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Abstract
The present paper is considered a two-dimensional half-linear differential system:
x′ = a11(t)x + a12(t)φp∗ (y), y′ = a21(t)φp(x) + a22(t)y, where all time-varying coefficients
are continuous; p and p∗ are positive numbers satisfying 1/p + 1/p∗ = 1; and
φq(z) = |z|q–2z for q = p or q = p∗. In the special case, the half-linear system becomes
the linear system x′ = A(t)x where A(t) is a 2× 2 continuous matrix and x is a
two-dimensional vector. It is well known that the zero solution of the linear system is
uniformly asymptotically stable if and only if it is exponentially stable. However, in
general, uniform asymptotic stability is not equivalent to exponential stability in the
case of nonlinear systems. The aim of this paper is to clarify that uniform asymptotic
stability is equivalent to exponential stability for the half-linear differential system.
Moreover, it is also clarified that exponential stability, global uniform asymptotic
stability, and global exponential stability are equivalent for the half-linear differential
system. Finally, the converse theorems on exponential stability which guarantee the
existence of a strict Lyapunov function are presented.
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1 Introduction
We consider a system of differential equations of the form

x′ = a(t)x + a(t)φp∗ (y),

y′ = a(t)φp(x) + a(t)y,
(.)

where the prime denotes d/dt; the coefficients a(t), a(t), a(t), and a(t) are continu-
ous on I = [,∞); the numbers p and p∗ are positive and satisfy


p

+


p∗ = ;

the real-valued function φq(z) is defined by

φq(z) =

⎧
⎨

⎩

|z|q–z if z �= ,
 if z = ,

z ∈ R
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with q = p or q = p∗. Note that φp∗ is the inverse function of φp, and the numbers p and p∗

are naturally greater than . Hence, we also note that the right-hand side of (.) does not
satisfy Lipschitz condition at the origin since the function φp satisfies

lim
z→

d
dz

φp(z) = lim
z→

(p – )|z|p– = ∞,

if  < p < , and the function φp∗ satisfies

lim
z→

d
dz

φp∗ (z) = lim
z→

(
p∗ – 

)|z|p∗– = ∞,

if p > . Since φp() =  = φp∗ (), system (.) has the zero solution (x(t), y(t)) ≡ (, ). The
type of system (.) appeared in [–]. Let u = exp(–

∫
a(t) dt)x and v = exp(–

∫
a(t) dt)y.

Then we can transform system (.) into the simpler system

u′ = a(t)φp∗ (v), v′ = b(t)φp(u),

where

a(t) = a(t) exp

(∫
{

(p∗ – )a(t) – a(t)
}

dt
)

and

b(t) = a(t) exp

(∫
{(

p – 
)
a(t) – a(t)

}
dt

)

.

The problem of the global existence and uniqueness of solutions of this type of system
are treated in [, , ]. However, keep in mind that we do not require the uniqueness of
solutions of (.) throughout this paper.

In the special case that a(t) ≡  and a(t) ≡ , (.) is transformed into the equa-
tion

(
φp

(
x′))′ – a(t)φp

(
x′) – a(t)φp(x) = . (.)

If x(t) is a solution of (.), then cx(t) is also a solution of (.) for any c ∈ R; that is,
the solution space of (.) is homogeneous. However, even if x(t) and x(t) are two
solutions of (.), the function x(t) + x(t) is not always a solution of (.); that is,
the solution space of (.) is not additive. For this reason, this equation is often called
‘half-linear’. For example, half-linear differential equation or half-linear differential sys-
tem can be found in [–] and the references cited therein. Furthermore, we can con-
firm that the global existence and uniqueness of solutions of (.) are guaranteed for
the initial value problem (see [, ]). To study half-linear differential equations is im-
portant in the field of difference equations, dynamic equations on time scales, partial
differential equations and various functional equations, because the method of differen-
tial equation might be able to use for them. The reader may refer to [–] for exam-
ple.
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In the other special case, p = , (.) becomes the two-dimensional linear differential
system

x′ = a(t)x + a(t)y,

y′ = a(t)x + a(t)y.

