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Abstract
In this paper, we study the Galerkin spectral approximation to an unconstrained
convex distributed optimal control problem governed by the time fractional diffusion
equation. We construct a suitable weak formulation, study its well-posedness, and
design a Galerkin spectral method for its numerical solution. The contribution of the
paper is twofold: a priori error estimate for the spectral approximation is derived;
a conjugate gradient optimization algorithm is designed to efficiently solve the
discrete optimization problem. In addition, some numerical experiments are carried
out to confirm the efficiency of the proposed method. The obtained numerical results
show that the convergence is exponential for smooth exact solutions.
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1 Introduction
Optimal control problems (OCPs) can be found in many scientific and engineering ap-
plications, and it has become a very active and successful research area in recent years.
Considerable work has been done in the area of OCPs governed by integral order differ-
ential equations, the literature on this field is huge, and it is impossible to give even a very
brief review here. Recently, fractional differential equations (FDEs) have gained consid-
erable importance due to their application in various sciences, such as control theory [,
], viscoelastic materials [, ], anomalous diffusion [–], advection and dispersion of
solutes in porous or fractured media [], etc. [–]. Therefore, the optimal control prob-
lem for the fractional-order system initiated a new research direction and has received
increasing attention.

A general formulation and a solution scheme for the fractional optimal control prob-
lem (FOCP) were first proposed in [], where the fractional variational principle and the
Lagrange multiplier technique were used. Following this idea, Frederico and Torres [,
] formulated a Noether-type theorem in the general context and studied fractional con-
servation laws. Mophou [] applied the classical control theory to a fractional diffusion
equation, involving a Riemann-Liouville fractional time derivative. Dorville et al. [] later
extended the results of [] to a boundary fractional optimal control. Also we refer the in-
terested reader in FOCP to [–] for some recent work on the subject.

Recently, considerable efforts have been made in developing spectral methods for solv-
ing FDEs. For instance, a Legendre spectral approximation was proposed in [–] to
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solve the fractional diffusion equations. Bhrawy et al. [] applied the shifted Legendre
spectral collocation method to obtain the numerical solution of the space-time fractional
Burger’s equation. A spectral collocation scheme based upon the generalized Laguerre
polynomials was investigated in [] to obtain a numerical solution of the fractional pan-
tograph equation with variable coefficients on a semi-infinite domain. With the help of
operational matrices of fractional derivatives for orthogonal polynomials, the Jacobi tau
spectral method is also utilized in [] to solve multi-term space-time fractional par-
tial differential equations. On the other hand, there exist also limited but very promis-
ing efforts in developing spectral methods for solving FOCPs. In [], a numerical direct
method based on the Legendre orthonormal basis and operational matrix of Riemann-
Liouville fractional integration were introduced to solve a general class of FOCP, and
the convergence of the proposed method was also extensively discussed. Ye and Xu
[] proposed a Galerkin spectral method to solve the linear-quadratic FOCP associ-
ated to the time fractional diffusion equation with control constraints, and detailed er-
ror analysis was carried out. Doha et al. [] derived an efficient numerical scheme
based on the shifted orthonormal Jacobi polynomials to solve a general form of the
FOCPs.

The main aim of this work is to derive a priori error estimates for spectral approxima-
tion to an unconstrained FOCP with general convex cost functional, and propose an effi-
cient algorithm to solve the discrete control problem. As compared to the linear-quadratic
FOCP considered by Ye and Xu [], the presence of the general cost functional here leads
to many additional difficulties, one of which is that the derivation of the optimality con-
dition.

The rest of the paper is organized as follows. In the next section we formulate the op-
timal control problem under consideration and derive the optimality conditions. In Sec-
tion , the space-time spectral discretization is presented. Thereafter, the main result on
the error analysis for the considered optimal control problem is given in Section . In
this section, error estimates for the error in the control, state, and adjoint variables are
analyzed. In Section , we describe the overall algorithm and present some numerical
examples to illustrate our results. Some concluding remarks are given at the end of this
article.

2 Fractional optimal control problem and optimization
Let � = (–, ), I = (, T), and � = I ×�. We consider the following optimal control prob-
lem for the state variable u and the control variable q:

min
q

{
g(u) + h(q)

}
, (.)

where g and h are given convex functionals, u is governed by the time fractional diffusion
equation as follows:

∂
α
t u(x, t) – ∂

x u(x, t) = f (x, t) + q(x, t), ∀(x, t) ∈ �,

u(–, t) = u(, t) = , ∀t ∈ I, (.)

u(x, ) = u(x), ∀x ∈ �,
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with ∂
α
t denoting the left-sided Caputo fractional derivative of order α ∈ (, ), following

[], defined as

∂
α
t u(x, t) =


�( – α)

∫ t


∂τ u(x, τ )

dτ

(t – τ )α
. (.)

In order to define well the FOCP, we first introduce some notations that will be used
to construct the weak problem of the time fractional diffusion equation (.). We use the
symbol O to denote a domain which may stand for �, I or �. Let L(O) be the space of
measurable functions whose square is Lebesgue integrable in O. The inner product and
norm of L(O) are defined by

(u, v)O :=
∫

O
uv dO, ‖u‖,O := (u, u)



O , ∀u, v ∈ L(O).

