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Abstract
The paper is concerned with the non-autonomous modified Swift-Hohenberg
equation ut +�2u + 2�u + au + b|∇u|2 + u3 = g(x, t). It is shown that a uniform
attractor exists in H2

0 when the external force only satisfies the translation bounded
condition instead of translation compactness. In order to overcome the difficulty
caused by the critical nonlinearity terms u3 and the parameter b belonging to the real
set R, we take advantage of the Gagliardo-Nirenberg inequality several times.
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1 Introduction
The Swift-Hohenberg type equations arise in the study of convective hydrodynamics,
plasma confinement in toroidal devices, viscous film flow, and bifurcating solutions of
the Navier-Stokes equations; see []. The long-time behavior, bifurcation, and the pattern
selections of the solution for this equation have been investigated in [–].

We are concerned with the following non-autonomous modified Swift-Hohenberg
equation:

ut + �u + �u + au + b|∇u| + u = g(x, t), in � ×Rτ , (.)

u =
∂u
∂ν

= , on ∂� ×Rτ , (.)

u(x, τ ) = uτ (x), in �, (.)

whereRτ = [τ , +∞), � is an open connected bounded domain inR
 with a smooth bound-

ary ∂�, a and b are arbitrary constants, ut = ∂u
∂t , and g is an external forcing term with

g(x, t) ∈ L
C∗ (R; X). If b =  and g ≡ , then (.) is the usual Swift-Hohenberg equation.

The system (.)-(.) with g ≡  was proposed by the authors in [] as a pattern forma-
tion system with two unbounded spatial directions that is near the onset to instability.
Polat studied the existence of global attractors for the problem (.) when g ≡  in [] and
Song et al. improved the result by showing that the system possesses a global attractor in
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Hk spaces in []. Recently, the authors established the existence of pullback attractors for
(.)-(.) in []. To the best of our knowledge, the existence of the uniform attractors for
a non-autonomous modified Swift-Hohenberg equation has not yet been considered; it is
presently our concern.

In the last two decades, the dynamical systems and their attractors have been exten-
sively studied, please refer to [–] and references therein. As we know, the most gen-
eral methods dealing with the non-autonomous dynamical systems were presented by
Chepyzhov and Vishik in their work in [], and these methods make the general the-
ory of autonomous systems applicable, but it is unsatisfactory that it can only be used
in handling the problems with translation compact symbols. In , in [], the au-
thors presented a new notation and obtained their abstract results by means of the meth-
ods introduced in [] to deal with D Navier-Stokes equations with a normal external
force in L

loc(R, L) which is translation bounded but not translation compact. In the se-
quel, in [], a new class of time-dependent external forces in L

C∗ (R, X) was presented,
where L

C∗ (R, X) denotes the set of all functions satisfying condition (C∗) (see below Def-
inition .) and the functions in L

C∗ (R, X) are translation bounded but not translation
compact in L

loc(R, L). Moreover, the authors proved the existence of uniform attractors
for the weakly damped non-autonomous hyperbolic equations. Motivated by [, ], in
the present paper, we illustrate the existence of uniform attractors for a non-autonomous
modified Swift-Hohenberg equation (.)-(.) using the techniques in [, ].

This paper is organized as follows: in Section , we give some basic definitions and ab-
stract results concerning the uniform attractors for non-autonomous dynamical systems.
In Section , we will show the uniformly bounded absorbing set and uniform attractors
in H

 .

2 Non-autonomous systems and their attractors
In this subsection, we iterate some basic definitions and abstract results concerning the
uniform attractors for non-autonomous dynamical systems in [, ], which are impor-
tant to get our main results.

With the usual notation, we denote H = L(�), and endow H with the standard scalar
product and norm (·, ·), ‖ · ‖. For simplicity, we denote V = H

(�) with norm ‖u‖H
 (�) =

‖�u‖, and write ‖ · ‖m,p and ‖ · ‖p as the norm of W m,p(�) and Lp(�), respectively.
We let an operator A = � and λ be the first eigenvalues of A; by the Poincaré inequality,

we have

‖�u‖ ≥ λ‖u‖, ∀u ∈ V . (.)

