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properties are discussed by phase portraits, bifurcation diagrams, and the Lyapunov
exponents spectra. Noticeably, based on two drive complex systems and one
response complex system with different dimensions, we propose generalized
combination complex synchronization and design a general controller. Additionally,
we investigate generalized combination complex synchronization between real
systems and complex systems via two complex scaling matrices. Two examples,
which include two chaotic complex systems driving one new hyperchaotic complex
system and two new hyperchaotic complex systems driving one chaotic real system,
are shown to demonstrate the effectiveness and feasibility of the schemes.
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1 Introduction

In 1982, Fowler et al. [1] proposed the complex Lorenz equations, which is the pioneer-
ing work in the domain of complex systems. After that, chaotic and hyperchaotic com-
plex systems have been extensively studied owing to their important applications in phys-
ical systems, image processing and in particular in secure communication [2—4]. And re-
searchers presented many chaotic and hyperchaotic complex systems, such as the complex
Lorenz system [5], the complex Chen system [6], the complex Lii system [6], the hyper-
chaotic complex Lorenz system [7], the hyperchaotic complex Lii system [8], and so on.
Compared with chaotic systems, the behavior of hyperchaotic complex systems is more
complex and richer. Hence, when applying the hyperchaotic complex systems to secure
communication, it is better to increase the complexity and the security of the transmitted
information.

On the other hand, with the development of complex systems, synchronization of
chaotic complex systems has gained a great deal of attentions. Some synchronization
schemes of chaotic real systems were extended to the complex space, such as complete
synchronization [9], anti-synchronization [10, 11], projective synchronization [12], etc.
Recently, many authors have studied some new kinds of synchronization for complex dy-
namical systems, for example, complex complete synchronization [13], complex projective
synchronization [14], complex modified projective synchronization [15, 16], and so forth.
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Since complex variables increase the diversity and the security of the transmitted signals,
these synchronization methods of chaotic complex systems have potential applications in
secure communication and image processing.

However, most of the above-mentioned works mainly focus on the usual drive-response
synchronization which has one drive system and one response system. To improve the
ability of anti-attack and anti-translated of the transmitted information, Luo et al. [17] pro-
posed combination synchronization which has two drive real systems and one response
real system. Subsequently, Wu and Fu [18] studied increased-order and reduced-order
combination synchronization in the real space concerning two specific examples. Soon af-
terwards, Zhou et al. [19] introduced combination synchronization to the complex space
and carried out synchronization of three identical or different nonlinear complex hyper-
chaotic systems. Very recently, Sun et al. [20] investigated combination complex synchro-
nization between two drive chaotic complex systems and one response chaotic complex
system. These synchronization schemes occur in chaotic complex systems with the same
dimensions.

To the best of our knowledge, there are few papers discussing combination synchro-
nization among two drive systems and one response system with different dimensions in
the complex space. As a matter of fact, for nonlinear systems with different dimensions,
a lot of synchronization phenomena exist in reality, especially in the chemical and biolog-
ical sciences. For instance, we can observe the physiological synchronization phenomena
between higher-dimensional and lower-dimensional thalamic neurons as well as between
the circulatory and respiratory systems [21]. Therefore, it is meaningful and valuable to
study synchronization between two drive systems and one response system with different
dimensions from the application point of view.

Inspired by the above discussion, we introduce a new hyperchaotic complex system to
investigate generalized combination complex synchronization between two drive complex
systems and one response complex system with different structures. Meanwhile, a general
controller is designed to synchronize chaotic complex systems in the sense of generalized
combination complex synchronization. By virtue of two complex scaling matrices, we es-
tablish a link between real chaos and complex chaos. The proposed generalized combi-
nation complex synchronization will contain complex projective synchronization, com-
bination synchronization, and combination complex synchronization. Consequently, our
work will extend the previous results.

