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Abstract
In the previous paper (Feng et al. in Adv. Differ. Equ. 2014:305, 2014), we have already
used sandwich control to control a system. But when we considered the influence of
delay, can sandwich control also be applied in the delayed system? In order to answer
this question, we first introduce the alternate delayed system, then we study the
exponential stability of delayed chaotic neural networks by means of alternate
control. Some sufficient conditions are given in terms of a set of linear matrix
inequalities to ensure the exponential stability of the system. Numerical simulations
are presented to verify the correction of the obtained results.

Keywords: alternate control delayed system; globally exponential stabilization; Lu
oscillator

1 Introduction
Alternate control [] is a special case of switching control [] and is a generalization of in-
termittent control [, ]. In an alternate control system, two different controls are applied
alternately. So there is not rest time for the control. This system is suitable for the case in
which the time is precious.

In [] Feng et al. studied the alternate control system without delay. They have obtained
some conditions in terms of LIMs to ensure the stability of the non-delayed system. For
delayed systems [–], we know that the methods used are different from the ones without
delay. There are many papers about delayed system [–]. A delayed system is much more
difficult to study than the non-delayed one, we are trying to get some conditions to ensure
the stability of the delayed system in the theory of control [–].

In this paper, we consider the influence of the delay of the system by means of alternate
control, that is to say, we study the delayed system by means of alternate control. First
of all, we introduce an alternate delayed system. Then we investigate the stability of it by
constructing a Lyapunov function, and we obtain stability conditions in terms of LMIs.
Lastly we study the stability of Lu oscillator by using the results obtained in the paper.

2 Problem formulation and preliminaries
Consider a class of delayed nonlinear systems described by{

ẋ(t) = Ax(t) + f (x(t)) + g(x(t – τ )) + u(t), t > ,
x(t) = φ(t), t ∈ [–τ , ],

()

where x ∈ Rn presents state vector, f and g are continuous nonlinear functions of Rn → Rn

with f () = g() =  and there exist two diagonal matrices L = diag(l()
 , l()

 , . . . , l()
n ) ≥ 
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and L = diag(l()
 , l()

 , . . . , l()
n ) ≥  such that ‖f (x)‖ ≤ xT Lx and ‖g(x)‖ ≤ xT Lx for any

x ∈ Rn, A ∈ Rn×n is a constant matrix, φ is a function of Rn → Rn, u(t) denotes the external
input of system ().

For stabilizing the origin of system () by means of periodically alternate control, we
assume that the control imposed on the system is of the following form:

u(t) =

{
Kx(t), mT < t ≤ mT + θ ,
Kx(t), mT + θ < t ≤ (m + )T ,

()

where K, K ∈ Rn×n are constant matrices, T >  denotes the control period, θ ∈ (, T) is
a constant.

Our target is to design suitable T , θ , K and K such that system () can be stabilized at
the origin.

By the control law (), system () can be rewritten as follows with m = , , , . . . :
⎧⎪⎨
⎪⎩

ẋ(t) = Ax(t) + f (x(t)) + g(x(t – τ )) + Kx(t), mT < t ≤ mT + θ ,
ẋ(t) = Ax(t) + f (x(t)) + g(x(t – τ )) + Kx(t), mT + θ < t ≤ (m + )T ,
x(t) = φ(t), t ∈ [–τ , ].

()

It is obvious that system () is a classical switched system where the switching rule only
depends on the time. Specifically, the switching rule of system () depends on T and θ .

In the sequel, we will use the following definitions and lemmas.

Lemma  (Sanchez and Perez []) Given any real matrices �, �, � of appropriate
dimensions and a scalar ε ≥  such that  < � = �T

 , the following inequality holds:

�T
 � + �T

 � ≤ ε�T
 �� + ε–�T

 �–
 �. ()

Lemma  (Boyd et al. [], Horn and Johnson []) The LMI
[

Q(x) S(x)
ST (x) R(x)

]
> ,

where Q(x) = QT (x), R(x) = RT (x) and S(x) depend affinely on x, is equivalent to

R(x) > , Q(x) – S(x)R–(x)ST (x) > .

Definition  The zero solution of () is said to be globally exponentially stable if there are
two constants M(|φ|) > , γ >  such that

∥∥x(t)
∥∥ ≤ M

(|φ|) exp(–γ t), t > ,

where |φ| = sup–τ≤t≤ ‖φ(t)‖.