Let E be a Banach space, and let a two-parameter family of mappings {U(t, τ )} =
{U(t, τ )|t ≥ τ , τ ∈R} act on E:

U(t, τ ) : E → E, t ≥ τ , τ ∈R.

Definition . Let � be a parameter set. {Uσ (t, τ )|t ≥ τ , τ ∈ R}, σ ∈ � is said to be a
family of processes in Banach space E, if for each σ ∈ �, {Uσ (t, τ )} is a process, that is, the
two-parameter family of mappings {Uσ (t, τ )} from E to E satisfy

Uσ (t, s) ◦ Uσ (s, τ ) = Uσ (t, τ ), ∀t ≥ s ≥ τ , τ ∈R, (.)
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Uσ (τ , τ ) = Id is the identity operator, τ ∈R, (.)

where � is called the symbol space and σ ∈ � is the symbol.

A set B ⊂ E is said to be uniformly (w.r.t. σ ∈ �) absorbing set for the family of pro-
cesses {Uσ (t, τ )}, σ ∈ �, if for any τ ∈ R and B ∈ B(E), there exists t = t(τ , B) ≥ τ such
that

⋃
σ∈� Uσ (t, τ )B ⊂ B for all t ≥ t. A set Y ⊂ E is said to be uniformly (w.r.t. σ ∈ �)

attracting for the family of processes {Uσ (t, τ )}, σ ∈ �, if for any fixed τ ∈ R and every
B ∈ B(E),

lim
t→∞ sup

σ∈�

distE
(
Uσ (t, τ )B, Y

)
= , (.)

where B(E) is the set of all bounded subset of E.

Assumption I Let {T(h)|h ≥ } be a family of operators acting on � and satisfy:
(i) T(h)� = �, ∀h ∈R

+;
(ii) translation identity:

Uσ (t + h, τ + h) = UT(h)σ (t, τ ), ∀σ ∈ �, t ≥ τ , τ ∈R, h ≥ . (.)

Definition . A family of processes {Uσ (t, τ )}, σ ∈ � is said to be satisfying uniformly
(w.r.t. σ ∈ �) condition (C) if for any fixed τ ∈ R, B ∈ B(E), and ε > , there exist a t =
t(τ , B, ε) ≥ τ and a finite dimensional subspace Em of E such that

(i) Pm(
⋃

σ∈�

⋃
t≥t

Uσ (t, τ )B) is bounded;
(ii) ‖(I – Pm)(

⋃
σ∈�

⋃
t≥t

Uσ (t, τ )x)‖E ≤ ε, ∀x ∈ B,
where dim Em = m and Pm : E → Em is a bounded projector.

Theorem . Let � be a complete metric space, and Assumption I holds. Then a family
of processes {Uσ (t, τ )}, σ ∈ �, possess the compact uniform (w.r.t. σ ∈ �) attractor A� in
E satisfying

A� = ω,�(B) = ωτ ,�(B), ∀τ ∈R,

if it:
(i) has a bounded uniformly (w.r.t. σ ∈ �) absorbing set B;

(ii) satisfies uniformly (w.r.t. σ ∈ �) condition (C).
Moreover, if E is a uniformly convex Banach space, then the converse is true.

Remark  Theorem . is true without any continuous assumption on {Uσ (t, τ )}, σ ∈ �,
and {T(t)}t≥.

Definition . Let X be a Hilbert space. A function g ∈ L
loc(R; X) is said to satisfy condi-

tion (C∗) if for any ε > , there exists a finite dimensional subspace X of X such that

sup
t∈R

∫ t+

t

∥
∥(I – Pm)g(x, s)

∥
∥

X ds < ε,

where Pm : X → X is the canonical projector.
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Denote by L
C∗ (R; X) the set of all functions satisfying condition (C∗).