The remainder of this paper is organized as follows. In Section 2, we present a hyper-
chaotic complex Lii-like system and study its dynamical properties including symmetry,
equilibria and stability, Lyapunov exponents and fractal dimensions, as well as hyper-
chaotic attractors. Section 3 introduces generalized combination complex synchroniza-
tion and designs a general controller. Two typical examples are treated to exhibit the ef-
fectiveness and correctness of the proposed methods. Finally, a concluding remark is given
in Section 4.

2 A new hyperchaotic complex Lii-like system
In 2008, Zhou et al. [22] studied the Lii-like or Pan system which can be described as

x=aly—x),
§=cx — xz, (1)
z=xy - bz,
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Figure 1 Attractors of chaotic system (1) and hyperchaotic system (2).

where 4, b, and c are real constants. When the parameters are chosen as 2 =10, b = 2, and
¢ =16, the Lii-like system (1) is chaotic as shown in Figure 1(a)-(b).

Recently, a new modified hyperchaotic Lii-like or Pan system [23] has been constructed
by introducing a state feedback controller, which can be expressed by

x*=a(y—x),

Jy=cx—xz+U, 2
z=xy - bz,

i =—dy,

where a, b, ¢, and d are real constants, (x,7,z, u)T
attractors of system (2) are plotted in Figure 1(c)-(d) with a = 10, b = 8/3, ¢ = 28, and d = 10.

In this work, the complex extension of the modified hyperchaotic Lii-like system is firstly

is a real state vector. The hyperchaotic

designed by

X1 = alxy — x1),
Xy = CX] — X1X3 + X4, 3)

&3 = 5 (%120 + x1%3) — s,

&g = —§ (% + %),

where a, b, ¢, and d are real positive parameters, x; = w1y + jmy and x, = m3 + jm, are
complex variables, x5 = m5 and x4 = m; are real variables. The hyperchaotic complex Lii-
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like system can be rewritten as follows:

1 = a(msz — m),
iy = a(mg — my),
th =Ccmy — miyms + Mg, (4)

¥y = CMy — MoMis,

Vh5 = mimsz + Moy — bl/H5,

I;Vl6 = —dm?,.
In what follows, we investigate the basic dynamical properties of system (4).

2.1 Symmetry and invariance
Note that the symmetry of system (4): It is symmetric about the ms-axis, which means
it is invariant for the coordinate transformation of (m1, m», ms, my, ms, mg) — (—my, —m,

—ms, —My, Mls, _m6)'

2.2 Dissipation
System (4) is dissipative under the condition 2a + b > 0, since

2.3 Equilibria and stability

By solving the equations #1; = 0, 11, = 0, 13 = 0, #i1g = 0, 115 = 0, and 7 = 0, we obtain
three equilibrium points of system (4): E; = (0,0,0,0,0,0) and E; 35 = (0, ++/bc, 0, /b,
0, 0). To study the stability of the zero equilibrium point E;, we have the Jacobian of system
(4) at E; as follows:

—-a 0 a 0 0 O
0O —a 0 a 0 O
c 0 0 0 0 1
=l ¢ 0 0 0 o
0 0 0 0 -b 0
0 0 -d 0 0 0

By a simple computation, the characteristic polynomial of the Jacobian matrix /¢, is ob-
tained as

A+ b)(k2 +ah — ac) (AS +ar® —(ac—d)r + ad) =0.

According to the Routh-Hurwitz theorem, we deduce that E; will be stable when 4 > 0,
b>0,c<0,and d > 0. Otherwise, it is an unstable fixed point. Similarly, we can discuss
the stability of the equilibrium points E; and Es.