Definition  Right-upper Dini’s derivative of a function V : R+ × Rn → R+ is defined by

D+V
(
t, x(t)

)
= lim sup


h
[
V

(
t + h, x(t + h)

)
– V (t, x(t)

]
.

Note that V (x(t)) or V (x) is short for V (t, x(t)).
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Lemma  (Halany inequality []) Assume that τ >  and ω : [μ – τ ,∞) → [,∞) is a
continuous function such that

ω̇(t) ≤ –aω(t) + b sup
t–τ≤θ≤t

ω(θ )

is satisfied for all t ≥ μ. If a > b > , then

ω(t) ≤ ω(μ) exp
(
–γ (t – μ)

)
, t ≥ μ,

where ω(t) = supt–τ≤θ≤t ω(θ ) and γ >  is the smallest real root of the equation

a – b exp(γ τ ) = γ .

Lemma  ([]) Assume that τ >  and ω : [μ – τ ,∞) → [,∞) is a continuous function
such that

ω̇(t) ≤ aω(t) + bω(t – τ )

is satisfied for all t ≥ μ. If a >  and b > , then

ω(t) ≤ ω(μ) exp
(
η(t – μ + τ )

)
, t ≥ μ,

where ω(t) = supt–τ≤θ≤t ω(θ ) and η >  is the unique root of the equation

a + b exp(–ητ ) = η.

Throughout this paper, we use PT , λM(P) and λm(P) to denote the transpose, the maxi-
mum eigenvalue and the minimum eigenvalue of a square matrix P, respectively. ‖x‖ is
used to denote the Euclidean norm of the vector x. The matrix norm ‖ · ‖ is also re-
ferred to as the Euclidean norm. We use P >  (< , ≤ , ≥ ) to denote a symmetrical
positive (negative, semi-negative, semi-positive) definite matrix P. f (x(t–

 )) is defined by
f (x(t–

 )) = limt→t–


f (x(t)).

3 Main results
Theorem  If θ > τ and there exist a symmetric and positive definite matrix P ∈ Rn×n,
positive scalar constants g > , g > , q > , q > , ε > , ε > , η >  and η >  such
that the following hold:

() PA + AT P + PK + KT
 P + (ε + η)P + ε–

 L + gP ≤ ,
() PA + AT P + PK + KT

 P + (ε + η)P + ε–
 L – gP ≤ ,

() η–
 L – qP ≤ ,

() η–
 L – qP ≤ ,

() g > q and γ (θ – τ ) – η(T – θ + τ ) > ,
where γ >  is the smallest real root of the equation g – q exp(γ τ ) = γ and η >  is the
unique root of the equation g + q exp(–ητ ) = η, then the origin of system () is globally
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exponentially stable, and

∥∥x(t)
∥∥ <

√
λM(P)
λm(P)

|φ| exp

(
–
(
γ (θ – τ ) – η(T – θ + τ )

) t – θ

T

)
, t > ,

where |φ| = sup–τ≤t≤ ‖φ(t)‖.

Proof Let us construct the following Lyapunov function:

V
(
x(t)

)
= xT (x)Px(t), ()

from which we obtain that

λm(P)
∥∥x(t)

∥∥ ≤ V
(
x(t)

) ≤ λM(P)
∥∥x(t)

∥∥. ()

If mT < t ≤ mT + θ , then by (), () and () we have that

V̇
(
x(t)

)
= xT (t)Pẋ(t)

= xT (t)P
[
Ax(t) + f

(
x(t)

)
+ g

(
x(t – τ )

)
+ Kx(t)

]
= xT (t)PAx(t) + xT (t)Pf (x) + xT Pg

(
x(t – τ )

)
+ xT PKx(t)

= xT[
PA + AT P + PK + KT

 P
]
x + xT Pf (x) + xT Pg

(
x(t – τ )

)
≤ xT[

PA + AT P + PK + KT
 P

]
x

+ εxT (t)Px(t) + ε–
 xT (t)Lx(t)

+ ηxT (t)Px(t) + η–
 xT (t – τ )Lx(t – τ )

= –gV
(
x(t)

