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Abstract
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existence, stochastically ultimately bounded in mean and almost surely asymptotic
properties are obtained.

Keywords: stochastic perturbation; global existence; ultimately bounded

1 Introduction
One important component of the predator-prey relation is predator’s functional response,
i.e., the rate of prey consumption by an average predator. However, in many cases, when
predators have to search for food and, therefore, have to share or compete for food, the
functional response in prey-predator model should be predator-dependent. Skalski and
Gilliam [] pointed out that the predator-dependent model can provide better descriptions
of predator feeding over a range of predator-prey abundances by comparing the statistical
evidence from some predator-prey systems with the three predator-dependent functional
responses (Hassell-Varley [], Bedding-DeAngelis [] and Crowley-Martin []); further-
more, the Bedding-DeAngelis functional response is performed even better. The classical
prey-predator model with Bedding-DeAngelis functional response is

{
dx
dt = x[r – ax – ax

+mx+nx
],

dx
dt = x[–r + ax

+mx+nx
– ax].

(.)

There is extensive literature concerned with the dynamics of this prey-predator model
with Bedding-DeAngelis functional response, and we here only mention Liu and Yuan
[], Liu and Zhang [], Zhao and Lv [], Fan and Kuang [], Hwang [, ], Guo and Wu
[] among many others.

As was pointed by Kuang [], any model of species dynamics with delays is an approx-
imation at best. More detailed arguments on the significance of time-delays in realistic
models may also be found in the classical books of Macdonald [] and Gopalsamy [].
Many authors have studied the delay prey-predator system, see, e.g., [–]. For the study
of delay population systems with Bedding-DeAngelis functional response, see [–].
Particularly, we consider the following population system with delays:

{
dx
dt = x[r – ax – ax(t–τ )

+mx+nx
],

dx
dt = x[–r + ax(t–τ )

+mx+nx
– ax].

(.)
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In system (.), x and x denote the population sizes of the prey and the predator, respec-
tively. We are therefore not only interested in the positive solutions but also require the
solutions not to explode at a finite time. To guarantee the positive solutions without explo-
sion (i.e., the global positive solutions), some conditions are in general needed to impose
on the coefficients of system (.). For example, Kuang [] discussed the following delay
prey-predator system:

{
dx
dt = x[r – ax – ax(t – τ )],

dx
dt = x[–r + ax(t – τ ) – ax].

(.)

He claimed that if � > , then system (.) has a positive equilibrium x∗ = (x∗
 , x∗

) =
(�/�,�/�) which is globally asymptotically stable, where � = aa + aa, � =
ra + ra, � = ra – ra.

However, population models are always affected by environmental noises. Therefore
stochastic population models have recently been investigated by many authors; see, e.g.,
[–]. Mao et al. [] have recently revealed an important fact that the environmental
noise can suppress a potential population explosion. Recently, suppose that the parameter
ri is affected by environmental noises with ri → ri + σi dBi, i = , , then corresponding to
system (.) the authors [] obtained the following stochastic mode:

{
dx = x[r – ax – ax(t – τ)] dt + σx dB,
dx = x[–r + ax(t – τ) – ax] dt + σx dB

(.)

and some sufficient and necessary conditions for stability in the mean and extinction of
each population for the above stochastic system (.).

Motivated by the above work, we therefore wonder if the explosion problem for system
(.) can be avoided by taking the environmental noise into account instead of imposing
conditions on the coefficients of (.). To reveal this interesting fact, we stochastically per-
turb the delay predator-prey model (.) into the Itô stochastic differential delay equation

{
dx(t) = x(t)[r – ax – ax(t–τ )

+mx+nx
] dt + σx

 dB(t),
dx(t) = x(t)[–r + ax(t–τ )

+mx+nx
– ax] dt + σx

 dB(t),
(SM)

where x and x represent predator and prey densities at time t, respectively; ri, aij, τ , m,
n are positive constants, i, j = , .