2.4 Lyapunov exponents and fractal dimensions

In the sequel, the Lyapunov exponents and fractal dimension of system (4) are calculated.
By means of the Runge-Kutta method of order 4 in the MATLAB environment, we ob-
tain the Lyapunov exponents for the case of a = 10, b = 8/3, ¢ = 28, and d = 10 with the
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Figure 2 Lyapunov exponents spectrum of 4

system (4) with (a, b, c,d) = (10, 8/3,28,10). zkvvv&_ i

Lyapunov exponents

50 100 150 200

initial condition x(0) = (1 +/,1 + j,2,3); see Figure 2. Here, the six Lyapunov exponents
of system (4) are A; = 0.689209, XA, = 0.314361, A3 = —0.009003 ~ 0, 14 = —0.275494,
A5 = —10.697494, and A = —12.685651. Since A1 and A, are positive values, system (4) is
hyperchaotic for this choice of 4, b, ¢, and d. Thus, we can calculate the fractal dimension
[24] as follows:

D=j+

[Aje1] |As]

ixi SR R R A YT

i=1

2.5 Hyperchaotic behavior and attractors

System (4) is hyperchaotic when (a,b,¢,d) = (10,8/3,28,10) and x(0) = (1 +j,1 + /,2,3).
Figure 3 shows the hyperchaotic attractors of system (4) in different phase planes and
projections.

Next, we calculate numerically the values of the parameters of (4) at which chaotic at-
tractors exist under the above conditions. Now we consider the following two cases.

(i) Fix b = 8/3, ¢ = 28, d =10, and let a vary: To observe the Lyapunov exponents spec-
trum clearly, we plot the values of A1, A5, and A3 in Figure 4(a), while the values of A4, A5,
and A¢ are shown in Figure 4(b). From Figure 4(a), it is obvious that system (4) has hy-
perchaotic attractors for a € [3.3,27.4], while it has chaotic attractors when a € [1.2,3.2].
The above results can be demonstrated by the bifurcation diagram which is displayed in
Figure 5(a), while Figure 5(b)-(d) describe attractors of system (4).

(ii) Fix @ =10, ¢ = 28, d = 10, and let b vary: The values of A;, A5, and A3 are plotted in
Figure 6(a), while the values of 14, A5, and A¢ are shown in Figure 6(b). From Figure 6(a),
we see that system (4) has hyperchaotic attractors for b € [0.51,4.99], chaotic attractors
for b € [0.18,0.36] and [0.44, 0.5], and solutions of system (4) that approach fixed points
for b € [0.37,0.39]. Corresponding bifurcation diagram with the step size of 0.1 is plotted
in Figure 7(a). Meanwhile, the attractors of system (4) are depicted in Figure 7(b)-(c).

3 Generalized combination complex synchronization
The aim of this section is to present generalized combination complex synchronization
and design a general controller. Then two simulation examples are given to verify the ef-

fectiveness of the schemes.
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Figure 4 The Lyapunov exponents of system (4) with a varying.

3.1 Scheme of generalized combination complex synchronization
Consider a n;-dimensional chaotic complex system as the first drive system

x =Ax +f(x), (5)
the second drive chaotic complex system with #, dimensions is given as

j’sz"'g(y)’ (6)
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Figure 5 Bifurcation diagram and attractors of system (4) with a varying.
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Figure 6 Lyapunov exponents of system (4) with b varying.
while a #-dimensional response chaotic complex system is assumed to obey
z=Cz+h(z) + U(x,y,2), (7)

where x = x" + jx' € C"*1, y = y" +jy' € C*1, and z = 2" + jz' € C"™*! are the state complex

vectors, A € R, B e R">*"2, and C € R"*" are parameter matrices, while f, g, and &

are nonlinear complex functions and U is a controller to be designed.
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Figure 7 Bifurcation diagram and attractors of system (4) with b varying.

Remark1 Many chaotic and hyperchaotic complex systems can be described by (5), such
as the complex Lorenz system, the complex Chen system, the complex Lii system, the
hyperchaotic complex Lorenz system, the hyperchaotic complex Lii system, etc.

The definition of generalized combination complex synchronization is introduced be-

low.