For a nonnegative real number s, we also use Hs(O) and Hs
(O) to denote the usual Sobolev

spaces, whose norms are denoted by ‖ · ‖s,O ; see, e.g. [].
Particularly, we will need to recall the definitions of some fractional Sobolev spaces in-

troduced in []. For a bounded domain I , the space

lHs(I) :=
{

v;‖v‖lHs(I) < ∞}

is endowed with the norm

‖v‖lHs(I) :=
(‖v‖

,I + |v|lHs(I)

) 
 , |v|lHs(I) :=

∥∥R
∂ s

t v
∥∥

,I ,

and the space

rHs(I) :=
{

v;‖v‖rHs(I) < ∞}

is endowed with the norm

‖v‖rHs(I) :=
(‖v‖

,I + |v|rHs(I)
) 

 , |v|rHs(I) :=
∥∥R

t ∂ s
T v

∥∥
,I ,

where R
∂ s

t v and R
t ∂ s

T v, respectively, denote the left and right Riemann-Liouville fractional
derivative, whose definitions will be given later. It has been showed in [] that the spaces
lHs(I), rHs(I) and the usual Sobolev space Hs(I) are equivalent for s �= n – 

 .
For the Sobolev space X with norm ‖ · ‖X , let

Hs(I; X) :=
{

v|∥∥v(·, t)
∥∥

X ∈ Hs(I)
}

, s ≥ ,

endowed with the norm

‖v‖Hs(I;X) :=
∥∥∥∥v(·, t)

∥∥
X

∥∥
s,I =

∥∥∥∥v(·, t)
∥∥

X

∥∥
,I +

∥∥R
∂α

t
(∥∥v(·, t)

∥∥
X

)∥∥
,I .

When X stands for Hμ(�) or Hμ
 (�), μ ≥ , the norm of the space Hs(I; X) will be denoted

by ‖ · ‖μ,s,�. Hereafter, in the cases where no confusion would arise, the domain symbols
I , �, and � may be dropped from the notations.
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We also need some definitions regarding fractional derivatives allowing us to formulate
the FOCP. The right Caputo fractional derivative [] is given by

t∂
α
T u(t) = –


�( – α)

∫ T

t

u′(τ )
(τ – t)α

dτ ,  < α < . (.)

The left Riemann-Liouville fractional derivative is defined as

R
∂α

t u(t) =


�( – α)
d
dt

∫ t



u(τ )
(t – τ )α

dτ ,  < α < , (.)

and the right Riemann-Liouville fractional derivative is given by

R
t ∂α

T u(t) = –


�( – α)
d
dt

∫ T

t

u(τ )
(τ – t)α

dτ ,  < α < . (.)

The definitions of the Riemann-Liouville and the Caputo fractional derivative are linked
by the following relationship:

R
∂α

t v(t) =
v()t–α

�( – α)
+ ∂

α
t v(t), (.)

R
t ∂α

T v(t) =
v(T)(T – t)–α

�( – α)
+ t∂

α
T v(t). (.)

We employ the space introduced in []

Bs(�) = Hs(I, L(�)
) ∩ L(I, H

(�)
)

equipped with the norm

‖v‖Bs(�) =
(‖v‖

Hs(I,L(�)) + ‖v‖
L(I,H

(�))

) 
 .

In this setting, the weak formulation of the state equation (.) reads []: given q, f ∈
L(�), find u ∈ B α

 (�), such that

A(u, v) = (f + q, v)� +
(

u(x)t–α

�( – α)
, v

)

�

, ∀v ∈ B
α
 (�), (.)

where the bilinear form A(·, ·) is defined by

A(u, v) :=
(R

∂
α


t u, R
t ∂

α


T v
)
�

+ (∂xu, ∂xv)�.

It has been proved [] that the problem (.) is well-posed.
We now define the cost functional as follows:

J (q, u) := g(u) + h(q), (.)

then the optimal control problem (.)-(.) reads: find (q∗, u(q∗)) ∈ L(�) × B α
 (�), such

that

J
(
q∗, u

(
q∗)) = min

(q,u)∈L(�)×B
α
 (�)

J (q, u) subject to (.). (.)
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We further assume that h(q) → +∞ as ‖q‖,� → +∞, and the functional g(·) is bounded
below, then the optimal control problem (.) admits a unique solution (q∗, u(q∗)) ∈
L(�) × B α

 (�).
The well-posedness of the state problem ensures the existence of a control-to-state map-

ping q �→ u = u(q) defined through (.). By means of this mapping we introduce the
reduced cost functional J(q) := J (q, u(q)), q ∈ L(�). Then the optimal control problem
(.) is equivalent to: find q∗ ∈ L(�), such that

J
(
q∗) = min

q∈L(�)
J(q). (.)

