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Abstract
Recently, a family of the Apostol-type polynomials was introduced by Luo and
Srivastava (Appl. Math. Comput. 217:5702-5728 (2011)). In this paper, we further
investigate the Apostol-type polynomials and obtain their unified multiplication
formula and explicit representations in terms of the Gaussian hypergeometric
function and the generalized Hurwitz zeta function. We also show some special cases,
which include the corresponding results of Luo, Garg, Srivastava, Ozden, and Özarslan
etc.
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1 Introduction, definitions, and motivation
Throughout this paper, we always make use of the following notations: N = {, , , . . .}
denotes the set of natural numbers, N = {, , , , . . .} denotes the set of nonnegative in-
tegers, Z–

 = {, –, –, –, . . .} denotes the set of nonpositive integers, Z denotes the set of
integers, R denotes the set of real numbers, and C denotes the set of complex numbers.

The symbol (a)k denotes the shifted factorial (or the Pochhammer symbol), defined,
a ∈C, by

(a)k =
�(a + k)

�(a)
=

⎧
⎨

⎩

, k = ,

a(a + ) · · · (a + k – ), k ∈N.
(.)

The symbol {n}k denotes the falling factorial, defined, a ∈ C, by

{a}k =

⎧
⎨

⎩

, k = ,

a(a – ) · · · (a – k + ) = �(a+)
�(a–k+) , k ∈N,

(.)

where �(x) is the usual gamma function.
The classical Bernoulli polynomials Bn(x), Euler polynomials En(x), and Genocchi poly-

nomials Gn(x), together with their familiar generalizations B(α)
n (x), E(α)

n (x), and G(α)
n (x) of
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order α, are usually defined by means of the following generating functions (see, for de-
tails, [], pp.- and []):

(
z

ez – 

)α

exz =
∞∑

n=

B(α)
n (x)

zn

n!
(|z| < π

)
, (.)

(


ez + 

)α

exz =
∞∑

n=

E(α)
n (x)

zn

n!
(|z| < π

)
(.)

and

(
z

ez + 

)α

exz =
∞∑

n=

G(α)
n (x)

zn

n!
(|z| < π

)
. (.)

Thus, the Bernoulli polynomials Bn(x), Euler polynomials En(x), and Genocchi polynomi-
als Gn(x) are given, respectively, by

Bn(x) := B()
n (x), En(x) := E()

n (x) and Gn(x) := G()
n (x) (n ∈ N). (.)

The Bernoulli numbers Bn, Euler numbers En, and Genocchi numbers Gn are, respectively,

Bn := Bn() = B()
n (), En := En() = E()

n () and Gn := Gn() = G()
n (). (.)

Some interesting analogs of the classical Bernoulli polynomials and numbers were first
investigated by Apostol (see [], p., Eq. (.)) and (more recently) by Srivastava (see [],
pp.-). We begin by recalling here Apostol’s definitions as follows.

Definition . (Apostol []; see also Srivastava []) The Apostol-Bernoulli polynomials
Bn(x;λ) (λ ∈C) are defined by means of the following generating function:

zexz

λez – 
=

∞∑

n=

Bn(x;λ)
zn

n!
(|z| < π when λ = ; |z| < | logλ| when λ �= 

)
(.)

with, of course,

Bn(x) = Bn(x; ) and Bn(λ) := Bn(;λ), (.)

where Bn(λ) denotes the so-called Apostol-Bernoulli numbers.

Recently, Luo and Srivastava [] further extended the Apostol-Bernoulli polynomials as
the so-called Apostol-Bernoulli polynomials of order α.

Definition . (Luo and Srivastava []) The Apostol-Bernoulli polynomials B(α)
n (x;λ) (λ ∈

C) of order α (α ∈ N) are defined by means of the following generating function:

(
z

λez – 

)α

· exz =
∞∑

n=

B(α)
n (x;λ)

zn

n!
(|z| < π when λ = ; |z| < | logλ| when λ �= 

)
(.)
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with, of course,

B(α)
n (x) = B(α)

n (x; ) and B(α)
n (λ) := B(α)

n (;λ), (.)

where B(α)
n (λ) denotes the so-called Apostol-Bernoulli numbers of order α.