Definition1 For two drive systems (5), (6), and one response system (7), they are said to be
in generalized combination complex synchronization if there exist two complex matrices
My = M} +jMi € C™™ and M, = M}y + jM} € C"2, such that

lim [le]| = lim ||z - Myx — May| =0,
—00 t—00

where || - || is the matrix norm, e = ¢ + je' is called the error vector, " = 2" — Mjx" + Mix' —
0+ My, el =zt — Mix' — Mix" — Mby' — My, the complex matrices M; and M, are
called the scaling matrices.

Remark 2 If the dimensions of the two drive systems (5) and (6) are equal to that of the re-
sponse system (7), i.e., n = nj = 1y, then the proposed synchronization will be combination
complex synchronization.

Remark 3 If the scaling matrix M; = O,,x,, or My = O,,xs,, then we can achieve complex
projective synchronization. If Mi = Oyxpy OF M = Oyxny> then combination synchroniza-
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tion can be carried out. If M; = O,,x,, and My = Oy, , then the synchronization problem
will be turned into a chaos control problem.

Remark 4 Definition 1 can be applicable to three or more chaotic complex systems. Ad-
ditionally, drive systems and response systems can be identical or different.

The following lemma is useful in this paper.

Lemma 1 [25] For a matrix D € C"™", all of the real parts of whose eigenvalues are nega-
tive, i.e., Re(A;(D)) <0 (i =1,2,...,n), then lim,_, o, exp(Dt) = 0.

Theorem 1 Ifthe control law is chosen as follows:
U = —C(Myx + May) — h(z) + My (Ax +f (x)) + Ma(By + g(y)) - Ke, (8)

where K is a complex control gain matrix, then generalized combination complex synchro-
nization between the two drive systems (5), (6), and the response system (7) can be achieved
if and only if all eigenvalues of C — K satisfy Re(A;(C-K))<0(i=12,...,n).

Proof From Definition 1, we obtain the error vector between two drive systems (5), (6),
and one response system (7) as follows:

e(t) =Z- Mlx - sz (9)

Calculating the derivative of the error vector (9) and with the designed controller (8), we
conclude that

&(t) — (C = K)e(t) = 0. (10)

Multiplying exp((-C — K)t) on both sides of (10), it follows that

d(exp(—(C - K)t)e(t)) B
dt B

0. (11)
Integrating equation (11) from O to ¢, it is straightforwardly found that
e(t) = exp((C - K)t)e(O), (12)

where €(0) is an initial condition. Thus, taking the limit on both sides of (12), since
Re(A;(C - K)) < 0, by Lemma 1, we have

tlim e(t) = tlim exp((C - K)t)e(0) = 0.

Therefore, generalized combination complex synchronization is realized between the two
drive systems (5), (6), and the response system (7) with the controller (8). This completes
the proof. d

In the following, we investigate generalized combination complex synchronization be-
tween real chaos and complex chaos. Now we consider two cases which include two real
systems driving one complex system and two complex systems driving one real system.
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Corollary 1 Suppose that two drive systems (5) and (6) are chaotic real systems, i.e., x €
R>XL gy € R™XY and the response system is a chaotic complex system (7), i.e., z € C"™1,
Then generalized combination complex synchronization between two drive real systems
(5), (6), and one response complex system (7) can occur with the designed controller

U =-C(Myx + Myy) — h(z) + M, (Ax +f(x)) + M, (By +g(y)) — Ke,
where K € C"™", all eigenvalues of C — K satisfy Re(A;(C-K)) <0 (i=1,2,...,n).

Corollary 2 Assume that two drive systems (5) and (6) are chaotic complex systems, i.e.,
x € Cm*1, y € C™*1, and the response system (7) is a chaotic real system, where z € R"*1,
Since z(t) is real, we choose a real controller U to ensure combination synchronization of
real parts and avoid increasing the imaginary parts of the response system. Consequently,
the error vector is defined as

e=z—Mx" + Mix' — Myy" + Mby'.
If the real controller is designed as
U = (2~ C(Mi ~ M+ My~ ML) + M4 +176) ~ M (Ax + /)
+My(BY +¢' ) - M5 (B +4'() - Ke,

where K € R™", all eigenvalues of C — K satisfy Re(A;(C — K)) <0 (i =1,2,...,n), then
the two drive complex systems (5), (6), and the response real system (7) are in generalized
combination complex synchronization of real parts.