)
+ xT[

PA + AT P + PK + KT
 P

+ (ε + η)P + ε–
 L + gP

]
x + qV

(
x(t – τ )

)
+ xT (t – τ )

(
η–

 L – qP
)
x(t – τ )

≤ –gV
(
x(t)

)
+ qV

(
x(t – τ )

)
,

which implies that

V
(
x(t)

) ≤ V
(
x(mT)

)
exp

(
–γ (t – mT)

)
, ()

where γ >  is the smallest real root of the equation g – q exp(γ τ ) = γ .
Similarly, if mT + θ < t ≤ (m + )T , then we have that

V̇ (x) = xT Pẋ

≤ gV
(
x(t)

)
+ xT[

PA + AT P + PK + KT
 P

+ (ε + η)P + ε–
 L – gP

]
x + qV

(
x(t – τ )

)
+ xT (t – τ )

(
η–

 L – qP
)
x(t – τ )

≤ gV
(
x(t)

)
+ qV

(
x(t – τ )

)
,
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which implies that

V
(
x(t)

) ≤ V
(
x(mT + θ )

)
exp

(
η(t – mT – θ + τ )

)
, ()

where η >  is the unique root of the equation g + q exp(–ητ ) = η.
It follows from () and () that
() If  < t ≤ θ , then we have that

V
(
x(t)

) ≤ V
(
x()

)
exp(–γ t).

So

V
(
x(θ )

)
= sup

θ–τ≤t≤θ

V (t) ≤ sup
θ–τ≤t≤θ

(
V

(
x()

)
exp(–γ t)

)
= V

(
x()

)
exp

(
–γ (θ – τ )

)
.

() If θ < t ≤ T , then we have that

V
(
x(t)

) ≤ V
(
x(θ )

)
exp

(
η(t – θ + τ )

)
≤ V

(
x()

)
exp

(
–γ (θ – τ ) + η(t – θ + τ )

)
.

So

V
(
x(T)

) ≤ V
(
x()

)
exp

(
–γ (θ – τ ) + η(T – θ + τ )

)
.

() If T < t ≤ T + θ , then we have that

V
(
x(t)

) ≤ V
(
x(T)

)
exp

(
–γ (t – T)

)
≤ V

(
x()

)
exp

(
–γ (t – T) – γ (θ – τ ) + η(T – θ + τ )

)
.

So

V
(
x(T + θ )

) ≤ V
(
x()

)
exp

(
–γ (θ – τ ) + η(T – θ + τ )

)
.

() If T + θ < t ≤ T , then we have that

V
(
x(t)

) ≤ V
(
x(T + θ )

)
exp

(
η(t – T – θ + τ )

)
≤ V

(
x()

)
exp

(
η(t – T – θ + τ ) – γ (θ – τ ) + η(T – θ + τ )

)
.

So

V
(
x(T)

) ≤ V
(
x()

)
exp

(
η(T – θ + τ ) – γ (θ – τ )

)
.

() If T < t ≤ T + θ , then we have that

V
(
x(t)

) ≤ V
(
x(T)

)
exp

(
–γ (t – T)

)
≤ V

(
x()

)
exp

(
–γ (t – T) + η(T – θ + τ ) – γ (θ – τ )

)
.
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So

V (x(T + θ ) ≤ V
(
x()

)
exp

(
η(T – θ + τ ) – γ (θ – τ )

)
.

() If T + θ < t ≤ T , then we have that

V
(
x(t)

) ≤ V
(
x(T + θ )

)
exp

(
η(t – T – θ + τ )

)
≤ V

(
x()

)
exp

(
η(t – T – θ + τ ) + η(T – θ + τ ) – γ (θ – τ )

)
.

So

V
(
x(T)

) ≤ V
(
x()

)
exp

(
η(T – θ + τ ) – γ (θ – τ )

)
.

