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Abstract
In this work, we define a quadra Fibona-Pell integer sequence
Wn = 3Wn–1 – 3Wn–3 –Wn–4 for n ≥ 4 with initial valuesW0 =W1 = 0,W2 = 1,W3 = 3,
and we derive some algebraic identities on it including its relationship with Fibonacci
and Pell numbers.
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1 Preliminaries
Let p and q be non-zero integers such that D = p – q �=  (to exclude a degenerate case).
We set the sequences Un and Vn to be

Un = Un(p, q) = pUn– – qUn–,

Vn = Vn(p, q) = pVn– – qVn–

()

for n ≥  with initial values U = , U = , V = , and V = p. The sequences Un and Vn

are called the (first and second) Lucas sequences with parameters p and q. Vn is also called
the companion Lucas sequence with parameters p and q.

The characteristic equation of Un and Vn is x – px + q =  and hence the roots of it are
x = p+

√
D

 and x = p–
√

D
 . So their Binet formulas are

Un =
xn

 – xn


x – x
and Vn = xn

 + xn


for n ≥ . For the companion matrix M =
[ p –q

 
]
, one has

[
Un

Un–

]

= Mn–

[



]

and

[
Vn

Vn–

]

= Mn–

[
p


]

for n ≥ . The generating functions of Un and Vn are

U(x) =
x

 – px + qx and V (x) =
 – px

 – px + qx . ()

Fibonacci, Lucas, Pell, and Pell-Lucas numbers can be derived from (). Indeed for p = 
and q = –, the numbers Un = Un(, –) are called the Fibonacci numbers (A in
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OEIS), while the numbers Vn = Vn(, –) are called the Lucas numbers (A in OEIS).
Similarly, for p =  and q = –, the numbers Un = Un(, –) are called the Pell numbers
(A in OEIS), while the numbers Vn = Vn(, –) are called the Pell-Lucas (A
in OEIS) (companion Pell) numbers (for further details see [–]).

2 Quadra Fibona-Pell sequence
In [], the author considered the quadra Pell numbers D(n), which are the numbers of the
form D(n) = D(n – ) + D(n – ) + D(n – ) for n ≥  with initial values D() = D() =
D() = , D() = , and the author derived some algebraic relations on it.

In [], the authors considered the integer sequence (with four parameters) Tn = –Tn– –
Tn– + Tn– + Tn– with initial values T = , T = , T = –, T = , and they derived
some algebraic relations on it.

In the present paper, we want to define a similar sequence related to Fibonacci and Pell
numbers and derive some algebraic relations on it. For this reason, we set the integer se-
quence Wn to be

Wn = Wn– – Wn– – Wn– ()

for n ≥  with initial values W = W = , W = , W =  and call it a quadra Fibona-
Pell sequence. Here one may wonder why we choose this equation and call it a quadra
Fibona-Pell sequence. Let us explain: We will see below that the roots of the characteristic
equation of Wn are the roots of the characteristic equations of both Fibonacci and Pell
sequences. Indeed, the characteristic equation of () is x – x + x +  =  and hence the
roots of it are

α =
 +

√



, β =

 –
√




, γ =  +
√

 and δ =  –
√

. ()

(Here α, β are the roots of the characteristic equation of Fibonacci numbers and γ , δ are
the roots of the characteristic equation of Pell numbers.) Then we can give the following
results for Wn.

Theorem  The generating function for Wn is

W (x) =
x

x + x – x + 
.

Proof The generating function W (x) is a function whose formal power series expansion
at x =  has the form

W (x) =
∞∑

n=

Wnxn = W + Wx + Wx + · · · + Wnxn + · · · .

Since the characteristic equation of () is x – x + x +  = , we get

(
 – x + x + x)W (x) =

(
 – x + x + x)(W + Wx + · · · + Wnxn + · · · )

= W + (W – W)x + (W – W)x
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+ (W – W + W)x + · · ·
+ (Wn – Wn– + Wn– + Wn–)xn + · · · .

Notice that W = W = , W = , W = , and Wn = Wn– – Wn– – Wn–. So ( – x +
x + x)W (x) = x and hence the result is obvious. �

Theorem  The Binet formula for Wn is

Wn =
(

γ n – δn

γ – δ

)
–

(
αn – βn

α – β

)

for n ≥ .

Proof Note that the generating function is W (x) = x

x+x–x+ . It is easily seen that x +
x – x +  = ( – x – x)( – x – x). So we can rewrite W (x) as

W (x) =
x

 – x – x –
x

 – x – x . ()

From (), we see that the generating function for Pell numbers is

P(x) =
x

 – x – x ()

and the generating function for the Fibonacci numbers is

F(x) =
x

 – x – x . ()

From (), (), (), we get W (x) = P(x) – F(x). So Wn = ( γ n–δn

γ –δ
) – ( αn–βn

α–β
) as we wanted. �

The relationship with Fibonacci, Lucas, and Pell numbers is given below.