In addition, from Theorem 1, some corollaries can easily be obtained and their proofs
are omitted.

Corollary 3 (I) Suppose M = Oy, . If the controller is designed as follows:
U = -CMyy — h(z) + M, (By +g(y)) - Ke,

where K is a control gain matrix, then complex projective synchronization between two
different dimensional systems (6) and (7) can be realized if and only if all eigenvalues of
C - K satisfy Re(A;(C-K)) <0 (i=1,2,...,n).

(IT) Suppose My = Oy,xy, . If the controller is designed as follows:

U = -CMyx - h(z) + My (Ax + f (x)) — Ke,

where K is a control gain matrix, then complex projective synchronization between two
different dimensional systems (5) and (7) can occur if and only if all eigenvalues of C — K
satisfy Re(A(C—-K))<0(i=12,...,n).

Corollary 4 Assume two scaling matrices My = Opx,, and My = Oyxp,. If the complex
controller is given as

U = —h(z) — Ke,
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where K is a control gain matrix and all eigenvalues of C — K satisfy Re(A;(C — K)) <0
(i=1,2,...,n), then the equilibrium point of the response system (7) is asymptotically stable.

3.2 Numerical examples
In this subsection, we provide two examples to illustrate the feasibility and effectiveness of
the proposed schemes. Firstly, synchronization between two 3-dimensional chaotic com-

plex systems and a 4-dimensional new hyperchaotic complex system is studied.

3.2.1 Synchronization between two drive chaotic complex systems and a response
hyperchaotic complex system
Now, we consider that the complex Lii system and the complex Lorenz system drive a

hyperchaotic complex Lii-like system. Thus, the two drive systems are given as

X1 = a1z — x1),
562 = —X1X3 + dyXy, (13)

. 1/-= -
X3 = §(x1x2 +X1%) — A3x3,

1 =bi(y2 =),
V2 = bay1 = y2 = Y193, (14)
33 = 5(01y2 + 11¥2) — bsys,

where
—-a; a1 0 0
A=l 0 a 0|, flx)= —X1X3 ,
0 0 -a3 3 (X2 + x1%5)
-by by O 0
B=|b -1 0|, g = ~-91)3 ;
0 0 -bs %(5’1)’2 +y152)

X =X+ jad, xp = ab + jxb, y1 = 95 +jy and y, = ¥, + jy', are complex variables, x3 and
y3 are real variables. Systems (13) and (14) behave chaotically with the given parameters
(a1,a5,a3) = (40,22,5) and (by, by, b3) = (14,35, 3.7), respectively; see Figure 8.

0 -40
3 X Y3 v,

X 0 20

(a) Attractor of the complex Lii system (b) Attractor of the complex Lorenz system

Figure 8 Chaotic attractors of systems (13) and (14).
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The response system is the proposed hyperchaotic complex Lii-like system:

21 =ci(za — z1) + Uy,

éz =221 —2123 + 24 + Uz,

23 = 32122 + 2122) — €323 + Us,
Zy= -Gz +2) + U,

where
—C1 C1 0 0 0
c 0 0 1 -21Z
c=| . h@=|, .
0 0 - O 5(z122 + 2122)
0 -2 0 0 —%z

21 = 2} +jz, and z; = 2} + jz) are complex variables, z; and z4 are real variables. U =
(U, Uy, Us, Uy)T is a controller to be determined.

Here, we select two complex scaling matrices M; and M, as

i1 =2 o1 -1
1 -5 1 -4 1
Ml = / ) MZ = / )
0 0 -2 0O 0 1
0O 0 1 0o 0 2

thus the error system e = z — Mx — Myy is obtained as follows:

e1 =21 — X2 +2x3 — )2 + y3 + j(y1 — x1),
ey =2y —x1 —x3 + 4y — y3 +j(x2 — y2),
e3 =23+ 2x3 — 3,
ey =24 — X3 —2y3.