By induction, we have that
() If mT < t ≤ mT + θ , i.e., t–θ

T < m ≤ t
T , then we have that

V
(
x(t)

) ≤ V
(
x()

)
exp

(
–γ

(
t – m(T – θ + τ )

)
+ mη(T – θ + τ )

)
. ()

() If mT + θ < t ≤ (m + )T , i.e., t
T < m +  ≤ t+T–θ

T , then we have that

V
(
x(t)

) ≤ V
(
x()

)
exp

(
η(t – mT – θ + τ ) + mη(T – θ + τ ) – (m + )γ (θ – τ )

)
= V

(
x()

)
exp

(
–γ (m + )(θ – τ ) + η

(
t – (m + )(θ – τ )

))
. ()

From () we know that

V
(
x(t)

) ≤ V
(
x()

)
exp

(
–γ

(
t – m(T – θ + τ )

)
+ mη(T – θ + τ )

)
≤ V

(
x()

)
exp

(
–γ

(
mT – m(T – θ + τ )

)
+ mη(T – θ + τ )

)
= V

(
x()

)
exp

(
–
(
γ (θ – τ ) – η(T – θ + τ )

)
m

)
< V

(
x()

)
exp

(
–
(
γ (θ – τ ) – η(T – θ + τ )

) t – θ

T

)
, ()

where mT < t ≤ mT + τ .
From () we know that

V
(
x(t)

) ≤ V
(
x()

)
exp

(
–γ (m + )(θ – τ ) + η

(
t – (m + )(θ – τ )

))
≤ V

(
x()

)
exp

(
–γ (m + )(θ – τ ) + η

(
(m + )T – (m + )(θ – τ )

))
= V

(
x()

)
exp

(
–
(
γ (θ – τ ) – η(T – θ + τ )

)
(m + )

)
< V

(
x()

)
exp

(
–
(
γ (θ – τ ) – η(T – θ + τ )

) t
T

)

≤ V
(
x()

)
exp

(
–
(
γ (θ – τ ) – η(T – θ + τ )

) t – θ

T

)
, ()

where mT + τ < t ≤ (m + )T .
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It follows from () and () that, for any t > ,

V
(
x(t)

)
< V

(
x()

)
exp

(
–
(
γ (θ – τ ) – η(T – θ + τ )

) t – θ

T

)
. ()

By (), () and (), we conclude that

∥∥x(t)
∥∥ <

√
λM(P)
λm(P)

|φ| exp

(
–
(
γ (θ – τ ) – η(T – θ + τ )

) t – θ

T

)
, t > ,

where |φ| = sup–τ≤t≤ ‖φ(t)‖.
So we finish the proof. �

From Lemma , we know that the two conditions of Theorem  are equivalent to the
following two LMIs, respectively:

[
PA + AT P + PK + KT

 P + ε–
 L + gP –P

–P –(ε + η)–I

]
≤ , ()

[
PA + AT P + PK + KT

 P + ε–
 L – gP –P

–P –(ε + η)–I

]
≤ . ()

Corollary  If θ > τ and there exist a symmetric and positive definite matrix P ∈ Rn×n,
positive scalar constants ε > , ε > , η > , η > , q > , q >  and η >  such that the
following hold:

() PA + AT P + PK + KT
 P + (ε + η)P + ε–

 L + gP ≤ , where g = γ + q exp(γ τ ) and
γ = η(T–θ+τ )

θ–τ
+ q,

() PA + AT P + PK + KT
 P + (ε + η)P + ε–

 L – gP ≤ , where
g = η – q exp(–ητ ) > ,

() η–
 L – qP ≤ ,

() η–
 L – qP ≤ , then the origin of system () is globally exponentially stable, and

∥∥x(t)
∥∥ <

√
λM(P)
λm(P)

|φ| exp

(
–
(
γ (θ – τ ) – η(T – θ + τ )

) t – θ

T

)
, t > ,

where |φ| = sup–τ≤t≤ ‖φ(t)‖.

Proof In fact, the previous four conditions can imply

g > q

and

γ (θ – τ ) – η(T – θ + τ ) > .

From condition () we know

g = γ + q exp(γ τ ) =
η(T – θ + τ )

θ – τ
+ q + q exp(γ τ ) > q
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and

γ =
η(T – θ + τ )

θ – τ
+ q >

η(T – θ + τ )
θ – τ

,

which implies

γ (θ – τ ) – η(T – θ + τ ) > .