In addition, throughout the present paper, let (�,F , {Ft}t≥, P) be a complete probability
space with a filtration {Ft}t≥ satisfying the usual conditions (i.e., it is right continuous and
F contains all P-null sets). Let | · | denote the Euclidean norm in Rn. For a given constant
τ > , let C([–τ , ], Rn

+) denote the family of all continuous Rn
+-valued functions ξ with its

norm ‖ξ‖ = sup{|ξ (θ )| : θ ∈ [–τ , ]}, where R+ = [, +∞). Also, denote by Cb
F

([–τ , ]; Rn
+)

the family of bounded, F-measurable, Cb
F

([–τ , ]; Rn
+)-valued random variables.

Remark . When m = n = , system (SM) becomes (.), so system (SM) is a more gen-
eral stochastic system. For system (SM), so far as our knowledge is concerned, the work on
a predator-prey model with stochastic perturbations seems rare. In this paper, we study
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system (SM) which is rather general, and some well-known systems may be viewed as its
special cases, and obtain some properties of solutions to system (SM).

Remark . System (SM) is based on assuming that the noise affects parameters a and
a. In fact, the noise may affect other parameters in (SM), which results in other types of
stochastic models, which are the future research topics; for more details, see [].

Remark . For the analysis of population dynamical problems of (SM), two difficult is-
sues arise: (i) how to handle the delays in the given model and (ii) how to handle the nonlin-
ear terms in (SM). To deal with these problems, the construction of a Lyapunov functional
V is quite crucial, and it is introduced in Sections  and .

2 Positive and global solutions
In order for a stochastic differential delay equation to have a unique global (i.e., no ex-
plosion in a finite time) solution for any given initial data, the coefficients of the equation
are generally required to satisfy the linear growth condition and local Lipschitz condition
[]. However, the coefficients of system (SM) do not satisfy the linear growth condition,
though they are locally Lipschitz continuous, so the solution of system (SM) may explode
at a finite time. In this section we shall show that under simple hypothesis the solution of
system (SM) is not only positive but will also not explode to infinity at any finite time.

Theorem . For any given initial data {(x(θ ), x(θ ))	 : –τ ≤ θ ≤ } = ξ ∈ Cb
F

([–τ , ];
R

+ ×R
+), where R

+ = (, +∞). If a ≤ , there is a unique positive local solution (x(t), x(t))
to (SM) on t ≥ –τ with satisfying initial condition ξ and the solution will remain in R

+ with
probability .

Proof By the biological meaning, we only focus on the positive solution to system (SM).
Thus it is reasonable to make the following change of variables, x(t) = eu(t), x(t) = ev(t).
By using Itô’s formula, system (SM) can be reformulated in the following form:

⎧⎪⎪⎨
⎪⎪⎩

du = [r – aeu – a
ev(t–τ )

+emu+env – 
σ 

 ] dt + σeu dB(t),

dv = [–r(t) + a
eu(t–τ )

+emu+env – aev – 
σ 

 ] dt + σev dB(t), t ≥ ,
u(θ ) = ln x(θ ), v(θ ) = ln x(θ ), θ ∈ [–τ , ].

(.)

It is easy to see that the coefficients of (.) satisfy the local Lipschitz condition, then for any
given initial values u(θ ) > , v(θ ) > , θ ∈ [–τ , ], there is a unique maximal local solution
u(t), v(t) on [–τ , τe), where τe is explosion time. To show that this solution is global, we
need to show that τe = ∞ a.s. Let n >  be sufficiently large for


n

< min
–τ≤t≤

∣∣x(t)
∣∣ ≤ max

–τ≤t≤

∣∣x(t)
∣∣ < n,

where x(t) = (x(t), x(t))	. For each integer n > n, define the stopping times:

τn = inf

{
t ∈ [, τe] : x(t) /∈

(

n

, n
)

or x(t) /∈
(


n

, n
)}

.
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Throughout this paper, we set inf∅ = ∞. Obviously, τn is increasing as n → ∞. Let τ∞ =
limn→ τn, whence τ∞ ≤ τe a.s. If we can show that τ∞ = ∞ a.s., then τe = ∞ a.s. and xi(t) ≥ 
a.s., i = ,  for all t ≥ . To show this statement, let us define C-function V : R

+ → R+ by

V (x, x) = (
√

x –  – . ln x) + (
√

x –  – . ln x).