On the other hand, Luo [] gave an analogous extension of the generalized Euler poly-
nomials as the so-called Apostol-Euler polynomials of order α.

Definition . (Luo []) The Apostol-Euler polynomials E (α)
n (x;λ) of order α (α,λ ∈ C)

are defined by means of the following generating function:

(


λez + 

)α

· exz =
∞∑

n=

E (α)
n (x;λ)

zn

n!
(|z| <

∣
∣log(–λ)

∣
∣
)

(.)

with, of course,

E(α)
n (x) = E (α)

n (x; ) and E (α)
n (λ) := E (α)

n (;λ), (.)

where E (α)
n (λ) denotes the so-called Apostol-Euler numbers of order α.

On the subject of the Genocchi polynomials Gn(x) and their various extensions, a re-
markably large number of investigations have appeared in the literature (see, for example,
[–]). Moreover, Luo (see []) introduced and investigated the Apostol-Genocchi poly-
nomials of (real or complex) order α, which are defined as follows.

Definition . The Apostol-Genocchi polynomials G(α)
n (x;λ) (λ ∈ C) of order α (α ∈ N)

are defined by means of the following generating function:

(
z

λez + 

)α

· exz =
∞∑

n=

G(α)
n (x;λ)

zn

n!
(|z| <

∣
∣log(–λ)

∣
∣
)

(.)

with, of course,

G(α)
n (x) = G(α)

n (x; ), G(α)
n (λ) := G(α)

n (;λ),

Gn(x;λ) := G()
n (x;λ) and Gn(λ) := G()

n (λ),
(.)

where Gn(λ), G(α)
n (λ), and Gn(x;λ) denote the so-called Apostol-Genocchi numbers, the

Apostol-Genocchi numbers of order α, and the Apostol-Genocchi polynomials, respec-
tively.

Ozden et al. [] investigated the following unification (and generalization) of the gen-
erating functions of the three families of Apostol-type polynomials:

–κzκ

βbez – ab exz =
∞∑

n=

Yn,β (x;κ , a, b)
zn

n!
(|z| < π when β = a; |z| <

∣
∣b log(β/a)

∣
∣ when β �= a;κ ,β ∈C; a, b ∈C \ {}). (.)



Lu and Luo Advances in Difference Equations  (2015) 2015:137 Page 4 of 16

In [] Özarslan further gave an extension of the above definition (.) as follows:

(
–κzκ

βbez – ab

)α

exz =
∞∑

n=

Y (α)
n,β (x;κ , a, b)

zn

n!
(
α ∈ N; |z| < π when β = a; |z| <

∣
∣b log(β/a)

∣
∣

when β �= a;κ ,β ∈C; a, b ∈C \ {}) (.)

and gave some identities for Y (α)
n,β (x;κ , a, b).

Recently, Luo and Srivastava [] further extended the Apostol-type polynomials as fol-
lows.

Definition . (Luo and Srivastava []) The generalized Apostol-type polynomials
F (α)

n (x;λ;μ;ν) of order α (α,λ,μ;ν ∈ C) are defined by means of the following generat-
ing function:

(
μzν

λez + 

)α

exz =
∞∑

n=

F (α)
n (x;λ;μ;ν)

zn

n!
(|z| <

∣
∣log (–λ)

∣
∣
)
. (.)

By comparing Definition . with Definitions ., . and ., we readily find that

B(α)
n (x;λ) = (–)αF (α)

n (x; –λ; ; ) (α ∈N), (.)

E (α)
n (x;λ) = F (α)

n (x;λ; ; ) (α ∈C) (.)

and

G(α)
n (x;λ) = F (α)

n (x;λ; ; ) (α ∈N). (.)

Furthermore, if we compare the generating functions (.), (.) and (.), we readily
see that

Yn,β (x;κ , a, b) = –


ab F
()
n

(

x; –
(

β

a

)b

;  – κ ;κ
)

, (.)

Y (α)
n,β (x;κ , a, b) = (–)α


abα

F (α)
n

(

x; –
(

β

a

)b

;  – κ ;κ
)

. (.)