The first order necessary optimality condition for (.) takes the form

J ′(q∗)(δq) = , ∀δq ∈ L(�), (.)

where J ′(q∗)(δq) is usually called the gradient of J(q), which is defined through the Gâteaux
differential of J(q) at q∗ along the direction δq.

Lemma . We have

J ′(q)(δq) =
(
h′(q) + z(q), δq

)
�

, ∀δq ∈ L(�), (.)

where z(q) = z is the solution of the following adjoint state equation:

t∂
α
T z(x, t) – ∂

x z(x, t) = g ′(u), ∀(x, t) ∈ �,

z(–, t) = z(, t) = , ∀t ∈ I, (.)

z(x, T) = , ∀x ∈ �.

Proof We first obtain by using the chain rule

J ′(q)(δq) =
(
g
(
u(q)

))′(δq) + h′(q)(δq)

=
∫

�

g ′(u(q)
)
u′(q)(δq) dx dt +

∫

�

h′(q)δq dx dt. (.)

We now compute u′(q)(δq). For simplicity, let δu denote the derivative of u = u(q) in the
direction δq, that is,

δu(x, t) := u′(q)(δq) = lim
ε→

u(q + εδq) – u(q)
ε

.

Then it is readily seen that δu is the solution of the following problem:

⎧
⎪⎪⎨

⎪⎪⎩

∂
α
t δu – ∂

x δu = δq, ∀(x, t) ∈ �,

δu(–, t) = δu(, t) = , ∀t ∈ I,

δu(x, ) = , ∀x ∈ �.

(.)
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To prove (.), we multiply each side of the first equation in (.) by δu, then integrate
the resulted equation on the domain � to find

∫

�

g ′(u)δu dx dt =
∫

�

(
t∂

α
T z – ∂

x z
)
δu dx dt. (.)

On one side, taking into account the boundary conditions in (.) and (.), we have
∫

�

∂
x zδu dx dt =

∫

�

z∂
x δu dx dt. (.)

On the other side, by means of (.), (.), the terminal condition in (.), the initial
condition in (.), and the fractional integration by parts demonstrated in [], we have

∫

�
t∂

α
T zδu dx dt =

∫

�

(
R
t ∂α

T z –
z(x, T)(T – t)–α

�( – α)

)
δu dx dt

=
∫

�

R
t ∂α

T zδu dx dt =
∫

�

zR
∂α

t δu dx dt

=
∫

�

z∂
α
t δu dx dt +

∫

�

zδu(x, )
�( – α)tα

dx dt

=
∫

�

z∂
α
t δu dx dt. (.)

Finally, combining (.), (.), (.), and (.), we obtain
∫

�

g ′(u)δu dx dt =
∫

�

(
∂

α
t δu – ∂

x δu
)
z dx dt

=
∫

�

δqz dx dt. (.)

This, together with (.), leads to (.). �

The weak form of (.) reads: find z ∈ B α
 (�), such that

A(ϕ, z) =
(
g ′(u),ϕ

)
�

, ∀ϕ ∈ B
α
 (�). (.)

Following the same idea as for the problem (.), it can be proved that (.) admits a
unique solution z ∈ B α

 (�) for any given u ∈ B α
 (�).

In what follows we will need the mapping q → u(q) → z(q), where for any given q, u(q)
is defined by (.), and once u(q) is known z(q) is defined by (.).

3 Space-time spectral discretization
In this section we investigate a space-time spectral approximation to the optimization
problem (.).

We first define the polynomial space

P
M(�) := PM(�) ∩ H

(�), SL := P
M(�) ⊗ PN (I),

where PM denotes the space of all polynomials of degree less than or equal to M, L stands
for the parameter pair (M, N).
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We then define the discrete cost functional, which is an approximation to the reduced
cost functional J , as follows:

JL(qL) := g(uL) + h(qL), ∀qL ∈ PM(�) ⊗ PN (I), (.)

where uL = uL(qL) ∈ SL is the solution of the following problem:

A(uL, vL) = (f + qL, vL)� +
(

u(x)t–α

�( – α)
, vL

)

�

, ∀vL ∈ SL. (.)

We propose the following space-time spectral approximation to the optimization problem
(.): find q∗

L ∈ PM(�) ⊗ PN (I) such that

JL
(
q∗

L
)

= min
qL∈PM(�)⊗PN (I)

JL(qL). (.)

It can be proved that the discrete optimization problem (.) admits a unique solution
q∗

L ∈ PM(�) ⊗ PN (I), which fulfills the first order optimality condition:

J ′
L
(
q∗

L
)
(δq) = , ∀δq ∈ PM(�) ⊗ PN (I), (.)

where

J ′
L(qL)(δq) =

(
h′(qL) + zL, δq

)
�

(.)

with zL = zL(qL) ∈ SL, the solution of the discrete adjoint state equation:

A(ϕL, zL) =
(
g ′(uL),ϕL

)
�

, ∀ϕL ∈ SL. (.)

4 A priori error estimation
We now carry out an error analysis for the spectral approximation (.). To simplify the
notations, we let c be a generic positive constant independent of any functions and of any
discretization parameters. We use the expression A � B to mean that A ≤ cB.