Theorem  For the sequences Wn, Fn, Ln, and Pn, we have:
() Wn = Pn – Fn for n ≥ .
() Wn+ + Wn– = (γ n + δn) – (αn + βn) for n ≥ .
()

√
Fn + 

√
Pn = (γ n – δn) + (αn – βn) for n ≥ .

() Ln + Pn+ + Pn– = αn + βn + γ n + δn for n ≥ .
() (Wn+ – Wn + Fn–) = γ n + δn for n ≥ .
() limn→∞ Wn

Wn–
= γ .

Proof () It is clear from the above theorem, since W (x) = P(x) – F(x).
() Since Wn– + Wn+ = Wn+ – Wn– – Wn– + Wn–, we get

Wn+ + Wn– = Wn– +



Wn– +



Wn+

=



(
γ n– – δn–

γ – δ
–

αn– – βn–

α – β

)

+



(
γ n– – δn–

γ – δ
–

αn– – βn–

α – β

)



Özkoç Advances in Difference Equations  (2015) 2015:148 Page 4 of 10

+



(
γ n+ – δn+

γ – δ
–

αn+ – βn+

α – β

)

=


(γ – δ)

[
γ n

(

γ

+

γ  + γ 

)
+ δn

(
–
δ

–

δ – δ

)]

+


(α – β)

[
αn

(
–
α

–

α – α

)
+ βn

(

β

+

β + β

)]

=
(
γ n + δn) –

(
αn + βn),

since 
γ

+ 
γ  + γ  = –

δ
– 

δ – δ = 
√

 and –
α

– 
α – α = 

β
+ 

β + β = –
√

.
() Notice that Fn = αn–βn

α–β
and Pn = γ n–δn

γ –δ
. So we get

√
Fn = αn –βn and 

√
Pn = γ n –δn.

Thus clearly,
√

Fn + 
√

Pn = (γ n – δn) + (αn – βn).
() It is easily seen that Pn+ + Pn– = γ n + δn. Also Ln = αn + βn. So Ln + Pn+ + Pn– =

αn + βn + γ n + δn.
() Since Wn+ = Wn – Wn– – Wn–, we easily get

Wn+ – Wn = Wn – Wn– – Wn–

= 
(

γ n – δn

γ – δ
–

αn – βn

α – β

)
– 

(
γ n– – δn–

γ – δ
–

αn– – βn–

α – β

)

–
(

γ n– – δn–

γ – δ
–

αn– – βn–

α – β

)

=


γ – δ

[
γ n

(
 –


γ  –


γ 

)
+ δn

(
– +


δ +


δ

)]

+


α – β

[
αn–

(
α –


α

–

α

)
– βn–

(
β –


β

–

β

)]

and hence

Wn+ – Wn =



√



[
γ n

(
γ  – γ – 

γ 

)
+ δn

(
–δ + δ + 

δ

)]

–


α – β

[
αn–

(
α – α – 

α

)
– βn–

(
β – β – 

β

)]

⇔ Wn+ – Wn +


α – β

[
αn–

(
α – α – 

α

)
– βn–

(
β – β – 

β

)]

=
√


[
γ n

(
γ  – γ – 

γ 

)
+ δn

(
–δ + δ + 

δ

)]

⇔ (Wn+ – Wn + Fn–) = γ n + δn,

since γ –γ –
γ  = –δ+δ+

δ =
√

 and α–α–
α = β–β–

β = .
() It is just an algebraic computation, since Wn = ( γ n–δn

γ –δ
) – ( αn–βn

α–β
). �

Theorem  The sum of the first n terms of Wn is

n∑

i=

Wi =
Wn + Wn– + Wn– + Wn– + 


()

for n ≥ .
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Proof Recall that Wn = Wn– – Wn– – Wn–. So

Wn– + Wn– = Wn– – Wn– – Wn. ()

Applying (), we deduce that

W + W = W – W – W,

W + W = W – W – W,

W + W = W – W – W,

. . . ,

Wn– + Wn– = Wn– – Wn– – Wn–,

Wn– + Wn– = Wn– – Wn– – Wn.

()

If we sum of both sides of (), then we obtain Wn– + W + (W + · · · + Wn–) = (W +
W + · · ·+ Wn–) – (W + W + · · ·+ Wn–) – (W + W + · · ·+ Wn). So we get Wn– + (W +
W + · · · + Wn–) =  – Wn– – Wn– – Wn + Wn– + Wn– and hence we get the desired
result. �

Theorem  The recurrence relations are

Wn = Wn– – Wn– + Wn– – Wn–,

Wn+ = Wn– – Wn– + Wn– – Wn–

for n ≥ .