More investigations of this subject can be found in [, , –].
The aim of this paper is to give the multiplication formula for the Apostol-type polyno-

mials F (α)
n (x;λ;μ;ν) and obtain an explicit representation of F (α)

n (x;λ;μ;ν) in terms of the
Gauss hypergeometric function F(a, b; c; z). We study some relations between the fam-
ily of Apostol-type polynomials F (α)

n (x;λ;μ;ν) and the family of Hurwitz zeta functions
	μ(z, s, a). Some special cases also are shown.

2 Multiplication formula for the Apostol-type polynomials
In this section we give a unified multiplication formula for the Apostol-type polynomials
F (α)

n (x;λ;μ;ν). We will see that some well-known results are the corresponding special
cases of our result.

First we need the following lemmas.
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Lemma . (Multinomial identity [], p., Theorem B) If x, x, . . . , xm are commuting
elements of a ring (⇐⇒ xixj = xjxi,  ≤ i < j ≤ m), then we have for all integers n ≥ :

(x + x + · · · + xm)n =
∑

a,a,...,am≥
a+a+···+am=n

(
n

a, a, . . . , am

)

x
a x

a · · ·xm
am , (.)

the last summation takes place over all positive or zero integers ai ≥  such that a + a +
· · · + am = n, where

(
n

a, a, . . . , am

)

:=
n!

a!a! · · ·am!
,

are called multinomial coefficients defined by [], p., Definition B.

Lemma . (Generalized multinomial identity [], p., Eq. (m)) If x, x, . . . , xm are
commuting elements of a ring (⇐⇒ xixj = xjxi,  ≤ i < j ≤ m), then we have for all real or
complex variable α:

( + x + x + · · · + xm)α =
∑

v,v,...,vm≥

(
α

v, v, . . . , vm

)

x
v x

v · · ·xm
vm , (.)

the last summation takes place over all positive or zero integers vi ≥ , where

(
α

v, v, . . . , vm

)

:=
{α}v+v+···+vm

v!v! · · · vm!
=

α(α – )(α – ) · · · (α – v – v – · · · – vm + )
v!v! · · · vm!

are called generalized multinomial coefficients defined by [], p., Eq. ( C′′).

Theorem . (Multiplication formula) For μ,ν, r ∈ N and ν ≤ , n, l ∈ N, α,λ ∈ C, we
have

F (α)
n (rx;λ;μ;ν) = rn–να

∑

v,v,...,vr–≥

(
α

v, v, . . . , vr–

)

× (–λ)mF (α)
n

(

x +
m
r

;λr ;μ;ν
)

, r odd, (.)

F (l)
n (rx;λ;μ;ν) =

(–)lμlrn–νl

(n + )(–ν)l

∑

≤v,v,...,vr–≤l
v+v+···+vr–=l

(
l

v, v, . . . , vr–

)

× (–λ)mB(l)
n+(–ν)l

(

x +
m
r

;λr
)

, r even, (.)

where m = v + v + · · · + (r – )vr–.

Proof It is not difficult to show that


λez + 

= –
 – λez + λez + · · · + (–λ)r–e(r–)z

(–λ)rerz – 
. (.)
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When r is odd, by (.) and (.) we get

∞∑

n=

F (α)
n (rx;λ;μ;ν)

zn

n!

=


rνα

(
μ(rz)ν

λrerz + 

)α(
λrerz + 
λez + 

)α

erxz

=


rνα

(
μ(rz)ν

λrerz + 

)α
( r–∑

k=

(
–λez)k

)α

erxz

=


rνα

∑

v,v,...,vr–≥

(
α

v, v, . . . , vr–

)

(–λ)m
(

μ(rz)ν

λrerz + 

)α

e(x+ m
r )rz

=
∞∑

n=

[

rn–να
∑

v,v,...,vr–≥

(
α

v, v, . . . , vr–

)

(–λ)mF (α)
n

(

x +
m
r

;λr ;μ;ν
)]

zn

n!
. (.)

Comparing the coefficients of zn

n! on both sides of (.), we obtain the assertion (.) of
Theorem ..