We now introduce the auxiliary problem:

A
(
uL(q), vL

)
= (f + q, vL)� +

(
u(x)t–α

�( – α)
, vL

)

�

, ∀vL ∈ SL, (.)

A
(
ϕL, zL(q)

)
=

(
g ′(uL(q)

)
,ϕL

)
�

, ∀ϕL ∈ SL, (.)

where q ∈ L(�) and uL(q), zL(q) ∈ SL. Let

JL(q) = g
(
uL(q)

)
+ h(q), ∀q ∈ L(�), (.)

then it can be verified by a direct calculation that

J ′
L(q)(δq) =

(
h′(q) + zL(q), δq

)
�

, δq ∈ L(�). (.)

Following [], the error between the solution of (.) and the solution of (.) can be
estimated as follows.
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Lemma . For any q ∈ L(�), let u(q) be the solution of (.), uL(q) be the solution of (.).
Suppose u ∈ H α

 (I; Hμ(�)) ∩ Hν(I; H
(�)),  < α < , ν > , μ ≥ , then we have

∥∥u(q) – uL(q)
∥∥

B
α
 (�)

� N
α
 –ν‖u‖,ν + N–ν‖u‖,ν + N

α
 –νM–μ‖u‖μ,ν

+ M–μ‖u‖μ, α + M–μ‖u‖μ,. (.)

We are now in a position to analyze the approximation error of the proposed space-
time spectral method. The proof of the main result will be accomplished with a series of
lemmas which we present below.

Lemma . If g(·) is convex and h(·) is uniformly convex, that is, there exists a constant c
such that

(
h′(p) – h′(q), p – q

)
�

≥ c‖p – q‖
,�, ∀p, q ∈ L(�).

Then, for all p, q ∈ L(�), we have

J ′
L(p)(p – q) – J ′

L(q)(p – q) ≥ c‖p – q‖
,�. (.)

Proof Note that

J ′
L(p)(p – q) – J ′

L(q)(p – q) =
(
zL(p) + h′(p), p – q

)
�

–
(
zL(q) + h′(q), p – q

)
�

=
(
zL(p) – zL(q), p – q

)
�

+
(
h′(p) – h′(q), p – q

)
�

. (.)

Moreover, it follows from (.) and (.) that

(
zL(p) – zL(q), p – q

)
�

= A
(
uL(p) – uL(q), zL(p) – zL(q)

)

=
(
g ′(uL(p)

)
– g ′(uL(q)

)
, uL(p) – uL(q)

)
�

. (.)

Noting that g(·) is convex, and h(·) is uniformly convex, (.) and (.) imply that

J ′
L(p)(p – q) – J ′

L(q)(p – q) ≥ (
h′(p) – h′(q), p – q

)
�

≥ c‖p – q‖
,�.

This proves (.). �

Lemma . Let q∗ be the solution of the continuous optimization problem (.), q∗
L be

the solution of the discrete optimization problem (.). Assume that h(·) and g(·) are
Lipschitz continuous with Lipschitz constants L and L, respectively. Moreover, suppose
q∗ ∈ L(I; Hμ(�)) ∩ Hν(I; L(�)), ν > , μ ≥ , then we have

∥∥q∗ – q∗
L
∥∥

,� � N–ν
∥∥q∗∥∥

,ν + M–μ
∥∥q∗∥∥

μ, +
∥∥zL

(
q∗) – z

(
q∗)∥∥

,�. (.)

Proof To obtain the asserted result, we split the error to be estimated in the following way:

∥∥q∗ – q∗
L
∥∥

,� ≤ ∥∥q∗ – pL
∥∥

,� +
∥∥pL – q∗

L
∥∥

,�, ∀pL ∈ PM(�) ⊗ PN (I). (.)
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First it follows from Lemma . that

c
∥∥pL – q∗

L
∥∥

,� ≤ J ′
L(pL)

(
pL – q∗

L
)

– J ′
L
(
q∗

L
)(

pL – q∗
L
)
, ∀pL ∈ PM(�) ⊗ PN (I). (.)

In virtue of (.) and (.), we have

J ′
L
(
q∗

L
)(

pL – q∗
L
)

= J ′(q∗)(pL – q∗
L
)

= , ∀pL ∈ PM(�) ⊗ PN (I).

Combining these equalities with (.), (.), and (.), we obtain

c
∥∥pL – q∗

L
∥∥

,�

≤ J ′
L(pL)

(
pL – q∗

L
)

– J ′(q∗)(pL – q∗
L
)

= J ′
L(pL)

(
pL – q∗

L
)

– J ′
L
(
q∗)(pL – q∗

L
)

+ J ′
L
(
q∗)(pL – q∗

L
)

– J ′(q∗)(pL – q∗
L
)

=
(
h′(pL) – h′(q∗), pL – q∗

L
)
�

+
(
zL(pL) – zL

(
q∗), pL – q∗

L
)
�

+
(
zL

(
q∗) – z

(
q∗), pL – q∗

L
)
�

≤ ∥∥h′(pL) – h′(q∗)∥∥
,�

∥∥pL – q∗
L
∥∥

,� +
∥∥zL(pL) – zL

(
q∗)∥∥

,�

∥∥pL – q∗
L
∥∥

,�

+
∥∥zL

(
q∗) – z

(
q∗)∥∥

,�

∥∥pL – q∗
L
∥∥

,�

≤ L
∥∥pL – q∗∥∥

,�

∥∥pL – q∗
L
∥∥

,� +
∥∥zL(pL) – zL

(
q∗)∥∥

,�

∥∥pL – q∗
L
∥∥

,�

+
∥∥zL

(
q∗) – z

(
q∗)∥∥

,�

∥∥pL – q∗
L
∥∥

,�.

