approach will be used for practical applications in the
future, for instance, finite-time boundedness of state estimation for neural networks.
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