When r is even, we can similarly prove the assertion (.) of Theorem .. The proof is
complete. �

It follows that we can deduce the well-known formulas from Theorem ..
Letting λ 
−→ –λ, taking μ =  and ν =  in (.) and (.) and noting (.), we can

obtain the following main result of Luo (see [], p., Theorem .).

Corollary . For r,α ∈ N, n ∈ N, λ ∈ C, the following multiplication formula for the
Apostol-Bernoulli polynomials of higher order holds true:

B(α)
n (rx;λ) = rn–α

∑

v,v,...,vr–≥

(
α

v, v, . . . , vr–

)

λmB(α)
n

(

x +
m
r

;λr
)

, (.)

where m = v + v + · · · + (r – )vr–.

Taking μ =  and ν =  in (.) and (.), and noting (.), we can obtain the following
main result of Luo (see [], p., Theorem .).

Corollary . For r ∈ N, n, l ∈ N, α,λ ∈ C, the following multiplication formula for the
Apostol-Euler polynomials of higher order holds true:

E (α)
n (rx;λ) = rn

∑

v,v,...,vr–≥

(
α

v, v, . . . , vr–

)

(–λ)mE (α)
n

(

x +
m
r

;λr
)

, r odd, (.)

E (l)
n (rx;λ) =

(–)lrn

(n + )l

∑

≤v,v,...,vr–≤l
v+v+···+vr–=l

(
l

v, v, . . . , vr–

)

× (–λ)mB(l)
n+l

(

x +
m
r

;λr
)

, r even, (.)

where m = v + v + · · · + (r – )vr–.
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Taking μ = ν =  in (.) and (.), and noting (.), we can obtain the following main
result (see [], p., Corollary .).

Corollary . For α, r ∈ N, n, l ∈ N, λ ∈ C, the following multiplication formula for the
Apostol-Genocchi polynomials of higher order holds true:

G(α)
n (rx;λ) = rn–α

∑

v,v,...,vr–≥

(
α

v, v, . . . , vr–

)

(–λ)mG(α)
n

(

x +
m
r

;λr
)

, r odd, (.)

G(l)
n (rx;λ) = (–)lrn–l

∑

≤v,v,...,vr–≤l
v+v+···+vr–=l

(
l

v, v, . . . , vr–

)

× (–λ)mB(l)
n

(

x +
m
r

;λr
)

, r even, (.)

where m = v + v + · · · + (r – )vr–.

Taking λ = –( β

a )b, μ =  – κ , ν = κ in (.), and noting (.), we can obtain the following
multiplication formulas for the polynomials Y (α)

n,β (x;κ , a, b) and Yn,β (x;κ , a, b) defined by
(.) and (.), respectively.

Corollary . For κ ,μ,ν, m, n, l, r ∈N, α,λ ∈C, we have

Y (α)
n,β (rx;κ , a, b)

= rn–κα
∑

v,v,...,vr–≥

(
α

v, v, . . . , vr–

)(
β

a

)bm

a(r–)bαY (α)
n,β

(

x +
m
r

;κ ; a; br
)

(.)

= rn–κα
∑

v,v,...,vr–≥

(
α

v, v, . . . , vr–

)(
β

a

)bm

a(r–)bαY (α)
n,βr

(

x +
m
r

;κ ; ar ; b
)

, (.)

where m = v + v + · · · + (r – )vr–.

Setting α = l =  in (.) and (.), respectively, we have (see [], p., Theorem )
the following.

Corollary . For κ ,μ,ν, n, r ∈N, λ ∈ C, we have

Yn,β (rx;κ , a, b) = rn–κ

r–∑

j=

(
β

a

)bj

a(r–)bYn,β

(

x +
j
r

;κ ; a; br
)

(.)

= rn–κ

r–∑

j=

(
β

a

)bj

a(r–)bYn,βr

(

x +
j
r

;κ ; ar ; b
)

. (.)

Remark . In [], p., Theorem ., one of the main result of Özarslan is not right,
the correct form should be (.) and (.) of Corollary ..