We now consider more general linear differential systems of the form

x′ = A(t)x, (.)

with an n × n continuous matrix A(t). It is well known that the zero solution of (.) is
uniformly asymptotically stable if and only if it is exponentially stable (see Section  about
the precise definitions of uniform asymptotic stability and exponential stability). To be
precise, the following theorem holds (for the proof, see ([],pp.-), ([], p.), ([],
pp.-) and ([], pp.-)).

Theorem A If the zero solution of (.) is uniformly asymptotically stable, then it is expo-
nentially stable.

In general, uniform asymptotic stability is not equivalent to exponential stability in the
case of nonlinear systems. Actually, we consider the scalar equation x′ = –x (see ([],
p.) and ([], p.)). Clearly, this equation has the unique zero solution x(t; t, ) ≡ . In
the case that x �= , the solution of this equation passing through a point x ∈ R at t ∈ I
is given by

x(t) =
x

√
 + x(t – t)

.

It is known that the zero solution of this equation is uniformly asymptotically stable. How-
ever, it is not exponentially stable. In fact, we see

∣
∣x(t)

∣
∣e�(t–t) =

xe�(t–t)
√

 + x(t – t)
→ ∞ as t → ∞

for any � > . It is clear that the solution x(t) does not converge to the zero solution expo-
nentially; that is, the zero solution is not exponentially stable. Here, the first question of
this paper arises. Will uniform asymptotic stability guarantee exponential stability, even if
the half-linear differential system (.) is nonlinear? We now give the answer to this ques-
tion.

Theorem . If the zero solution of (.) is uniformly asymptotically stable, then it is ex-
ponentially stable.

Uniform asymptotic stability and exponential stability are of utmost importance for con-
trol theory. For example, we can assert that these stabilities guarantee the existence of a
Lyapunov function which has good characteristics. Such results is called ‘converse the-
orems’ on stability. The converse theorems are important in studying the properties of
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solutions of perturbed systems. We will consider the general nonlinear system

x′ = f(t, x), (.)

where f(t, x) is continuous on I × R
n and satisfies f(t, ) = . We define the set Sα = {x ∈

R
n : ‖x‖ < α} for α > . Let x(t; t, x) be a solution of (.) passing through a point x ∈R

n

at a time t ∈ I . It is well known that if we suppose that f(t, x) satisfies locally Lipschitz
condition with respect to x and if the zero solution of (.) is uniformly asymptotically
stable, then there exists a strict Lyapunov function (or strong Lyapunov function) V (t, x);
that is, the scalar function V (t, x) defined on I × Sα , where α is a suitable constant, which
satisfies the following conditions:

(i) a(‖x‖) ≤ V (t, x) ≤ b(‖x‖);
(ii) V̇(.)(t, x) ≤ –c(‖x‖),

where a, b, and c are continuous increasing and positive definite functions and the function
V̇(.)(t, x) is defined by

V̇(.)(t, x) = lim sup
h→+

V (t + h, x(t + h; t, x)) – V (t, x)
h

(see [–]).
Furthermore, global exponential stability guarantees the existence of better Lyapunov

functions in the sense that it can be estimated by exact functions. The definition of global
exponential stability is as follows. Let ‖x‖ be the Euclidean norm. The zero solution is said
to be globally exponentially stable (or globally exponentially asymptotically stable or expo-
nentially asymptotically stable in the large) if there exists a λ >  and, for any α > , there
exists a β(α) >  such that t ∈ I and ‖x‖ < α imply ‖x(t; t, x)‖ ≤ β(α)e–λ(t–t)‖x‖ for all
t ≥ t. For example, we can refer to the books [–, , , ] for this definition. The
following result is a converse theorem on (global) exponential stability, which guarantees
the existence of a Lyapunov function estimated by quadratic form ‖x‖ (see [, , ,
]).