By simplifying both sides, we obtain

c
∥∥pL – q∗

L
∥∥

,� ≤ L
∥∥pL – q∗∥∥

,� +
∥∥zL(pL) – zL

(
q∗)∥∥

,� +
∥∥zL

(
q∗) – z

(
q∗)∥∥

,�. (.)

Note that zL(pL) – zL(q∗) solves

A
(
ϕL, zL(pL) – zL

(
q∗)) =

(
g ′(uL(pL)

)
– g ′(uL

(
q∗)),ϕL

)
�

, ∀ϕL ∈ SL, (.)

and uL(pL) – uL(q∗) satisfies

A
(
uL(pL) – uL

(
q∗), vL

)
=

(
pL – q∗, vL

)
�

, ∀vL ∈ SL. (.)

On the other hand, the bilinear formA(·, ·) satisfies the following continuity and coercivity
[]:

A(u, v) � ‖u‖
B

α
 (�)

‖v‖
B

α
 (�)

, A(v, v) � ‖v‖
B

α
 (�)

, ∀u, v ∈ B
α
 (�).

Thus, taking vL = uL(pL) – uL(q∗) in (.) gives

∥∥uL(pL) – uL
(
q∗)∥∥

B
α
 (�)

�
∥∥pL – q∗∥∥

,�. (.)

Similarly, taking ϕL = zL(pL) – zL(q∗) in (.) gives

∥∥zL(pL) – zL
(
q∗)∥∥

B
α
 (�)

�
∥∥g ′(uL(pL)

)
– g ′(uL

(
q∗))∥∥

,� �
∥∥uL(pL) – uL

(
q∗)∥∥

B
α
 (�)

.
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Putting (.) into the above inequality, we obtain

∥∥zL(pL) – zL
(
q∗)∥∥

B
α
 (�)

�
∥∥pL – q∗∥∥

,�. (.)

Then combining (.) and (.), we get

c
∥∥pL – q∗

L
∥∥

,� ≤ (C + L)
∥∥pL – q∗∥∥

,� +
∥∥zL

(
q∗) – z

(
q∗)∥∥

,�. (.)

Plugging (.) into (.) yields

∥∥q∗ – q∗
L
∥∥

,� �
∥∥q∗ – pL

∥∥
,� +

∥∥zL
(
q∗) – z

(
q∗)∥∥

,�. (.)

Since the above estimate is true for all pL ∈ PM(�)⊗PN (I), we take pL = �M�N q∗ in (.),
with �M and �N standing for the standard L-orthogonal projectors, respectively, defined
in � and I , to obtain

∥∥q∗ – q∗
L
∥∥

,� � N–ν
∥∥q∗∥∥

,ν + M–μ
∥∥q∗∥∥

μ, +
∥∥zL

(
q∗) – z

(
q∗)∥∥

,�. �

Lemma . Let z = z(q) ∈ B α
 (�) be the solution of the continuous adjoint state problem

(.), zL(q) be the solution of its approximation problem (.). Assume that g(·) is Lipschitz
continuous, then we have

∥∥z(q) – zL(q)
∥∥

B
α
 (�)

�
∥∥u(q) – uL(q)

∥∥
,� + inf∀ϕL∈SL

‖z – ϕL‖B
α
 (�)

, (.)

where u(q) and uL(q) are, respectively, the solutions of (.) and (.).

Proof The proof goes along the same lines as Lemma . in []. �

Using the above lemmas and following the same lines as the proof of Theorem . in
[], we obtain the main result concerning the approximation errors.

Theorem . Suppose q∗ and q∗
L are, respectively, the solutions of the continuous opti-

mization problem (.) and its discrete counterpart (.), u(q∗) and uL(q∗
L) are the state

solutions of (.) and (.) associated to q∗ and q∗
L, respectively, z(q∗) and zL(q∗

L) are the
associated solutions of (.) and (.), respectively. Suppose, moreover, h(·) and g(·) are
Lipschitz continuous. If q∗ ∈ L(I; Hμ(�))∩Hν(I; L(�)) and u(q∗), z(q∗) ∈ H α

 (I; Hμ(�))∩
Hν(I; H

(�)),  < α < , ν > , μ ≥ , then the following estimate holds:

∥∥q∗ – q∗
L
∥∥

,� +
∥∥u

(
q∗) – uL

(
q∗

L
)∥∥

B
α
 (�)