Remark . In fact, setting λ = –( β

a )b, μ =  – κ , ν = κ in (.) and noting (.), we
deduce the multiplication formulas which are right only when r is odd. In the same way
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as the proof of [], p., Theorem ., we can obtain the multiplication formulas (.)
and (.) of Corollary ..

3 A unified representation in conjunction with the Gauss hypergeometric
function

In this section we obtain a unified representation of the Apostol-type polynomials
F (l)

n (x;λ;μ;ν) with the Gaussian hypergeometric functions.

Theorem . For μ,ν, n, l ∈N, λ ∈C, we have

F (l)
n (x;λ;μ;ν)

= μl(νl)!
(

n
νl

) n–νl∑

k=

(
l + k – 

k

)(
n – νl

k

)
(–λ)k

(λ + )l+k

×
k∑

m=

(–)m
(

k
m

)

mk(x + m)n–νl–k
F

(

–n + νl + k, k; k + ;
m

m + x

)

, (.)

where F(a, b; c; z) denotes Gaussian hypergeometric functions defined by (see [], p., Eq.
())

F(a, b; c; z) :=
∞∑

n=

(a)n(b)n

(c)n

zn

n!
, |z| < . (.)

Proof Letting α = l ∈N in (.), we have

∞∑

n=

F (l)
n (x;λ;μ;ν)

zn

n!
=

(
μzν

λez + 

)l

exz. (.)

Differentiating both sides of (.) with respect to the variable z yields

F (l)
n (x;λ;μ;ν) = Dn

z

[(
μzν

λez + 

)l

exz
]

z=

= μl
n∑

s=

(
n
s

)

xn–sDs
z
[
zνl(λez + 

)–l]

z=

= μl
n∑

s=νl

(
n
s

)

xn–s(νl)!
(

s
νl

)

Ds–νl
z

[(
λez + 

)–l]

z=

= μl
n∑

s=νl

(
n
s

)

xn–s(νl)!
(

s
νl

)

Ds–νl
z

[(
λ +  + λ

(
ez – 

))–l]

z=,

where Dz = d
dz is the differential operator.

Applying the generalized binomial theorem

(a + b)–α =
∞∑

l=

(
α + l – 

l

)

a–α–l(–b)l
(

α ∈ C,
∣
∣
∣
∣
b
a

∣
∣
∣
∣ < 

)
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and the generating function of the Stirling numbers of the second kind S(n, k) (see, for
details, [], p., Theorem A),

(ez – )k

k!
=

∞∑

n=

S(n, k)
zn

n!
,

we find that

F (l)
n (x;λ;μ;ν)

= μl
n∑

s=νl

(
n
s

)

xn–s(νl)!
(

s
νl

) ∞∑

k=

(
l + k – 

k

)

(λ + )–l–k(–λ)kDs–νl
z

[(
ez – 

)k]

z=

= μl
n∑

s=νl

(
n
s

)

xn–s(νl)!
(

s
νl

) s–νl∑

k=

(
l + k – 

k

)

(–λ)k(λ + )–l–kk!S(s – νl, k).

Noting (see [], p., Eq. ())

S(n, k) =

k!

k∑

j=

(–)k–j
(

k
j

)

jn

and the well-known combinatorial identity

(
n
k

)(
k
s

)

=
(

n
s

)(
n – s
n – k

)

,

we readily obtain

F (l)
n (x;λ;μ;ν)

= μl
n∑

s=νl

(
n
s

)

xn–s(νl)!
(

s
νl

) s–νl∑

k=

(
l + k – 

k

)

× (–λ)k(λ + )–l–k
k∑

m=

(–)k–m
(

k
m

)

ms–νl

= μl(νl)!
(

n
νl

) n–νl∑

k=

n∑

s=k+νl

(
n – νl
n – s

)(
l + k – 

k

)
(–λ)kxn–s

(λ + )l+k

k∑

m=

(–)k–m
(

k
m

)

ms–νl

= μl(νl)!
(

n
νl

) n–νl∑

k=

n–k–νl∑

s=

(
n – νl

n – s – νl – k

)(
l + k – 

k

)