The nonnegativity of this function can be obtained from u –  – ln u ≥  on u > . Let
n ≥ n and T >  be arbitrary. For  ≤ t ≤ τn ∧ T , we can use Itô’s formula to

∫ t
t–τ

(x
 (s) +

x
(s)) ds + V (x, x) to obtain that

d
[∫ t

t–τ

(
x

 (s) + x
(s)

)
ds + V (x, x)

]

=
[
x

 – x
 (t – τ )

+ .
(
x.

 – 
)
F(x, x)

]
dt +



(
–x.

 + 
)
σ 

 x
 dt

+ .
(
x.

 – 
)
σx dB(t) +

[
x

 – x
(t – τ ) + .

(
x.

 – 
)
G(x, x)

]
dt

+


(
–x.

 + 
)
σ 

 x
 dt + .

(
x.

 – 
)
σx dB(t), (.)

where

F(x, x) = r – ax –
ax(t – τ )

 + mx + nx
,

G(x, x) = –r – ax +
ax(t – τ )

 + mx + nx
.

Compute

(
x.

 – 
)
F(x, x)

=
(
x.

 – 
)[

r – ax –
ax(t – τ )

 + mx + nx

]

= r
(
x.

 – 
)

– ax.
 + ax +

ax(t – τ )
 + mx + nx

–
ax.

 x(t – τ )
 + mx + nx

≤ r
(
x.

 – 
)

– ax.
 + ax + ax(t – τ ) (.)

and

(
x.

 – 
)
G(x, x)

=
(
x.

 – 
)[

–r – ax +
ax(t – τ )

 + mx + nx

]

= –r
(
x.

 – 
)

– ax.
 + ax +

ax.
 x(t – τ )

 + mx + nx
–

ax(t – τ )
 + mx + nx

≤ –r
(
x.

 – 
)

– ax.
 + ax + ax.

 x(t – τ )

≤ –r
(
x.

 – 
)

– ax.
 + (a + .a)x + .ax

 (t – τ ). (.)
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Substituting (.) and (.) into (.) yields

d
[∫ t

t–τ

(
x

 (s) + x
(s)

)
ds + V (x, x)

]

≤ H(x, x) dt + .
(
x.

 – 
)
σx dB(t) + .

(
x.

 – 
)
σx dB(t), (.)

where

H(x, x) = x
 – x

 (t – τ ) + .r
(
x.

 – 
)

– .ax.
 + .ax

+ .ax(t – τ ) +


(
–x.

 + 
)
σ 

 x


+ .x
 – .x

(t – τ ) – .r
(
x.

 – 
)

– .ax.
 + .(a + .a)x

+ .ax
 (t – τ ) +



(
–x.

 + 
)
σ 

 x


=
(
 + .σ 


)
x

 + (.a – )x
 (t – τ )

+ .r
(
x.

 – 
)

– .ax.
 + .ax

+
(
. + .σ 


)
x

 – .x
(t – τ ) – .r

(
x.

 – 
)

– .ax.
 + .(a + .a)x

– .x.
 – .x.

 .

From a ≤ , it is easy to see that H(x, x) is bounded, say by K . By (.), we have

d
[∫ t

t–τ

(
x

 (s) + x
(s)

)
ds + V (x, x)

]

≤ K dt + .
(
x.

 – 
)
σx dB(t) + .

(
x.

 – 
)
σx dB(t).

Integrating both sides from  to τn ∧ T , and then taking expectations, yields

E
[∫ τn∧T

τn∧T–τ

(
x

 (s) + x
(s)

)
ds + V

(
x(τn ∧ T), x(τn ∧ T)

)]

≤
∫ 

–τ

(
x

 (s) + x
(s)

)
ds + V

(
x(), x()

)
+ KT .