Lemma . If h ∈ L
C∗ (R; X), then for any ε >  and τ ∈ R, we have

sup
t≥τ

∫ t

τ

e–α(t–s)∥∥(I – Pm)h(s)
∥
∥

X ds < ε,

where Pm is the same as in Definition . and α is a positive constant.

Lemma . [, ] (Gagliardo-Nirenberg inequality) Let � be an open, bounded domain
of the Lipschitz class in R

n. Assume that  ≤ p ≤ ∞,  ≤ q ≤ ∞, r ≥ ,  < θ ≤ , and that

k –
n
p

≤ θ

(

m –
n
q

)

+ ( – θ )
n
r

.

Then the following inequality holds:

‖u‖k,p ≤ C(�)‖u‖–θ
r ‖u‖θ

m,q.

3 Uniformly (w.r.t. σ ∈ �) absorbing set and uniform (w.r.t. σ ∈ �) attractor
in V

For the existence of the solutions for (.)-(.), since the time-dependent term introduces
no essential complications, we directly give the following results of the existence and
uniqueness of solution without proof. In fact, the proof is based on the Faedo-Galerkin
approximation approaches; see [] for the details.

Theorem . If g and uτ are given satisfying g ∈ L
loc(R; H), uτ ∈ V , then (.)-(.) have a

unique solution

u(t) ∈ C(Rτ ; V ), ∂tu ∈ C(Rτ ; H).

We now give a fixed external force g in L
b(R; X) and define the symbol space H(g) for

(.)-(.). Let a fixed symbol σ(s) = g(s) = g(·, s) satisfy condition (C∗) in L
loc(R; X). That

is, the family of translations {g(s + h), h ∈R} form a function set satisfying condition (C∗).
Therefore

H(σ) = H(g) =
[
g(x, s + h)|h ∈R

]
L,w

loc (R;X),

where [ ] denotes the closure of a set in a topological space L,w
loc (R; X).

Thus, for any g(x, t) ∈ H(g), the problem (.)-(.) with g instead of g possesses a
corresponding process {Ug(t, τ )} acting on V .

Proposition . [, ] If X is a reflexive separable, then
() for all g ∈H(φ), ‖g‖

L
b(R;X) ≤ ‖g‖

L
b(R;X);

() the translation group {T(t)} is weakly continuous on H(g);
() T(t)H(g) = H(g) for all t ∈ R.
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Therefore, the family of processes {Ug(t, τ )}, g ∈ H(g), Ug(t, τ ) : E → E, t ≥ τ , τ ∈ R

are defined. Furthermore, the translation semigroup {T(h)|h ∈ R
+} satisfies ∀h ∈ R

+,
T(h)H(g) = H(g), and the following translation identity holds:

Ug(t + h, τ + h) = UT(h)g(t, τ ), ∀g ∈H(g), t ≥ τ , τ ∈ R, h ≥ .

For (.)-(.), we give a fixed external force g ∈ L
C∗ (R; H) and H(σ) = H(g) = [g(x, s +

h)|h ∈R]L,w
loc (R;H).

For convenience, hereafter we denote by c an arbitrary positive constant, which may be
different from line to line and even in the same line.

3.1 A priori estimates
Theorem . If g ∈ L

b(R; H), uτ ∈ V , then the family of processes {Ug(t, τ )}, g ∈ H(h)
corresponding to the problem (.)-(.) has a bounded uniformly (w.r.t. g ∈H(h)) absorb-
ing set B in V .

Proof The proof of this results follows from the following two steps.
Step : Taking the scalar products in H of (.) with u, we find




d
dt

∥
∥u(t)

∥
∥ +

∥
∥�u(t)

∥
∥ = –

∥
∥u(t)

∥
∥

 + 
∥
∥∇u(t)

∥
∥ – a

∥
∥u(t)

∥
∥

– b
∫

�

∣
∣∇u(t)

∣
∣u(t) dx +

(
g(t), u(t)

)
, (.)

and the Hölder and Poincaré inequalities give

d
dt

∥
∥u(t)

∥
∥ +

∥
∥�u(t)

∥
∥ ≤ –

∥
∥u(t)

∥
∥

 + 
∥
∥∇u(t)

∥
∥ + |a|∥∥u(t)

∥
∥

+ |b|
∫

�

∣
∣∇u(t)

∣
∣∣∣u(t)

∣
∣dx +

‖g(t)‖

λ
. (.)