× (–λ)kxn–s–k–νl

(λ + )l+k

k∑

m=

(–)k–m
(

k
m

)

ms+k

= μl(νl)!
(

n
νl

) n–νl∑

k=

(
l + k – 

k

)
(–λ)kxn–k–νl

(λ + )l+k

k∑

m=

(–)k–m
(

k
m

)

mk

×
n–k–νl∑

s=

(
n – νl

n – s – νl – k

)(
m
x

)s

.
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Noting that (in view of
(n

k
)

=  when k > n or k < )

n∑

k=

(
n
k

)

=
∞∑

k=

(
n
k

)

,

and combining the definition of the Gaussian hypergeometric function

F(a, b; c; z) :=
∞∑

n=

(a)n(b)n

(c)n

zn

n!
,

we obtain

F (l)
n (x;λ;μ;ν) = μl(νl)!

(
n
νl

) n–νl∑

k=

(
l + k – 

k

)(
n – νl

k

)

× (–λ)kxn–k–νl

(λ + )l+k

k∑

m=

(–)m
(

k
m

)

mk

× F

(

–n + νl + k, ; k + ; –
m
x

)

. (.)

Applying the Pfaff-Kummer hypergeometric transformation [], p., Eq. (..),

F(a, b; c; z) = (–z)–a
F

(

a, c–b; c;
z

z – 

)
(
c /∈ Z

–
 :

∣
∣arg(–z)

∣
∣ ≤ π –ε ( < ε < π )

)
,

to (.), we arrive at the desired equation, (.). This completes our proof. �

Below we show some special cases of (.).
Letting λ 
−→ –λ, taking μ =  and ν =  in (.) and noting (.), we easily obtain the

following explicit formula for the Apostol-Bernoulli polynomials:

B(l)
n (x;λ) = l!

(
n
l

) n–l∑

k=

(
l + k – 

k

)(
n – l

k

)
λk

(λ – )k

×
k∑

m=

(–)m
(

k
m

)

mk(x + m)n–l–k
F

(

–n + l + k, k; k + ;
m

m + x

)

, (.)

with n, l ∈ N, λ ∈ C \ {}, which is just the main result of Luo and Srivastava (see [],
p., Theorem ).

Taking μ =  and ν =  in (.) and noting (.), we can obtain the following explicit
formula for the Apostol-Euler polynomials:

E (l)
n (x;λ) = l

n∑

k=

(
l + k – 

k

)(
n
k

)
(–λ)k

(λ + )l+k

×
k∑

m=

(–)m
(

k
m

)

mk(x + m)n–k
F

(

–n + k, k; k + ;
m

m + x

)

, (.)

with n, l ∈ N, λ ∈C\{–}, which is just the main result of Luo (see [], p., Theorem ).
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Taking μ = ν =  in (.), and noting (.), we can obtain the following explicit repre-
sentation of the generalized Apostol-Genocchi polynomials:

G(l)
n (x;λ) = ll!

(
n
l

) n–l∑

k=

(
l + k – 

k

)(
n – l

k

)
(–λ)k

(λ + )l+k

×
k∑

m=

(–)m
(

k
m

)

mk(x + m)n–l–k
F

(

–n + l + k, k; k + ;
m

m + x

)

, (.)

with n, l ∈N, λ ∈C \ {–}, which is just one of the results of Luo and Srivastava (see [],
p., Theorem ).

Taking λ = –( β

a )b, μ =  – κ , ν = κ in (.), and noting (.), we deduce the following
well-known formula:

Y (l)
n,β (x;κ , a, b) = l(–κ)(lκ)!

(
l + k – 

k

)(
n
lκ

) n–lκ∑

k=

(
n – lκ

k

)
βbk

(βb – ab)k+

×
k∑

m=

(–)m
(

k
m

)

mk(x + m)n–k–lκ

× F

(

–n + lκ + k, k; k + ;
m

m + x

)

, (.)

with n, l,κ ∈N, β ∈C, a, b ∈C\ {}, β �= a, which is just main result of Özarslan (see [],
p., Theorem .).