Consequently,

EV
(
x(τn ∧ T), x(τn ∧ T)

) ≤
∫ 

–τ

(
x

 (s) + x
(s)

)
ds + V

(
x(), x()

)
+ KT . (.)

Note that for each ω ∈ �n = {τn ≤ T}, there is some i such that xi(τn,ω) equals n or 
n for

i = , . Hence V (x(τn ∧ T), x(τn ∧ T)) is no less than

min{√n –  – . ln n,
√

/n –  – . ln /n}.
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By (.) we have

∫ 

–τ

(
x

 (s) + x
(s)

)
ds + V

(
x(), x()

)
+ KT

≥ E
[
�n (ω)V

(
x(τn), x(τn)

)]
≥ P{τn ≤ T}min{√n –  – . ln n,

√
/n –  – . ln /n},

where �n is the indicator function of �n. Letting n → ∞, leads to the contraction

lim
k→∞

P{τk ≤ T} = .

Since T >  is arbitrary, we must have

P{τ∞ < ∞} = .

So P{τ∞ = ∞} =  as required. The proof is completed. �

Remark . It is well known that systems (.) and (.) may explode to infinity at a finite
time for some system parameters, see []. However, the explosion will no longer happen
as long as there is noise. In other words, Theorem . reveals the important property that
the environmental noise suppresses the explosion for the delay equation.

3 Stochastically ultimate boundedness
One of the important issues in the study of population systems is the stochastically ul-
timate boundedness. System (SM) is said to be stochastically ultimately bounded if for
any ε ∈ (, ), there is a positive constant H = H(ε) such that for any initial data ξ ∈
Cb
F

([–τ , ]; R
+ × R

+), the solution (x, x)	 of system (SM) has the property that

lim
t→∞ sup P

{∣∣x(t)
∣∣ ≤ H

} ≥  – ε,

where x = (x, x)	.
In this section we shall investigate the stochastically ultimate boundedness of system

(SM). The following theorem gives a sufficient criterion for the stochastically ultimate
boundedness of population.

Lemma . Let θ ∈ (, ) and θa ≥ n. Then there is a positive constant K = K(θ ), which
is independent of the initial data ξ ∈ Cb

F
([–τ , ]; R

+ × R
+), such that the solution x(t) of

system (SM) has the property that

lim
t→∞ sup E|x|θ ≤ K .

Proof Define

V (x, x) = xθ
 + xθ

.
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Applying Itô’s formula to system (SM), we have

dV (x, x) =
[
θxθ



(
r – ax –

ax(t – τ )
 + mx + nx

)
–

θ ( – θ )σ 



x+θ



]
dt

+ θσx+θ
 dB(t)

+
[
θxθ



(
–r +

ax(t – τ )
 + mx + nx

– ax

)
–

θ ( – θ )σ 



x+θ



]
dt

+ θσx+θ
 dB(t). (.)

Denote

LV (x, x, y, y) = θxθ


(
r – ax –

ay

 + mx + nx

)
–

θ ( – θ )σ 



x+θ



+ θxθ


(
–r +

ay

 + mx + nx
– ax

)
–

θ ( – θ )σ 



x+θ



≤ θxθ
 r –

θ ( – θ )σ 



x+θ

 –
θ ( – θ )σ 




x+θ
 +

θa

n
|y|

= F(x, x) – V (x, x) – eτ |x| +
θa

n
|y|,

where

y = (y, y)	 =
(
x(t – τ ), x(t – τ )

)	, x = (x, x)	,

F(x, x) = θxθ
 r –

θ ( – θ )σ 



x+θ

 –
θ ( – θ )σ 




x+θ
 + xθ

 + xθ
 + eτ |x|.

Note that F(x, x) is bounded in R
+, namely

F(x, x) ≤ K, ∀x ∈ R
+.

Hence we have

LV (x, x, y, y) ≤ K – V (x, x) – eτ |x| +
θa

n
|y|.