We use the Gagliardo-Nirenberg inequality with k = , n = p = r = m = q = , θ = 
 and get


∥
∥∇u(t)

∥
∥ ≤ c

∥
∥u(t)

∥
∥
∥
∥�u(t)

∥
∥ ≤ c

∥
∥u(t)

∥
∥ +




∥
∥�u(t)

∥
∥. (.)

Similarly, by the Hölder inequality, the Gagliardo-Nirenberg inequality with k = , n =
m = q = , p = r = ,  < θ < 

 , and the Young inequality, it follows that

|b|
∫

�

∣
∣∇u(t)

∣
∣∣∣u(t)

∣
∣dx ≤ |b|∥∥∇u(t)

∥
∥



∥
∥u(t)

∥
∥

≤ c
∥
∥�u(t)

∥
∥θ∥∥u(t)

∥
∥(–θ )



∥
∥u(t)

∥
∥

≤ c
∥
∥�u(t)

∥
∥θ∥∥u(t)

∥
∥–θ



≤ 


∥
∥�u(t)

∥
∥ + c

∥
∥u(t)

∥
∥

–θ
–θ

 . (.)

Substituting (.), (.) into (.), we see that

d
dt

∥
∥u(t)

∥
∥ +



∥
∥�u(t)

∥
∥ ≤ –

∥
∥u(t)

∥
∥

 + c
∥
∥u(t)

∥
∥ + c

∥
∥u(t)

∥
∥

–θ
–θ

 +
‖g(t)‖

λ
. (.)
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Since  < –θ
–θ

<  ( < θ < 
 ), there exists M >  such that

–
∥
∥u(t)

∥
∥

 + c
∥
∥u(t)

∥
∥ + c

∥
∥u(t)

∥
∥

–θ
–θ

 ≤ –
∥
∥u(t)

∥
∥

 + c
∥
∥u(t)

∥
∥

 + c
∥
∥u(t)

∥
∥

–θ
–θ

 ≤ M. (.)

Thus we arrive at

d
dt

∥
∥u(t)

∥
∥ +



∥
∥�u(t)

∥
∥ ≤ M +

‖g(t)‖

λ
. (.)

Again in line with the Poincaré inequality, we obtain

d
dt

∥
∥u(t)

∥
∥ +

λ


∥
∥u(t)

∥
∥ ≤ M +

‖g(t)‖

λ
. (.)

From Proposition ., recall that

‖g‖
L

b
≤ ‖g‖

L
b
, (.)

and set δ = λ
 , then by the Gronwall lemma,

∥
∥u(t)

∥
∥ ≤ ‖uτ‖e–δ(t–τ ) +

(
 + δ–)

(

M +
‖g‖

L
b

δ

)

. (.)

Now, multiplying (.) by eδt and integrating it over (τ , t), we get

∫ t

τ

eδs∥∥u(s)
∥
∥ ds ≤

∫ t

τ

eδτ‖uτ‖ ds +
∫ t

τ

eδs( + δ–)
(

M +
‖g‖

L
b

δ

)

ds

≤ (t – τ )eδτ‖uτ‖ +
eδt( + δ)

δ

(

M +
‖g‖

L
b

δ

)

. (.)

Analogously, multiplying (.) by eδt and integrating it over (τ , t) and together with (.),
we derive that

∫ t

τ

eδs∥∥�u(s)
∥
∥ ds ≤ eδτ‖uτ‖ + δ

∫ t

τ

eδs∥∥u(s)
∥
∥ ds +

M
δ

eδt

+

δ

∫ t

τ

eδs∥∥g(s)
∥
∥ ds

≤ 
(
 + δ(t – τ )

)
eδτ‖uτ‖ +

eδt

δ

(

( + δ)M +
 + δ

δ
‖g‖

L
b

)

+

δ

∫ t

τ

eδs‖g‖
L

b
ds. (.)