Further setting l =  in (.) we deduce the following formula for Yn,β (x;κ , a, b):

Yn,β (x;κ , a, b) = –κκ !
(

n
κ

) n–κ∑

k=

(
n – κ

k

)
βbk

(βb – ab)k+

×
k∑

m=

(–)m
(

k
m

)

mk(x + m)n–k–κ

× F

(

–n + κ + k, k; k + ;
m

m + x

)

. (.)

4 Some explicit relationships between the generalized Apostol-type
polynomials and generalized Hurwitz-Lerch zeta function

A general Hurwitz-Lerch zeta function 	(z, s, a) defined by (cf., e.g., [], p., et seq.)

	(z, s, a) :=
∞∑

n=

zn

(n + a)s

(
a ∈C \Z–

; s ∈C when |z| < ;R(s) >  when |z| = 
)

(.)

contains, as special cases, not only the Hurwitz (or generalized) zeta function ζ (s, a) de-
fined by (cf. [], p. and [], p.)

ζ (s, a) := 	(, s, a) =
∞∑

n=


(n + a)s

(�(s) > ; a ∈ /∈ Z
–

)

(.)
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and the Riemann zeta function ζ (s),

ζ (s) := 	(, s, ) = ζ (s, ) =


s – 
ζ

(

s,



)
(�(s) > ; a /∈ Z

–

)
, (.)

and the Lerch zeta function:

�s(ξ ) :=
∞∑

n=

enπ iξ

ns = eπ iξ	
(
eπ iξ , s, 

) (
ξ ∈R;R(s) > 

)
, (.)

but also such other functions as the polylogarithm function:

Lis(z) :=
∞∑

n=

zn

ns = z	(z, s, )

(
s ∈C when |z| < ;R(s) >  when |z| = 

)
(.)

and the Lipschitz-Lerch zeta function (cf. [], p., Eq. .()):

φ(ξ , a, s) :=
∞∑

n=

enπ iξ

(n + a)s = 	
(
eπ iξ , s, a

)
=: L(ξ , s, a)

(
a ∈C \Z–

;R(s) >  when ξ ∈R \Z;R(s) >  when ξ ∈ Z
)
, (.)

which was first studied by Rudolf Lipschitz (-) and Matyáš Lerch (-) in
connection with Dirichlet’s famous theorem on primes in arithmetic progressions.

A family of the Hurwitz-Lerch zeta functions 	(ρ,σ )
μ,ν (z, s, a) defined by (see e.g. [], p.,

Eq. ())

	(ρ,σ )
μ,ν (z, s, a) :=

∞∑

n=

(μ)ρn

(ν)σn

zn

(n + a)s

(
μ ∈C; a,ν ∈C \Z–

;ρ,σ ∈R
+;ρ < σ when s, z ∈C;

ρ = σ and s ∈C when |z| < ;ρ = σ and �(s – μ + ν) >  when |z| = 
)
, (.)

contains, as special cases, not only the Hurwitz-Lerch zeta function

	(σ ,σ )
ν,ν (z, s, a) = 	(,)

μ,ν (z, s, a) = 	(z, s, a) =
∞∑

n=

zn

(n + a)s (.)

and the Lipschitz-Lerch zeta function φ(ξ , a, s) := 	(eπ iξ , s, a), but also the following
generalized Hurwitz-Lerch zeta functions introduced and studied earlier by Goyal and
Laddha [], p., Eq. (.):

	
(,)
μ, (z, s, a) = 	μ(z, s, a) :=

∞∑

n=

(μ)n

n!
zn

(n + a)s , (.)

which, are called the Goyal-Laddha-Hurwitz-Lerch zeta functions.
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Below we give an explicit relationship between the Apostol-type polynomials F (α)
n (x;λ;

μ;ν) and the Hurwitz-Lerch zeta function 	μ(z, s, a).

Theorem . For n,ν,α ∈ N; – < λ� ; n � να; x ∈C \Z–
 , μ ∈C, the relationship

F (α)
n (x;λ;μ;ν) = μα(να)!

(
n
να

)

	α(–λ,να – n, x) (.)

holds true.