Substituting this into (.) gives

dV (x, x) ≤
[

K – V (x, x) – eτ |x| +
θa

n
|y|

]
dt

+ θσx+θ
 dB(t) + θσx+θ

 dB(t). (.)

From (.) and once again by Itô’s formula, we have

d
[
etV (x, x)

]
= et[V (x, x) dt + dV (x, x)

]
≤ et

[
K – eτ |x| +

θa

n
∣∣x(t – τ )

∣∣
]

dt

+ etθσx+θ
 dB(t) + etθσx+θ

 dB(t).
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From θa ≥ n, we hence derive that

etEV (x, x) ≤ V
(
x(), x()

)
+ Ket – E

∫ t


es+τ

∣∣x(s)
∣∣ ds

+
θa

n
E

∫ t


es∣∣x(s – τ )

∣∣ ds

= V
(
x(), x()

)
+ Ket – E

∫ t


esτ ∣∣x(s)

∣∣ ds

+
θa

n
E

∫ t–τ

–τ

es∣∣x(s)
∣∣ ds

≤ V
(
x(), x()

)
+ Ket +

θa

n

∫ 

–τ

es∣∣x(s)
∣∣ ds.

This implies immediately that

lim
t→∞ sup EV (x, x) ≤ K.

On the other hand, we have

|x| ≤  max{x, x}.

Thus

|x|θ ≤ θ/ max
{

xθ
 , xθ


} ≤ θ/V (x, x).

Hence, we have

lim
t→∞ sup E|x|θ ≤ θ/K := K .

The proof is completed. �

Theorem . Let θ ∈ (, ) and θa ≥ n. System (SM) is stochastically ultimately
bounded.

Proof From Lemma ., there is K >  such that

lim
t→∞ sup E|x|θ ≤ K .

Then, for any ε > , let H = K/ε. Then by Chebyshev’s inequality

P
{∣∣x(t)

∣∣ > H
} ≤ E(

√|x(t)|)√
H

.

Thus

lim
t→∞ sup P

{∣∣x(t)
∣∣ > H

} ≤ K√
H

= ε.
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This implies

lim
t→∞ sup P

{∣∣x(t)
∣∣ ≤ H

} ≥  – ε.

The proof is completed. �

4 Almost surely asymptotic properties
In this section, we study the pathwise properties of system (SM).

Theorem . Let the same conditions of Theorem . hold. For any given initial data
{(x(θ ), x(θ ))	 : –τ ≤ θ ≤ } = ξ ∈ Cb

F
([–τ , ]; R

+ × R
+), the solution x(t) of system (SM)

has the property that

lim
t→∞ sup

ln |x(t)|
ln t

≤  a.s.

Proof Define

V (x) = x + x.

It is easy to see that

dV
(
x(t)

)
= x(t)

[
r – ax –

ax(t – τ )
 + mx + nx

]
dt + σx

 dB(t)

+ x(t)
[

–r +
ax(t – τ )

 + mx + nx
– ax

]
dt + σx

 dB(t).

Let γ >  be arbitrary. By Itô’s formula, we have

eγ t ln
(
V

(
x(t)

))
= ln

(
V

(
x()

))
+

∫ t


eγ s

(
x

V (x(s))

[
r – ax –

ax(t – τ )
 + mx + nx

]
–

σ 
 x


V (x(s))

)
ds

+
∫ t


eγ s

(
x

V (x(s))

[
–r +

ax(t – τ )
 + mx + nx

– ax

]
–

σ 
 x


V (x(s))

)
ds

+ γ

∫ t


eγ s ln

(
V

(
x(s)

))
ds + M(t) + M(t), (.)

where

Mi(t) =
∫ t



eγ sσix
i

V (x(s))
dBi(s), i = , ,

is a real-valued continuous local martingale vanishing at t =  and its quadratic form is
given by

〈
Mi(t), Mi(t)

〉
=

∫ t



eγ sσ 
i x

i
V (x(s))

ds.
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Let ε ∈ (, ) and θ >  be arbitrary. By the exponential martingale inequality (see, e.g.,
[]), for each k ≥ ,

P
{

sup
≤t≤k

[
Mi(t) –

ε


e–γ k 〈Mi(t), Mi(t)

〉]
>

θeγ k

ε
ln k

}
≤ k–θ .