+
∥∥z

(
q∗) – zL

(
q∗

L
)∥∥

B
α
 (�)

� N–ν
∥∥q∗∥∥

,ν + M–μ
∥∥q∗∥∥

μ, + N
α
 –ν

(∥∥u
(
q∗)∥∥

,ν +
∥∥z

(
q∗)∥∥

,ν

)

+ N–ν
(∥∥u

(
q∗)∥∥

,ν +
∥∥z

(
q∗)∥∥

,ν

)
+ N

α
 –νM–μ

(∥∥u
(
q∗)∥∥

μ,ν +
∥∥z

(
q∗)∥∥

μ,ν

)

+ M–μ
(∥∥u

(
q∗)∥∥

μ, α
+

∥∥z
(
q∗)∥∥

μ, α

)
+ M–μ

(∥∥u
(
q∗)∥∥

μ, +
∥∥z

(
q∗)∥∥

μ,

)
. (.)

5 Conjugate gradient optimization algorithm and numerical results
We carry out in this section a series of numerical experiments to numerically verify the
a priori error estimates we obtained in the previous sections. We will focus on the linear-
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quadratic optimal control problem. Precisely, we consider the quadratic cost functional
J(q) with

g(u) =



∫

�

(u – ū) dx dt, h(q) =



∫

�

q dx dt,

where ū is a given observation data. Then we have

J ′(q)(δq) =
(
q + z(q), δq

)
�

, ∀δq ∈ L(�).

5.1 Conjugate gradient optimization algorithm
In the following, we propose a conjugate gradient algorithm for the associated linear-
quadratic optimization problem. The details are described below.

Given an initial control q()
L , the corresponding state uL(q()

L ) is given by the solution of
the state equation in (.). To apply the stopping criterion ‖J ′

L(q()
L )‖ ≤ ε, with ε being a

pre-defined tolerance, we need information on the adjoint state zL(q()
L ), which is obtained

from the adjoint state equation (.) for given uL(q()
L ) and q()

L . Then the descent direction,
that is, the gradient of the objective functional at q()

L is calculated through

d()
L := J ′

L
(
q()

L
)

= zL
(
q()

L
)

+ h′(q()
L

)
= zL

(
q()

L
)

+ q()
L .

We simultaneously let the first conjugate direction be the gradient direction, namely

s()
L = d()

L .

Then, assuming known q(k)
L , d(k)

L , and s(k)
L at the current (kth) iteration, we update q(k)

L via

q(k+)
L = q(k)

L – ρks(k)
L ,

where ρk is the iteration step size, determined in such a way that

JL
(
q(k)

L – ρkd(k)
L

)
= min

ρ>
JL

(
q(k)

L – ρd(k)
L

)
.

Due to (d(k+)
L , s(k)

L )� =  and

d(k+)
L = zL

(
q(k+)

L
)

+ q(k+)
L = zL

(
q(k+)

L
)

+
(
q(k)

L – ρks(k)
L

)
,

ρk is characterized as

(
zL

(
q(k+)

L
)

+
(
q(k)

L – ρks(k)
L

)
, s(k)

L
)
�

= , (.)

where zL(q(k+)
L ) is the solution of

A
(
ϕL, zL

(
q(k+)

L
))

=
(
u(k+)

L – ū,ϕL
)
�

, ∀ϕL ∈ SL, (.)

with u(k+)
L ∈ SL given by

A
(
u(k+)

L , vL
)

=
(
f + q(k)

L – ρks(k)
L , vL

)
�

+
(

u(x)t–α

�( – α)
, vL

)

�

, ∀vL ∈ SL. (.)
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The optimal iteration step size ρk can be efficiently calculated through solving (.). Indeed
we first notice there exists an explicit expression of zL(q(k+)

L ) on ρk . Let ũ(k)
L and z̃(k)

L denote,
respectively, the solutions of

A
(
ũ(k)

L , vL
)

=
(
s(k)

L , vL
)
�

, ∀vL ∈ SL, (.)

A
(
ϕL, z̃(k)

L
)

=
(
ũ(k)

L ,ϕL
)
�

, ∀ϕL ∈ SL, (.)

uL(q(k)
L ) and zL(q(k)

L ) are, respectively, the solutions of

A
(
uL

(
q(k)

L
)
, vL

)
=

(
f + q(k)

L , vL
)
�

+
(

u(x)t–α

�( – α)
, vL

)

�

, ∀vL ∈ SL, (.)

A
(
ϕL, zL

(
q(k)

L
))

=
(
uL

(
q(k)

L
)

– ū,ϕL
)
�

, ∀ϕL ∈ SL, (.)

then it can be checked that zL(q(k)
L ) – ρk z̃(k)

L solves (.)-(.), that is,

zL
(
q(k+)

L
)

= zL
(
q(k)

L
)

– ρk z̃(k)
L .

Putting this expression into (.) gives

(
zL

(
q(k)

L
)

– ρkz̃(k)
L +

(
q(k)

L – ρks(k)
L

)
, s(k)

L
)
�

= .