Proof Applying the generalized binomial theorem

( + w)–α =
∞∑

r=

(
α + r – 

r

)

(–w)r (|w| < 
)

in (.), we have

∞∑

n=

F (α)
n (x;λ;μ;ν)

zn

n!
=

(
μzν

λez + 

)α

exz

= μαzνα
(
 + λez)–αexz

= μαzνα

∞∑

k=

(α)k

k!
(–λ)ke(k+x)z

=
∞∑

n=

[

μα

∞∑

k=

(α)k

k!
(–λ)k(k + x)n

]
zn+να

n!

=
∞∑

n=να

[

μα(να)!
(

n
να

) ∞∑

k=

(α)k

k!
(–λ)k

(k + x)να–n

]
zn

n!
. (.)

Noting (.), (.) follows. �

Below we see that (.) implies some well-known results.
Let λ 
−→ –λ, taking μ =  and ν =  in (.) and noting (.), we can obtain an explicit

relation between the Apostol-Bernoulli polynomials and the Hurwitz-Lerch zeta function:

B(l)
n (x;λ) = (–n)l	l(λ, l – n, x)

(
n, l ∈N; n � l; |λ| < ; x ∈ C \Z–


)
. (.)

The above result is just one of the main results of Garg et al. (see [], p.).
Clearly, we have the following relation between the Apostol-Bernoulli polynomials and

the Hurwitz-Lerch zeta function:

Bn(x;λ) = –n	(λ,  – n, x)
(
n ∈N; |λ|� ; x ∈C \Z–


)
, (.)

which is just the result of Apostol (see []).
Taking λ =  in (.), we obtain the following well-known relationship between the

Bernoulli polynomials and Hurwitz zeta function (see [], p., Theorem .):

Bn(x) = –nζ ( – n, x) (n ∈N). (.)
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Taking x =  in (.), we obtain the following the well-known relationship between the
Bernoulli numbers and the Riemann zeta function (see [], p., Theorem .):

Bn = –nζ ( – n) (n ∈N). (.)

Taking μ =  and ν =  in (.) and noting (.), we can obtain the following result of
Luo (see [], p., Theorem .):

E (α)
n (x;λ) = α	α(–λ, –n, x). (.)

Further taking α =  in (.), we have the following relation between the Apostol-Euler
polynomials and the Hurwitz-Lerch zeta function:

En(x;λ) = 	(–λ, –n, x)
(
n ∈ N; – < λ� ; x ∈C \Z–


)
. (.)

Taking λ =  in (.), we can obtain the following well-known relation between the Euler
polynomials and the L-function:

En(x) = L(–n, x), (.)

where the L-function is defined by

L(s, x) :=
∞∑

n=

(–)n

(n + x)s

(�(s) > ; x ∈C \Z–

)
. (.)

From (.), we further obtain the following well-known relation between the Euler num-
bers and the l-function:

En = l(–n), (.)

where the l-function is defined by

l(s) :=
∞∑

n=

(–)n

ns , �(s) > . (.)

Taking μ = ν =  in (.), and noting (.), we can deduce the following relation
between the Apostol-Genocchi polynomials and Hurwitz-Lerch zeta function (see [],
p., Corollary .):

G(l)
n (x;λ) = {n}ll	l(–λ, l – n, x)

(
n, l ∈N; n � l; |λ|� ; x ∈C \Z–


)

(.)

and

Gn(x;λ) = n	(–λ,  – n, x)
(
n ∈N; |λ|� ; x ∈C \Z–


)
. (.)

Taking λ = –( β

a )b, μ =  – κ , ν = κ in (.), and noting (.), we can deduce the follow-
ing relations between the polynomials Y (α)

n,β (x;κ , a, b), Yn,β (x;κ , a, b), and the (generalized)
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Hurwitz zeta functions [, , ]:

Y (α)
n,β (x;κ , a, b) = (–)α

(–κ)α(κα)!
abα

(
n
κα

)

	α

((
β

a

)b

,κα – n, x
)

(.)

and

Yn,β (x;κ , a, b) = –
(–κ)(κ)!

ab

(
n
κ

)

	

((
β

a

)b

,κ – n, x
)

. (.)
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