Step : Multiplying (.) by �u in H we get




d
dt

∥
∥�u(t)

∥
∥ +

∥
∥�u(t)

∥
∥ + a

∥
∥�u(t)

∥
∥ + 

(�u(t),�u(t)
)

+ b
(∣
∣∇u(t)

∣
∣,�u(t)

)
+

(
u(t),�u(t)

)
=

(
g(t),�u(t)

)
. (.)
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Using the Hölder and Young inequalities, we get

d
dt

∥
∥�u(t)

∥
∥ +

∥
∥�u(t)

∥
∥ ≤ –|a|∥∥�u(t)

∥
∥ + 

∥
∥�u(t)

∥
∥

+ |b|∥∥∇u(t)
∥
∥

 + 
∥
∥u(t)

∥
∥

 + 
∥
∥g(t)

∥
∥. (.)

The Gagliardo-Nirenberg inequality with k = , p = , n = m = q = r = , θ = 
 yields

|b|∥∥∇u(t)
∥
∥

 ≤ c
∥
∥u(t)

∥
∥∥∥�u(t)

∥
∥ ≤ λ


∥
∥�u(t)

∥
∥ + c

∥
∥u(t)

∥
∥.

The Gagliardo-Nirenberg inequality with k = , p = , n = m = q = r = , θ = 
 gives


∥
∥u(t)

∥
∥

 ≤ c
∥
∥u(t)

∥
∥∥∥�u(t)

∥
∥ ≤ λ


∥
∥�u(t)

∥
∥ + c

∥
∥u(t)

∥
∥.

Substituting these estimates into (.), and combining with the Poincaré inequalities, we
obtain

d
dt

∥
∥�u(t)

∥
∥ + δ

∥
∥�u(t)

∥
∥ ≤ c

(∥
∥�u(t)

∥
∥ +

∥
∥u(t)

∥
∥ +

∥
∥u(t)

∥
∥ +

∥
∥g(t)

∥
∥).

Multiplying this by (t – τ )eδt and integrating it over (τ , t), we derive that

(t – τ )eδt∥∥�u(t)
∥
∥ ≤ c

[∫ t

τ

(
 + (s – τ )

)
eδs∥∥�u(s)

∥
∥ ds +

∫ t

τ

(s – τ )eδs∥∥g(s)
∥
∥ ds

+
∫ t

τ

(s – τ )eδs(∥∥u(s)
∥
∥ +

∥
∥u(s)

∥
∥)ds

]

and hence

∥
∥�u(t)

∥
∥ ≤ c

(

 +


t – τ

)∫ t

τ

eδ(s–t)∥∥�u(s)
∥
∥ ds + c

∫ t

τ

eδ(s–t)∥∥g(s)
∥
∥ ds

+ c
∫ t

τ

eδ(s–t)∥∥u(s)
∥
∥ ds + c

∫ t

τ

eδ(s–t)∥∥u(s)
∥
∥ ds

:= I + I + I + I. (.)

Now, we estimate the terms on the right-hand side of (.):

I = c
∫ t

τ

eδ(s–t)∥∥g(s)
∥
∥ ds

≤ c
(∫ t

t–
eδ(s–t)∥∥g(s)

∥
∥ ds +

∫ t–

t–
eδ(s–t)∥∥g(s)

∥
∥ ds + · · ·

)

≤ c
(
 + e–δ + e–δ + · · · )‖g‖

L
b

≤ c
(
 + δ–)‖g‖

L
b

≤ c
(
 + δ–)‖g‖

L
b
. (.)
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By (.), we get

I = c
(

 +


t – τ

)

e–δt
∫ t

τ

eδs∥∥�u(s)
∥
∥ ds

≤ c
(

 +


t – τ

)
(
 + δ(t – τ )