Since the series
∑∞

k= k–θ converges, the well-known Borel-Cantelli lemma yields that
there exists � ⊂ � with P(�) =  such that for any ω ∈ � there exists an integer
k = k(ω) such that

Mi(t) ≤ ε


e–γ k 〈Mi(t), Mi(t)

〉
+

θeγ k

ε
ln k (.)

for all  ≤ t ≤ k and k ≥ k(ω). Substituting this into (.) and then using (.), we have

eγ t ln
(
V

(
x(t)

))
= ln

(
V

(
x()

))
+

∫ t


eγ s

(
x

V (x(s))

[
r – ax –

ax(t – τ )
 + mx + nx

]
–

( – ε)σ 
 x


V (x(s))

)
ds

+
∫ t


eγ s

(
x

V (x(s))

[
–r +

ax(t – τ )
 + mx + nx

– ax

]
–

( – ε)σ 
 x


V (x(s))

)
ds

+ γ

∫ t


eγ s ln

(
V

(
x(s)

))
ds +

θeγ k

ε
ln k (.)

for all  ≤ t ≤ k, k ≥ k(ω) and ω ∈ �. Compute

x

V (x(s))

[
r – ax –

ax(t – τ )
 + mx + nx

]
≤ r + ax(t – τ ), (.)

x

V (x(s))

[
–r +

ax(t – τ )
 + mx + nx

– ax

]
≤ r + ax(t – τ ), (.)

σ 
 x


V (x(s))

≥ σ 
 k




x
 ,

σ 
 x


V (x(s))

≥ σ 
 k




x
, (.)

where k, k ∈ (, ) are positive constants. Substituting (.)-(.) into (.) gives

eγ t ln
(
V

(
x(t)

))
= ln

(
V

(
x()

))
+ γ

∫ t


eγ s ln

(
V

(
x(s)

))
ds +

θeγ k

ε
ln k

+
∫ t


eγ s

(
r + ax(t – τ ) + r + ax(t – τ )] –

( – ε)σ 
 k

 x




–
( – ε)σ 

 k
x




)
ds (.)

for all  ≤ t ≤ k, k ≥ k(ω) and ω ∈ �. For i = , , note

∫ t


eγ sxi(s – τ ) ds ≤

∫ t–τ

–τ

eγ (s+τ )xi(s) ds ≤
∫ 

–τ

eγ τ xi(s) ds +
∫ t


eγ (s+τ )xi(s) ds.
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We can rewrite (.) as

eγ t ln
(
V

(
x(t)

))
= ln

(
V

(
x()

))
+ aeγ τ

∫ 

–τ

x(s) ds + aeγ τ

∫ 

–τ

x(s) ds +
θeγ k

ε
ln k

+
∫ t


eγ s

(
r + aeγ τ x + r + aeγ τ x –

( – ε)σ 
 k

 x




–
( – ε)σ 

 k
x




)
ds + γ

∫ t


eγ s ln

(
V

(
x(s)

))
ds. (.)

Obviously, the following polynomial is bounded by a positive constant, say K,

γ ln V (x) + r + aeγ τ x + r + aeγ τ x –
( – ε)σ 

 k
 x




–
( – ε)σ 

 k
x




≤ K. (.)

Then by (.) and (.) we get

eγ t ln
(
V

(
x(t)

)) ≤ C +
θeγ k

ε
ln k +

K

γ
eγ t

for all  ≤ t ≤ k, k ≥ k(ω) and ω ∈ �, where

C = ln
(
V

(
x()

))
+ aeγ τ

∫ 

–τ

x(s) ds + aeγ τ

∫ 

–τ

x(s) ds.

Consequently, for any ω ∈ �, if k –  ≤ t ≤ k and k ≥ k(ω), we have

ln(V (x(t)))
ln t

≤ 
ln(k – )

[
e–γ (k–)C +

θeγ

ε
ln k +

K

γ

]
.