A control matrix is chosen as

3 4 1+j 0
1 -3 0 24

After aroutine calculation, we obtain the eigenvalues of C — K are A; = =3 +2j, A5 = -3 -2,
A3 = =2, and A4 = —1. It is clear that all eigenvalues of C — K satisfy Re(1;(C — K)) < 0
(i=1,2,3,4).
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Figure 9 The time evolution of synchronization errors between systems (13), (14), and (15).

According to Theorem 1, a complex controller is designed as follows:

Ui = (az + c1)xa + (1 = 1)y + (243 — 3c1)xs + (b3 — 2¢1)ys — cix
+(by + 4cy)yr — X103 — 2xxh — 2xix — y1y3 — Yy — iy + Tep — ey
+ (1 +))es +j((er —a)xr + (b = c1)y = (b1 + c1)yz + (a1 + c1)x2),

Uy = (a1 — c2)xz — (o + 4b1)ys + (2ca =1 —az)xs + (ca — 2 — b3)y3 — a1x
+4biy + z1z3 + XK + XL x + Y1y + Y1y — 29e; — 3ex + (1 + f)ey
+j(x163 — 3193 + (b2 + C2)y1 — Co%1 — ¥2 — A2%X2),

G o AU
Uz = 2(a3 — c3)x3 + (c3 — b3)y3 — 2125 — 2125 — 2x7%y — 2x,%5 + Y19y + N1V + 563,

Uy =102 — azxs — 2b3ys + X5 + X5 + Y195 + 1Y + 3e3 — eq.

In the numerical simulations, the initial values of the drive and response systems are cho-
senasx(0) = (1+2j,3+4j,5)7, y(0) = (2+j,5+3,4)T,and z(0) = (1 +,1 +,2,3)7, respec-
tively. Figure 9 displays that the errors of synchronization tend to zero, i.e., synchroniza-
tion between two drive chaotic complex systems and a response hyperchaotic complex
system is realized.

3.2.2 Synchronization between two drive hyperchaotic complex systems and a response
chaotic real system

Next, we investigate synchronization between two 4-dimensional hyperchaotic complex

systems and a 3-dimensional chaotic real system. Assume that two hyperchaotic complex
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Li-like systems drive the real Lorenz system [26]. Thus, two drive systems are described

as follows:
X1 = ar(x — x1),
9:62 = 61129_61 - x1x3_+ X4, 16)
X3 = §(x1x2 +X1X2) — A3%3,
da = % (% + x),
J"l = bl()’z —yl),
5’2 = bzy1 —0)3 tYa, 17)
. _ 1 - -
y3= 5()’1)/2 +y1)2) — b3ys,
.).14 = _%()_/2 +}’2):

where
—a) a 0 0 0
a) 0 0 1 —X1X3
A = ’ f(x) = 1/= -
0 0 -a3 O 3 (X120 + %17%7)
0 -3 0 0 - “74562
-by b 0 0 0
by 0 0 1 —)1)3
B= , g =1\, .- _
0 0 -b3 O 5012 +9152)
b by -
0 -3+ 0 0 -2

X = &)+ jxt, xo = xh + jah, y1 = 5 + jyt and y = ¥4 + jyb are complex variables, x3, x4, ¥3,
and y, are real variables. Suppose (41,45, as,a4) = (b1, ba, b3, by) = (10,28,8/3,10), x(0) =
(1+j,1+/,2,3)7, and y(0) = (-2 + j, 4 — 5,10,3)7. Systems (16) and (17) are hyperchaotic;
see Figure 3 and Figure 10(a), respectively.