)
e–δ(t–τ )‖uτ‖

+ c
(

 +


t – τ

)(

( + δ)M +
 + δ

δ
‖g‖

L
b

)

+ c
(

 +


t – τ

)
(
 + δ–)‖g‖

L
b

≤ c
(

 +


t – τ

)
(
 + δ(t – τ )

)
e–δ(t–τ )‖uτ‖ + c

(

 +


t – τ

)

( + δ)M

+ c
(

 +


t – τ

)
(
 + δ–)‖g‖

L
b
. (.)

By (.) and the Hölder inequalities for the sum, we have

I = c
∫ t

τ

eδ(s–t)∥∥u(s)
∥
∥ ds

≤ ce–δt
∫ t

τ

eδs
(

‖uτ‖e–δ(s–τ ) +
(
 + δ–)

(

M +
‖g‖

L
b

δ

))

ds

≤ ce–δt
∫ t

τ

eδse–δ(s–τ )‖uτ‖ ds + c
(

M +
‖g‖

L
b

δ

)

e–δt
∫ t

τ

eδs ds

≤ ce–δ(t–τ )‖uτ‖
∫ t

τ

e–δ(s–τ ) ds + c
(

M +
‖g‖

L
b

δ

)

e–δt(eδt – eδτ
)

≤ c(t – τ )e–δ(t–τ )‖uτ‖ + c
(

M +
‖g‖

L
b

δ

)

, (.)

noting that we used the fact e–δ(s–τ ) ≤  for s ∈ [τ , t] in the last inequality.
In addition,

I = c
∫ t

τ

eδ(s–t)∥∥u(s)
∥
∥ ds

≤ ce–δt
∫ t

τ

eδs
(

‖uτ‖e–δ(s–τ ) +
(
 + δ–)

(

M +
‖g‖

L
b

δ

))

ds

≤ ce–δt
∫ t

τ

eδse–δ(s–τ )‖uτ‖ ds + c
(

M +
‖g‖

L
b

δ

)

e–δt
∫ t

τ

eδs ds

≤ ce–δ(t–τ )‖uτ‖
∫ t

τ

e–δ(s–τ ) ds + c
(

M +
‖g‖

L
b

δ

)

e–δt(eδt – eδτ
)

≤ c(t – τ )e–δ(t–τ )‖uτ‖ + c
(

M +
‖g‖

L
b

δ

)

. (.)
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Collecting all inequalities (.)-(.),

∥
∥�u(t)

∥
∥ ≤ c

(

 +


t – τ

)
(
 + δ(t – τ )

)
e–δ(t–τ )‖uτ‖

+ c(t – τ )e–δ(t–τ )(‖uτ‖ + ‖uτ‖)

+ c
(

 +


t – τ

)

( + δ)M + c
(

 +


t – τ

)
(
 + δ–)‖g‖

L
b

+ c
(

M +
‖g‖

L
b

δ

)

+ c
(

M +
‖g‖

L
b

δ

)

≤ c
[(

 +


t – τ

)
(
 + δ(t – τ )

)
e–δ(t–τ )‖uτ‖

+ (t – τ )e–δ(t–τ )(‖uτ‖ + ‖uτ‖)

+
(

 +


t – τ

)
(
 + ‖g‖

L
b

)
+

(

M +
‖g‖

L
b

δ

)

+
(

M +
‖g‖

L
b

δ

)]

. (.)