Obviously, d(k)
L = zL(q(k)

L ) + q(k)
L holds. Let d̃(k)

L = z̃(k)
L + s(k)

L , then we obtain

ρk =
(d(k)

L , s(k)
L )�

(d̃(k)
L , s(k)

L )�
. (.)

In addition, it is easy to prove that

d(k+)
L = d(k)

L – ρkd̃(k)
L

holds. Let

βk =
‖d(k+)

L ‖
,�

‖d(k)
L ‖

,�

be the conjugate coefficient, we update the conjugate direction via

s(k+)
L = d(k+)

L + βks(k)
L .

Using the result

(
d(k)

L , s(k–)
L

)
�

= ,

we improve the optimum iterative step ρk as follows:

ρk =
(d(k)

L , s(k)
L )�

(d̃(k)
L , s(k)

L )�
=

(d(k)
L , d(k)

L + βk–s(k–)
L )�

(d̃(k)
L , s(k)

L )�
=

(d(k)
L , d(k)

L )�
(d̃(k)

L , s(k)
L )�

. (.)



Ye and Xu Advances in Difference Equations  (2015) 2015:156 Page 13 of 20

The overall process is summarized below.

Conjugate gradient optimization algorithm Choose an initial control q()
L . Set k = .

(a) Solve problems (.)-(.), let d(k)
L = zL(q(k)

L ) + q(k)
L , s(k)

L = g(k)
L .

(b) Solve problems (.)-(.), and set d̃(k)
L = z̃(k)

L + s(k)
L , ρk = (d(k)

L ,d(k)
L )�

(d̃(k)
L ,s(k)

L )�
.

(c) Update q(k+)
L = q(k)

L – ρks(k)
L , d(k+)

L = d(k)
L – ρkd̃(k)

L .
(d) If ‖d(k+)

L ‖,� ≤ tolerance, then take q∗
L = q(k+)

L , and solve problems (.) and (.) to

get uL(q∗
L) and zL(q∗

L); else, let βk = ‖d(k+)
L ‖

,�

‖d(k)
L ‖

,�
, s(k+)

L = d(k+)
L + βks(k)

L . Set k = k + ,

repeat (a)-(d).

5.2 Numerical results
We are now in a position to carry out some numerical experiments and present some
results to validate the obtained error estimates. In all the calculations, we take T = .

Example . We now let the observation data ū(x, t) = sinπ t sinπx, and consider problem
(.)-(.) with exact analytical solution:

u
(
q∗) = sinπ t sinπx, z

(
q∗) = , q∗ = .

For this choice of data, that is, the exact solution u(q∗) serves as the observation data,
problem (.)-(.) is indeed an inverse problem about unknown parameter in the right-
hand side and the corresponding objective function is expected to attain its minimum .

In this example, we fix the initial guess at q() = . We should mention here that any initial
guess is possible. We will show in our next example that the presence of perturbation or
noise in the control has limited influences on the optimization algorithm.

We first check the convergence behavior of numerical solutions with respect to the poly-
nomial degrees M. In Figure , we plot the errors as functions of the polynomial degrees
M with α = ., N = . Also, in Table , we list the maximum absolute errors of q, u, and

Figure 1 Errors of u, z, q versus M with N = 20, α = 0.3.
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Table 1 Maximum absolute errors for q, u, and J at N = 20, α = 0.3, and various choices of M
for Example 5.1

M 4 6 8 10 12 14 16

q 4.08E–03 5.24E–05 2.93E–07 1.58E–09 9.97E–12 5.17E–14 2.30E–14
u 4.75E–02 7.96E–04 1.17E–05 1.39E–07 1.28E–09 9.82E–12 3.43E–13
J 2.86E–05 5.77E–09 8.23E–13 8.83E–17 6.38E–21 3.09E–25 1.12E–29

Figure 2 B
α
2 Errors of u versus N with M = 20, α = 0.1, 0.5, 0.99.

Figure 3 B
α
2 Errors of z versus N with M = 20, α = 0.1, 0.5, 0.99.
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Figure 4 L2 Errors of q versus N with M = 20, α = 0.1, 0.5, 0.99.

Table 2 Maximum absolute errors for q, u, and J at M = 20 and various choices of α and N for
Example 5.1

Errors α N = 4 N = 6 N = 8 N = 10 N = 12 N = 14

q 0.1 7.11E–06 8.06E–08 6.19E–10 3.27E–12 1.79E–14 7.75E–15
0.5 1.68E–05 2.14E–07 1.61E–09 8.24E–12 2.94E–14 4.91E–16
0.99 6.96E–05 1.07E–06 8.98E–09 4.70E–11 1.63E–13 2.89E–16

u 0.1 7.74E–05 9.14E–07 7.45E–09 3.98E–11 2.14E–13 8.67E–14
0.5 1.82E–04 2.53E–06 1.97E–08 1.00E–10 3.66E–13 1.14E–14
0.99 6.69E–04 9.16E–06 7.07E–08 3.82E–10 1.75E–12 5.11E–15

J 0.1 8.39E–11 8.02E–15 3.24E–19 6.35E–24 6.76E–29 1.98E–31
0.5 4.64E–10 6.15E–13 3.01E–18 6.74E–23 7.83E–28 3.16E–32
0.99 5.00E–09 7.90E–13 3.88E–17 8.27E–22 9.04E–27 6.78E–32

J at α = ., N = , and various choices of M. As expected, the errors show an expo-
nential decay, since in this semi-log representation one observes that the error variations
are essentially linear versus the degrees of polynomial.