The real Lorenz system reads

z=calz—z1) + U,
éz =221 — 2123 — 23 + U2, (18)

53 =2Z2129 — €323 + Ug,

2 20" 0

(a) Attractor of hyperchaotic complex Lii-like system (b) Attractor of the real Lorenz system

Figure 10 Attractors of hyperchaotic system (17) and chaotic system (18).
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where
—C1 C1 0 0
C=|cec -1 o0/, h(z) = | —z123 | ;
0 0 -—c3 212

21, 22, and z3 are real variables, U = (U, Us, U3)T is a real controller which will be de-
signed later. For the choice of (¢, ¢3, ¢3) = (10,28,8/3), system (18) is chaotic as shown in
Figure 10(b).

Assume two complex scaling matrices M; and M, as follows:

o1 oY 01 00 1 0 -1 2
M=|2 j 4 —i|l=[2 0 0 o]+jlo 1 4 -1{,
1 0 145 j 1 010 00 1 1

1 j 3 1 0 00 01 3 1
My=|j =2 j 25 |=|lo -2 0o o|+j]1 0 1 2
0 1 j 1+4j 0 1 0 1 001 1

Thus the real error system e = z — Mjx" + Mix' — Mby" + Mby' is written in the following
form:

e1 =21 — x5+ X, — ¥y + 5,
ey =2y — 2x7 + X5 + 25 + )1,

e3 =23 —X] — X3 — Y5 — Ya.

A real control matrix is chosen as

-5 9 0
K=129 4 0o 1,
0 0 -5/3

then we have

-5 1 0
C-K=|-1 -5 0
0o 0 -1

for the case of (c1, ¢y, c3) = (10,28, 8/3).

According to Corollary 2, the real controller is designed as

Uy = (a1 — c)) (% — &) — (b1 — c))y; + (az — 2c1)x] + (by +2¢1)y5

+(c1 = Do)yt + (% — 9) — x5 %3 + x4 + ¥ y3 + 5e; — ey,
Uy = 2123 + (241 — o)Xy + (ca — ag)x — 2Dy + ¢2)y} + (ca — b1)yh

+2(1 — ay)x} — xh — 295 + xlos + (b — 1)y + 297y3 — 294 — 29e; — 4ey,
Us = (c3 — a)x] — z1z0 + (c3 — a3)x3 + (c3 — ba)yy + (c3 + L)y + arx),

+ X7 + x1xh + boyl — ylys + Ses.
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Figure 11 The time evolution of synchronization errors between systems (16), (17), and (18).

In the numerical simulations, the initial values of the drive and response systems are
x(0) = (1+7,1+/,2,3)T, 9(0) = (-2 +j,4 - 5},10,3)7, and z(0) = (3,-6,9)%, respectively. All
eigenvalues of C— K are A; = =5+, Ao = —5—j, and A3 = -1, which satisfy Re(1,(C-K)) < 0
(i =1,2,3). The errors of synchronization converge asymptotically to zero, which is shown
in Figure 11. Therefore, synchronization between two drive hyperchaotic complex systems
and a response chaotic real system is achieved in the real parts.

4 Conclusions

In this work, we firstly introduce a new hyperchaotic complex system and study its dy-
namical behavior. The dynamical properties of this new system are identified by using
phase portraits, bifurcation diagrams, and the Lyapunov exponents spectra. Secondly, we
propose generalized combination synchronization between three different dimensional
chaotic complex systems. In this proposed scheme, two drive systems and one response
system can be synchronized to two complex scaling matrices which are non-square ma-
trices. Besides, a general controller is designed to achieve generalized combination com-
plex synchronization. Through this scheme, generalized combination synchronization be-
tween real chaos and complex chaos can be investigated by virtue of two complex scaling
matrices. It is worth mentioning that there are various types of synchronization are spe-
cial cases from our definition, which are complex projective synchronization, combination
synchronization, and combination complex synchronization. Therefore, the obtained re-
sults extend many existing results in the literature. Moreover, many problems with un-
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known parameters and external disturbances exist in practical chaotic synchronization.
Consequently, we will make an endeavor to investigate robust generalized combination
complex synchronization considering unknown parameters and external disturbances in

our future work.
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