This implies

lim
t→∞ sup

ln(V (x(t)))
ln t

≤ θeγ

ε
a.s.

Letting ε → , θ →  and γ → , we have

lim
t→∞ sup

ln(V (x(t)))
ln t

≤  a.s. (.)

From V (x) ≤ √
|x| and (.), we get

lim
t→∞ sup

ln |x(t)|
ln t

≤  a.s. �

Remark . Similar to [], ∀ε > , we have

|x| ≤ κ + t+ε for t ≥ ,

where κ = sup≤t≤T |x(t)|. This means that |x(t)| will grow at most polynomially with order
close to .

Theorem . Let the same conditions of Theorem . hold. For any given initial data
{(x(θ ), x(θ ))	 : –τ ≤ θ ≤ } = ξ ∈ Cb

F
([–τ , ]; R

+ × R
+), the solution x(t) of system (SM)
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has the property that

lim
t→∞ sup

ln |x(t)|
ln t

≤ r +
σ̂ 

ǎ a.s.,

where σ̂ = min{σk,σk}, ǎ = max{a, a}.

Proof Define

V (x) = x + x.

By Itô’s formula, we have

ln
(
V

(
x(t)

))
= ln

(
V

(
x()

))
+

∫ t



(
x

V (x(s))

[
r – ax –

ax(s – τ )
 + mx + nx

]
–

σ 
 x


V (x(s))

)
ds

+
∫ t



(
x

V (x(s))

[
–r +

ax(s – τ )
 + mx + nx

– ax

]
–

σ 
 x


V (x(s))

)
ds

+ M(t) + M(t), (.)

where

Mi(t) =
∫ t



σix
i

V (x(s))
dBi(s), i = , ,

is a real-valued continuous local martingale vanishing at t =  and its quadratic form is
given by

〈
Mi(t), Mi(t)

〉
=

∫ t



σ 
i x

i
V (x(s))

ds.

Let ε ∈ (, .) and θ =  be arbitrary. By the exponential martingale inequality (see, e.g.,
[]), for each k ≥ ,

P
{

sup
≤t≤k

[
Mi(t) –

ε


〈
Mi(t), Mi(t)

〉]
>

 ln k
ε

}
≤ k–.

Since the series
∑∞

k= k–θ converges, the well-known Borel-Cantelli lemma yields that
there exists � ⊂ � with P(�) =  such that for any ω ∈ � there exists an integer
k = k(ω) such that

Mi(t) ≤ ε


〈
Mi(t), Mi(t)

〉
+


ε

ln k

for all  ≤< t ≤ k and k ≥ k(ω). Substituting this into (.) we derive that

ln
(
V

(
x(t)

))
= ln

(
V

(
x()

))
+

∫ t



(
x

V (x(s))

[
r – ax –

ax(s – τ )
 + mx + nx

]
–

( – ε)σ 
 x


V (x(s))

)
ds
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+
∫ t



(
x

V (x(s))

[
–r +

ax(s – τ )
 + mx + nx

– ax

]

–
( – ε)σ 

 x


V (x(s))

)
ds +


ε

ln k

for all  ≤ t ≤ k, k ≥ k(ω) and ω ∈ �. Rearranging the above inequality and using (.)-
(.) give

ln
(
V

(
x(t)

))
= ln

(
V

(
x()

))
+


ε

ln k

+
∫ t



(
r + ax(s – τ ) + r + ax(s – τ )

–
( – ε)σ 

 k
 x




–
( – ε)σ 

 k
x




)
ds

≤ ln
(
V

(
x()

))
+


ε

ln k +
∫ t



(
r + ax(s – τ ) + r

+ ax(s – τ ) –
( – ε)σ̂ |x|



)
ds (.)

for all  ≤ t ≤ k, k ≥ k(ω) and ω ∈ �. From (.), we have

ln
(
V

(
x(t)

))
+

( – ε)σ̂ 



∫ t



∣∣x(s)
∣∣ ds

≤ ln
(
V

(
x()

))
+


ε

ln k

+
∫ t



(
r + ax(s – τ ) + r + ax(s – τ ) –

σ̂ |x|


)
ds

≤ C +

ε

ln k +
∫ t



(
r + ax(s) + r + ax(s) –

σ̂ |x|


)
ds,

where

C = ln
(
V

(
x()

))
+ a

∫ 

–τ

x(s) ds + a

∫ 

–τ

x(s) ds.