Proof Recall that Wn = Wn– – Wn– – Wn–. So Wn = Wn– – Wn– – Wn– and
hence

Wn = Wn– – Wn– – Wn–

= Wn– – Wn– – Wn– – Wn– + Wn– + Wn–

+ Wn– – Wn– – Wn–

= –(Wn– – Wn– – Wn–) + Wn– – Wn– + Wn–

– Wn– – Wn–

= –Wn– + Wn– – Wn– – Wn– + Wn– – Wn– – Wn–

= Wn– – Wn– + Wn– – Wn–.

The other assertion can be proved similarly. �

The rank of an integer N is defined to be

ρ(N) =

{
p if p is the smallest prime with p|N ,
∞ if N is prime.

Thus we can give the following theorem.
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Theorem  The rank of Wn is

ρ(Wn) =

⎧
⎪⎨

⎪⎩

 if n =  + k,  + k,  + k,
 if n =  + k,  + k,  + k,  + k,
 if n =  + k,  + k

for an integer k ≥ .

Proof Let n = +k. We prove it by induction on k. Let k = . Then we get W =  =  ·.
So ρ(W) = . Let us assume that the rank of Wn is  for n = k – , that is, ρ(Wk–) = , so
W+(k–) = Wk– = a · B for some integers a ≥  and B > . For n = k, we get

Wk+ = Wk+ – Wk+ – Wk+

= (Wk+ – Wk+ – Wk) – Wk+ – Wk+

= Wk+ – Wk+ – Wk – Wk+ – Wk+

= (Wk+ – Wk – Wk–) – Wk+ – Wk – Wk+ – Wk+

= Wk+ – Wk – Wk– – Wk+ – Wk – Wk+ – Wk+

= Wk+ – Wk – Wk+ – Wk–

= Wk+ – Wk – Wk+ –  · aB

= 
[
Wk+ – Wk – Wk+ –  · a–B

]
.

Therefore ρ(W+k) = . Similarly it can be shown that ρ(W+k) = ρ(W+k) = .
Now let n =  + k. For k = , we get W =  =  · . So ρ(W) = . Let us assume

that for n = k –  the rank of Wn is , that is, ρ(W+(k–)) = ρ(Wk–) = b · H for some
integers b ≥  and H >  which is not even integer. For n = k, we get

Wk+ = Wk+ – Wk+ – Wk+

= Wk+ – Wk+ – (Wk+ – Wk+ – Wk)

= Wk+ – Wk+ – Wk+ + Wk+ + Wk

= Wk+ – Wk+ – Wk+ + Wk+

+ (Wk– – Wk– – Wk–)

= Wk+ – Wk+ – Wk+ + Wk+ + Wk–

– Wk– – Wk–

= Wk+ – Wk+ – Wk+ + Wk+ + Wk–

– Wk– – b · H

= 
(
Wk+ – Wk+ – Wk+ + Wk+ + Wk–

– Wk– – b– · H
)
.

So ρ(Wk+) = . The others can be proved similarly. �
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Remark  Apart from the above theorem, we see that ρ(W) = ρ(W) = ∞, while
ρ(W) = ρ(W) =  and ρ(W) = ρ(W) = ρ(W) = . But there is no general for-
mula.

The companion matrix for Wn is

M =

⎡

⎢
⎢⎢
⎣

  – –
   
   
   

⎤

⎥
⎥⎥
⎦

.

Set

N =

⎡

⎢⎢
⎢
⎣






⎤

⎥⎥
⎥
⎦

and

R = [   ].

Then we can give the following theorem, which can be proved by induction on n.

Theorem  For the sequence Wn, we have:
() RMnN = Wn+ + Pn + (Wn+ – Fn) for n ≥ .
() R(MT )n–N = Wn for n ≥ .
() If n ≥  is odd, then

Mn =

⎡

⎢⎢
⎢
⎣

m m m m

m m m m

m m m m

m m m m

⎤

⎥⎥
⎥
⎦

,

where

m = Wn+, m = Wn+, m = Wn, m = Wn–,

m = –Wn+, m = –Wn, m = –Wn–, m = –Wn–,

m = – – Wn+ – 

n–
∑

i=

Wn––i, m = –Wn+ – 

n–
∑

i=

Wn–i,

m = –Wn – 

n–
∑

i=

Wn––i, m = – – Wn+ – 

n–
∑

i=

Wn––i,

m = – – Wn– – 

n–
∑

i=

Wn––i, m = –Wn – 

n–
∑

i=

Wn––i,
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m = –Wn– – 

n–
∑

i=

Wn––i, m = – – Wn– – 

n–
∑

i=

Wn––i,

and if n ≥  is even, then

Mn =

⎡

⎢⎢⎢
⎣

m m m m

m m m m

m m m m

m m m m

⎤

⎥⎥⎥
⎦

,

where

m = Wn+, m = Wn+, m = Wn, m = Wn–,

m = –Wn+, m = –Wn, m = –Wn–, m = –Wn–,

m = –Wn+ – 

n–
∑

i=

Wn––i, m = – – Wn+ – 

n–
∑

i=

Wn–i,

m = – – Wn – 

n–
∑

i=

Wn––i, m = –Wn+ – 

n–
∑

i=

Wn––i,

m = –Wn– – 

n–
∑

i=

Wn––i, m = – – Wn – 

n–
∑

i=

Wn––i,

m = – – Wn– – 

n–
∑

i=

Wn––i, m = –Wn– – 

n–
∑

i=

Wn––i.