Theorem B Suppose that for any α > , there exists an L(α) >  such that

∥
∥f(t, x) – f(t, y)

∥
∥ ≤ L(α)‖x – y‖

for (t, x), (t, y) ∈ I × Sα , where L(α) is independent of t ∈ I . If the zero solution of (.) is
globally exponentially stable, then there exist three positive constants β(α), β(α), β and
a Lyapunov function V (t, x) defined on I × Sα which satisfies the following conditions:

(i) β(α)‖x‖ ≤ V (t, x) ≤ β(α)‖x‖;
(ii) V̇(.)(t, x) ≤ –β‖x‖,

where α is a number given in the definition of global exponential stability.

In addition, another type converse theorem on (global) exponential stability can also be
found in the classical books [, ].

Theorem C Suppose that f(t, x) satisfy locally Lipschitz condition. If the zero solution of
(.) is globally exponentially stable, then there exists a Lyapunov function V (t, x) defined
on I × Sα which satisfies the following conditions:
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(i) ‖x‖ ≤ V (t, x) ≤ β(α)‖x‖;
(ii) V̇(.)(t, x) ≤ –kλV (t, x), where  < k < ;

(iii) there exists an L(t,α) >  such that |V (t, x) – V (t, y)| ≤ L(t,α)‖x – y‖ for
(t, x), (t, y) ∈ I × Sα ,

where α, β , and λ are numbers given in the definition of global exponential stability.

When restricted to the case of the linear system (.), the following facts are known (see
([], pp.-), ([], p.) and ([], p.)).

Theorem D If the zero solution of (.) is exponentially stable, then it is globally exponen-
tially stable. In this case, we can find a β >  independent of α in the definition of globally
exponentially stable.

From Theorems A and D, for the linear differential system (.), uniform asymptotic
stability and global exponential stability are equivalent. In the case of the linear system
(.), the following converse theorem on (global) exponential stability is known (see ([],
pp.-), ([], p.) and ([], p.)).

Theorem E Suppose that the zero solution of (.) is globally exponentially stable, i.e.,
there exist a λ >  and a β >  such that

∥
∥x(t; t, x)

∥
∥ ≤ βe–λ(t–t)‖x‖

for all t ≥ t. Then there exists a Lyapunov function V (t, x) defined on I ×R
n which satisfies

the following conditions:
(i) ‖x‖ ≤ V (t, x) ≤ β‖x‖;

(ii) V̇(.)(t, x) ≤ –λV (t, x);
(iii) |V (t, x) – V (t, y)| ≤ β‖x – y‖ for (t, x), (t, y) ∈ I ×R

n.

To present our result, we give some definitions of stability and its equivalent conditions
in the next section. Also, we give a proposition which is the most important property for
the proof of Theorem .. In Section , we state the proof of Theorem .. In Section , we
give a natural generalization of Theorem D with n = . In the final section, we present the
converse theorems for half-linear system (.), for comparison with Theorems B, C, and E.

2 Definitions and lemmas
We now give some definitions about the zero solution x(t; t, ) ≡  of (.). The zero
solution is said to be uniformly attractive if there exists a δ >  and, for every ε > , there
exists a T(ε) >  such that t ∈ I and ‖x‖ < δ imply ‖x(t; t, x)‖ < ε for all t ≥ t + T(ε).
The zero solution of (.) is said to be uniformly stable if, for any ε > , there exists a δ(ε) > 
such that t ∈ I and ‖x‖ < δ(ε) imply ‖x(t; t, x)‖ < ε for all t ≥ t. The zero solution is
uniformly asymptotically stable if it is uniformly attractive and is uniformly stable. The
zero solution is said to be exponentially stable (or exponentially asymptotically stable);
if there exists a λ >  and, given any ε > , there exists a δ(ε) >  such that t ∈ I and
‖x‖ < δ(ε) imply ‖x(t; t, x)‖ ≤ εe–λ(t–t) for all t ≥ t. For example, we can refer to the
books and papers [, , , –] for those definitions.
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In this section, before giving the proof of Theorem ., we prepare some lemmas. First,
we will give the conditions which are equivalent to the above mentioned definitions. Some
of these conditions are applicable to the proof of Theorem .. For x = (x, y) ∈R

 and p ≥ ,
we define a norm ‖x‖p by p

√|x|p + |y|p. This norm is often called the ‘Hölder norm’ or the
‘p-norm’ (see [, , , , ]).