Thus, the fifth condition of Theorem  is valid. So the proof is completed. �

Remark  In order to judge the global exponential stability of system (), Corollary 
needs to determine the existence of a symmetric and positive definite matrix P ∈ Rn×n

and seven positive scalar constants ε, ε, η, η, q, q and η by the four linear matrix in-
equalities listed in it, while Theorem  has to determine the existence of a symmetric and
positive definite matrix P ∈ Rn×n and eight positive scalar constants ε, ε, η, η, q, q, g

and g by the five conditions of it. From this view of point, Corollary  is more applicative
than Theorem .

4 Numerical example
Consider the neural oscillator model described by the following delayed differential equa-
tion:

ẋ(t) = Ax(t) + f
(
x(t)

)
+ g

(
x(t – )

)
, ()

where

A =

(
– 
 –

)
, f

(
x(t)

)
=

(
 –.

– 

)(
tanh x(t)
tanh x(t)

)

and

g(x(t – )) =

(
–. –.
–. –.

)(
tanh x(t – )
tanh x(t – )

)
.

This model was named Lu oscillator [] and it is shown to be chaotic as in Figure . The
time response curves are shown in Figure .

It is easy to obtain that

∥∥f
(
x(t)

)∥∥ = f T(
x(t)

)
f
(
x(t)

)

=

(
tanh x(t)
tanh x(t)

)T (
 –.

– 

)T (
 –.

– 

)(
tanh x(t)
tanh x(t)

)

≤ xT Lx,

where L = (  –.
–. . ).

Similarly, we can get that ‖g(x(t))‖ ≤ xT Lx, where L = ( . .
. .).

Next, we will use Theorem  to judge the global exponential stability of system ().
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Figure 1 Chaotic behavior of Lu oscillator
determined by system (16) with the initial values
x(θ ) = (2, –1)T , where θ ∈ [–1, 0].

Figure 2 Time response curves of Lu oscillator
without control when the initial values are x(θ )
= (2, –1)T , where θ ∈ [–1, 0].

Choosing

K = diag(–, –),

K = diag(–, –),

with T =  and θ = ., solving LMIs (), (), η–
 L – qP ≤ , η–

 L – qP ≤  and in-
equalities g > q, γ (θ – ) – η(T – θ + ) > , where γ >  is the smallest real root of the
equation g – q exp(γ ) = γ and η >  is the unique root of the equation g + q exp(–η) = η,
we obtain a feasible solution:

ε = ., ε = ., η = , η = , g = ., g = .,

q = ., q = .,

and

P =

[
. .
. .

]
.

Thus by Theorem  we obtain that the origin of system () is globally exponentially sta-
ble. The time response curves of Lu oscillator with alternate control are shown in Figure ,
while Figure  shows the corresponding control signal.

In the following, we will apply Corollary  to determine the global exponential stability
of system ().
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Figure 3 Time response curves of Lu oscillator
under alternate control with T = 3, θ = 1.5, K1
= diag(–10, –10), K2 = diag(–6, –6) and the initial
values x(θ ) = (2, –1)T , where θ ∈ [–1, 0].

Figure 4 Control signal for Lu oscillator of T = 3,
θ = 1.5, K1 = diag(–10, –10) and K2 = diag(–6, –6).

Choosing

K = diag(–, –),

K = diag(–, –),

with T =  and θ = ., solving LMIs (), (), η–
 L – qP ≤  and η–

 L – qP ≤ , where
g = γ + q exp(γ τ ) and γ = η(T–θ+τ )

θ–τ
+ q and g = η – q exp(–ητ ) > , we obtain a feasible

solution:

ε = ., ε = ., η = , η = ,

q = ., q = ., η = .

and

P =

[
. .
. .

]
.

Thus by Corollary  we obtain that the origin of system () is globally exponentially sta-
ble. The time response curves of Lu oscillator with alternate control are shown in Figure .
The control signal is shown in Figure .
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Figure 5 Time response curves of Lu oscillator
under alternate control with T = 3, θ = 1.5, K1
= diag(–15, –15), K2 = diag(–11, –11) and the
initial values x(θ ) = (2, –1)T , where θ ∈ [–1, 0].

Figure 6 Control signal for Lu oscillator of T = 3,
θ = 1.5, K1 = diag(–15, –15) and K2 = diag(–11,
–11).

5 Conclusions
This paper studies the delayed system by using alternate control method. Some conditions
to ensure the stability of the system are given in terms of linear matrix inequalities. By the
results obtained, the Lu oscillate is controlled.
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