A circulant matrix is a matrix A = [aij]n×n defined to be

A =

⎡

⎢
⎢⎢
⎢⎢⎢
⎢⎢
⎣

a a a · · · an–

an– a a · · · an–

an– an– a · · · an–

· · · · · · ·
· · · · · · ·

a a a · · · a

⎤

⎥
⎥⎥
⎥⎥⎥
⎥⎥
⎦

,

where ai are constants. The eigenvalues of A are

λj(A) =
n–∑

k=

akw–jk , ()

where w = e π i
n , i =

√
–, and j = , , . . . , n – . The spectral norm for a matrix B = [bij]n×m

is defined to be ‖B‖spec = max{√λi}, where λi are the eigenvalues of BHB for  ≤ j ≤ n – 
and BH denotes the conjugate transpose of B.
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For the circulant matrix

W = W (Wn) =

⎡

⎢⎢⎢
⎢⎢
⎢⎢
⎢
⎣

W W W · · · Wn–

Wn– W W · · · Wn–

Wn– Wn– W · · · Wn–

· · · · · · ·
· · · · · · ·

W W W · · · W

⎤

⎥⎥⎥
⎥⎥
⎥⎥
⎥
⎦

for Wn, we can give the following theorem.

Theorem  The eigenvalues of W are

λj(W ) =

{
Wn–w–j + (Wn + Pn– – Fn– + )w–j

+ (Pn – Fn – Wn–)w–j – Wn

}

w–j + w–j – w–j + 

for j = , , , . . . , n – .

Proof Applying () we easily get

λj(W ) =
n–∑

k=

Wkw–jk =
n–∑

k=

(
γ k – δk

γ – δ
–

αk – βk

α – β

)
w–jk

=


γ – δ

[
γ n – 

γ w–j – 
–

δn – 
δw–j – 

]
–


α – β

[
αn – 

αw–j – 
–

βn – 
βw–j – 

]

=


γ – δ

[
(γ n – )(δw–j – ) – (δn – )(γ w–j – )

(γ w–j – )(δw–j – )

]

–


α – β

[
(αn – )(βw–j – ) – (βn – )(αw–j – )

(αw–j – )(βw–j – )

]

=


γ – δ

[
w–j(γ nδ – δnγ + γ – δ) + δn – γ n

δγ w–j – w–j(δ + γ ) + 

]

–


α – β

[
w–j(αnβ – βnα + α – β) + βn – αn

βαw–j – w–j(β + α) + 

]

=

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

w–j[
√

(δ – γ + γ δn – δγ n) + 
√

(α – β + αnβ – αβn)]
+ w–j[

√
(γ n – δn + δ – γ + γ δn – γ nδ) + 

√
(βn – αn)

+ 
√

(α – β + αnβ – αβn)] + w–j[
√

(γ n – δn + γ – δ

+ γ nδ – γ δn) + 
√

(β – α + βnα – αnβ) + 
√

(βn – αn)]
+ [

√
(δn – γ n) + 

√
(αn – βn)]

⎫
⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎭


√

(w–j + w–j – w–j + )

=

{
Wn–w–j + (Wn + Pn– – Fn– + )w–j

+ (Pn – Fn – Wn–)w–j – Wn

}

w–j + w–j – w–j + 
,

since αβ = –, γ δ = –, α + β = , α – β =
√

, γ + δ = , and γ – δ = 
√

. �
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After all, we consider the spectral norm of W . Let n = . Then W = []×. So
‖W‖spec = . Similarly for n = , we get

W =

⎡

⎢
⎣

  
  
  

⎤

⎥
⎦

and hence W H
 W = I. So ‖W‖spec = . For n ≥ , the spectral norm of Wn is given by the

following theorem, which can be proved by induction on n.

Theorem  The spectral norm of Wn is

‖Wn‖spec =
Wn– + Wn– + Wn– + Wn– + 



for n ≥ .

For example, let n = . Then the eigenvalues of W H
 W are

λ = ,, λ = , λ = λ =  and λ = λ = .

So the spectral norm is ‖W‖spec =
√

λ = . Also W+W+W+W+
 = . Consequently,

‖W‖spec =
W + W + W + W + 


= 

as we claimed.
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