We then investigate the temporal errors, which is more interesting to us because of the
fractional derivative in time. In Figures  to , we plot the errors as functions of N with
M =  for three values α = ., ., .. The straight line of the error curves indicates
that the convergence in time is also exponential. The maximum absolute errors of q, u,
and J at M =  are also listed in Table .

Example . We choose another exact analytical solutions as

u
(
q∗) = sinπxet , z

(
q∗) = sinπx( – t)et , q∗ = –z

(
q∗).

Unlike the previous example which uses the exact solution u(q∗) as the observation data,
the observation data ū(x, t) here is calculated through (.) using u(q∗) and z(q∗).

First, as mentioned in the previous example, we investigate the impact of the initial
guess on the convergence of the conjugate gradient algorithm. We start by consider-
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Figure 5 Convergence history of the gradient of the cost function for q(0) = 20q∗ .

Figure 6 Convergence history of the gradient of the cost function for q(0) = c.

ing q() = q∗. This represents a strong perturbation in the initial guess. We now fix
M = N = , α = .. In Figure , we plot the convergence history of the gradient of the
objective function as a function of the iteration number with M = N = , α = .. We
see that the iterative method converges within seven iterations. We then take q() to be
constant c with c =  or , which has nothing to compare with the exact control q∗. We
repeat the same computation as in Figure . The result is given in Figure . These results
seem to tell that the type and amplitude of the perturbation have no significant effects on
the convergence of the optimization algorithm, since in any case the iterative algorithm
converges with the same rate. In the following, the initial guess is set to .

We now investigate the errors of the numerical solution with respect to the temporal and
spatial approximations. In Figure  and Figures - we report the errors in logarithmic
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Figure 7 Errors of u, z, q versus M with α = 0.6, N = 20.

Figure 8 B
α
2 Errors of u versus N with M = 20, α = 0.2, 0.6, 0.9.

scale as a function of the polynomial degrees M and N , respectively. Also, in Tables 
and , we list the maximum absolute errors of q, u, and J . Clearly, all the errors show an
exponential decay.

6 Concluding remarks
In the present work, we have shown an efficient optimization algorithm for the space-
time fractional equation optimal control problem based on the spectral approximation.
A priori error estimates are derived. Some numerical experiments have been carried out
to confirm the theoretical results.

There are many important issues that still need to be addressed. Firstly, the same for-
mulation and solution scheme can be used with minor changes for the problem defined in
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Figure 9 B
α
2 Errors of z versus N with M = 20, α = 0.2, 0.6, 0.9.

Figure 10 L2 Errors of q versus N with M = 20, α = 0.2, 0.6, 0.9.

Table 3 Maximum absolute errors for q, u, and J at N = 20, α = 0.6 and various choices of M
for Example 5.2

M 4 6 8 10 12 14 16

q 7.24E–02 1.18E–03 1.62E–05 1.92E–07 1.75E–09 1.34E–11 1.57E–13
u 1.30E–01 2.17E–03 3.19E–05 3.78E–07 3.48E–09 2.66E–11 2.22E–13
J 9.47E–02 1.07E–03 2.72E–06 2.30E–09 1.08E–12 6.66E–16 8.88E–16
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Table 4 Maximum absolute errors for q, u, and J at M = 20 and various choices of α and N for
Example 5.2

Errors α N = 4 N = 6 N = 8 N = 10 N = 12

q 0.2 9.18E–02 1.01E–05 5.45E–08 1.76E–10 3.72E–13
0.6 2.06E–03 2.55E–05 1.50E–07 5.13E–10 1.15E–12
0.9 3.50E–03 4.68E–05 2.85E–07 9.94E–10 2.23E–12

u 0.2 8.55E–05 8.52E–07 4.46E–09 1.40E–11 9.37E–14
0.6 1.32E–04 1.23E–06 5.65E–09 1.55E–11 2.35E–14
0.9 1.01E–04 1.24E–06 7.83E–09 2.66E–11 6.33E–14

J 0.2 3.17E–05 2.37E–08 3.38E–11 4.55E–14 1.33E–15
0.6 5.52E–05 3.85E–08 2.22E–11 2.08E–13 2.44E–15
0.9 8.53E–05 8.61E–08 2.57E–11 9.77E–14 2.22E–16

terms of Riemann-Liouville derivatives. Secondly, studies for more complicated control
problems and constraint sets are needed. Thirdly, although our analysis and algorithm
are designed for the optimization of the distributed control problem, we hope that they
are generalizable for the minimization problems of other parameters, such as boundary
conditions and so on.
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