It is easy to see that

r + ax(t) + r + ax(t) –
σ̂ |x|


≤ r + ǎ|x| –

σ̂ |x|


≤ r +
ǎ

σ̂  := K.

Thus, if ω ∈ �,

ln
(
V

(
x(t)

))
+

( – ε)σ̂ 



∫ t



∣∣x(s)
∣∣ ds ≤ C +


ε

ln k + Kt

for all  ≤ t ≤ k, k ≥ k(ω). Consequently, for any ω ∈ �, if k –  ≤ t ≤ k and k ≥ k(ω),
we have


t

[
ln

(
V

(
x(t)

))
+

( – ε)σ̂ 



∫ t



∣∣x(s)
∣∣ ds

]
≤ 

k – 

[
C +


ε

ln k
]

+ K,
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(a) (b)

Figure 1 Solutions of system (SM) for r1 = 0.02, a11 = 0.1, a12 = 0.03, r2 = 3, a22 = 0.3, σ1 = σ2 = 0.02,
m = n = 1.25, τ = 1. The horizontal axis represents the time t, the vertical axis represents the population sizes.
(a) is with a21 = 0.3; (b) is with a21 = 500.

which implies

lim
t→∞ sup


t

[
ln

(
V

(
x(t)

))
+

( – ε)σ̂ 



∫ t



∣∣x(s)
∣∣ ds

]
≤ K. (.)

Using (.) and letting ε → , we get

lim
t→∞ sup


t

[
ln

(
V

(
x(t)

))
+

σ̂ 



∫ t



∣∣x(s)
∣∣ ds

]
≤ K a.s. (.)

Using V (x) ≥ |x|√
 and (.), we get

lim
t→∞ sup


t

[
ln

∣∣x(t)
∣∣ +

σ̂ 



∫ t



∣∣x(s)
∣∣ ds

]
≤ K a.s.

The proof is completed. �

5 Numerical simulations
Now let us use Milstein’s numerical method (see, e.g., []) to support our results. In
Figure , we choose r = ., a = ., a = ., r = , a = ., σ = σ = .,
m = n = ., τ = . The difference between the conditions of Figures (a) and (b) is that
the values of a are different. In Figure (a) we choose a = . < , then the conditions
of Theorem . hold. Making Theorems . and . lead to system (SM) has almost surely
asymptotic properties. In Figure (b) we choose a =  > , then the conditions of The-
orem . are not satisfied; furthermore, the conditions of Theorems . and . do not
hold. Hence, the population x goes to extinction, and x has no almost surely asymptotic
properties, see Figure (b).

6 Conclusions and future directions
A stochastic delay predator-prey system is considered and system (SM) is more general
than the classical predator-prey system with the Beddington-DeAngelis functional re-
sponse. We have established a sufficient condition under which system (SM) has a global
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positive solution. We have also discussed the asymptotic properties for the moments as
well as the sample paths of the solution. In particular, we have studied a fundamental prob-
lem in population systems, namely stochastically ultimate boundedness. Our key contri-
butions in this paper are the following:

• This paper deals with a kind of delay stochastic population system, while most of
existing results (see, e.g., [, , –, , ]) are concerned with the non-delayed cases.

• Our stochastic population system is therefore more complicated and the mathematics
presented is more difficult.

There are still many interesting and challenging questions that need to be studied. In
this paper, we only consider the growth rate a, a to be stochastic; other parameters, for
example, ri, i = , , is stochastic, which is not studied. We wish that such questions will be
investigated by some authors.
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