Choosing ( + 
t–τ

)( + δ(t – τ ))e–δ(t–τ )‖uτ‖ + (t – τ )e–δ(t–τ )(‖uτ‖ + ‖uτ‖) + ( + 
t–τ

)( +

‖g‖
L

b
) ≤ (M +

‖g‖
L

b
δ

) + (M +
‖g‖

L
b

δ
) for t > τ , we deduce that there exists a time t =

t(δ,‖g‖
L

b
,‖uτ‖) > τ such that B = {u : ‖�u(t)‖ ≤ ρ}, where ρ = c[(M +

‖g‖
L

b
δ

) + (M +
‖g‖

L
b

δ
)], for t ≥ t, i.e., B is the uniformly (w.r.t. σ ∈ �) absorbing ball for the process

{Uσ (t, τ )} in V . �

3.2 Uniform attractor in V
Now we prove the existence of compact uniform (w.r.t. h ∈ H(g)) attractor for the prob-
lem (.)-(.) with the external forces g ∈ L

C∗ (R; H) in V .

Theorem . If g(x, t) ∈ L
C∗ (R; H), then the family of processes {Ug(t, τ )}, g ∈ H(g) cor-

responding to the problem (.)-(.) possess a compact uniform (w.r.t. g ∈H(g)) attractor
AH(g) in V satisfying

AH(g) = ω,H(g)(B) = ωτ ,H(g)(B), (.)

where B is the uniformly (w.r.t. h ∈H(g)) absorbing set in V .

Proof By Theorem ., we need only to verify that the family of processes {Ug(t, τ )}, g ∈
H(g), satisfy uniformly (w.r.t. g ∈H(g)) condition (C).

Since A– is a continuous compact operator in H , by the classical spectral theorem, there
exists a sequence {λj}∞j= with

 < λ ≤ λ ≤ · · · ≤ λj ≤ · · · , λj → ∞, as j → ∞,

and a family of elements {ωj}∞j= of V which are orthonormal in H with

Aωj = λjωj, ∀j ∈N.
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Let Hm = span{ω,ω, . . . ,ωm}, and Pm : H → Hm be an orthogonal projector. For any
u ∈ V , we write

u = Pmu + (I – Pm)u � u + u.

Taking the scalar product of (.) with �u in H and using the Young inequality, similar
to the estimates (.), we get

d
dt

∥
∥�u(t)

∥
∥ +

∥
∥�u(t)

∥
∥

≤ c
(∥
∥�u(t)

∥
∥ +

∥
∥∇u(t)

∥
∥

 +
∥
∥u(t)

∥
∥

 +
∥
∥(I – Pm)g(t)

∥
∥)

≤ c
(∥
∥�u(t)

∥
∥ +

∥
∥�u(t)

∥
∥ +

∥
∥�u(t)

∥
∥ +

∥
∥(I – Pm)g(t)

∥
∥)

≤ M + c
∥
∥(I – Pm)g(t)

∥
∥, (.)

where M = c(ρ + ρ + ρ). Thus, we see that

d
dt

∥
∥�u(t)

∥
∥ + λm

∥
∥�u(t)

∥
∥ ≤ M + c

∥
∥(I – Pm)g(t)

∥
∥. (.)

By the Gronwall lemma,

∥
∥�u(t)

∥
∥ ≤ ∥

∥�u(τ )
∥
∥e–λm(t–τ ) +

M

λm
+ c

∫ t

τ

e–λm(t–s)∥∥(I – Pm)g(s)
∥
∥ ds. (.)

Since g ∈ L
C∗ (R; H), by Lemma ., for any ε > , there exists an m large enough such

that

c
∫ t

τ

e–λm(t–s)∥∥(I – Pm)g(s)
∥
∥ ds ≤ ε


, ∀g ∈H(h),∀t ≥ τ . (.)

Let t = τ + 
λm

ln ρ

ε
. Then we conclude that

∥
∥�u(τ )

∥
∥e–λm(t–τ ) ≤ ρe–λm(t–τ ) ≤ ε


, ∀t ≥ t. (.)

Obviously, we can choose ε >  such that

M

λm
≤ ε


. (.)

Therefore, combining with (.)-(.) leads to

∥
∥�u(t)

∥
∥ ≤ ε, ∀t ≥ t,∀g ∈H(g),

which indicates that the family of processes {Ug(t, τ )}, g ∈H(g), satisfies uniformly (w.r.t.
g ∈H(g)) condition (C) in V . The proof is completed. �
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