Lemma . The zero solution of (.) is uniformly attractive if and only if there exists a
γ >  and, for every ρ > , there exists an S(ρ) >  such that t ∈ I and ‖(x,φp∗ (y))‖p < γ

imply

∥
∥
(
x(t; t, x, y),φp∗

(
y(t; t, x, y)

))∥
∥

p < ρ

for all t ≥ t + S(ρ).

Proof First we prove the necessity. We suppose that the zero solution of (.) is uniformly
attractive. That is, there exists a δ >  and, for every ε > , there exists a T(ε) >  such
that t ∈ I and ‖(x, y)‖ < δ imply ‖(x(t; t, x, y), y(t; t, x, y))‖ < ε for all t ≥ t + T . Let

p = max
{

p, p∗} and γ = min

{

,
(

δ√


) p
p
}

.

For every  < ρ < , we determine ε = ρp/ and S(ρ) = T(ρp/). We consider the so-
lution (x(t; t, x, y), y(t; t, x, y)) of (.) with t ∈ I and ‖(x,φp∗ (y))‖p < γ. From
p
√|x|p + |y|p∗ = ‖(x,φp∗ (y))‖p < γ it follows that

|x| < γ and |y| < γ
p

p∗ .

Hence, combining this estimation with  < γ ≤  ≤ p/p and p/p∗ ≥ , we obtain

∥
∥(x, y)

∥
∥ =

√
x + y <

√

γ + γ
p
p∗

=

√
√
√
√

min

{

,
(

δ√


) p
p
}

+ min

{

,
(

δ√


) p
p∗ }

≤
√

 min

{

,
(

δ√


)}

≤ δ,

and, therefore,

∥
∥
(
x(t; t, x, y), y(t; t, x, y)

)∥
∥ < ε =

ρp



for t ≥ t + S. Taking into account that this inequality and  < ρp/ <  < p and p∗ >  hold,
we have

∣
∣x(t; t, x, y)

∣
∣p <

(
ρp



)p

<
ρp


and

∣
∣y(t; t, x, y)

∣
∣p∗

<
(

ρp



)p∗

<
ρp
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for t ≥ t + S. From these inequalities, we see that

∥
∥
(
x(t; t, x, y),φp∗

(
y(t; t, x, y)

))∥
∥

p < p

√
ρp


+

ρp


= ρ

for t ≥ t + S.
Conversely, we prove the sufficiency. We suppose that there exists a γ >  and, for

every ρ > , there exists an S(ρ) >  such that t ∈ I and ‖(x,φp∗ (y))‖p < γ imply
‖(x(t; t, x, y),φp∗ (y(t; t, x, y)))‖p < ρ for all t ≥ t + S. Let

δ = min

{

,
γ

p



}

.

For every  < ε < , we determine ρ = (ε/
√

)p/p and T(ε) = S((ε/
√

)p/p). We consider
the solution (x(t; t, x, y), y(t; t, x, y)) of (.) with t ∈ I and ‖(x, y)‖ < δ. From
‖(x, y)‖ < δ it follows that

|x| < δ and |y| < δ.

Hence, combining this estimation with  < δ ≤  < p and p∗ > , we obtain

∥
∥
(
x,φp∗ (y)

)∥
∥

p < p
√

δ
p + δ

p∗ = p

√

min

{

,
(

γp



)p}

+ min

{

,
(

γp



)p∗}

≤ p

√

 min

{

,
γp



}

≤ γ,

and, therefore,

∥
∥
(
x(t; t, x, y),φp∗

(
y(t; t, x, y)

))∥
∥

p < ρ =
(

ε√


) p
p

for t ≥ t + T . Taking into account that this inequality and  < ε/ <  ≤ p/p, and p/p∗ ≥ 
hold, we have

x(t; t, x, y) <
(

ε



) p
p

≤ ε


and y(t; t, x, y) <

(
ε



) p
p∗

≤ ε



for t ≥ t + T . From these inequalities, we see that
∥
∥
(
x(t; t, x, y), y(t; t, x, y)

)∥
∥ < ε

for t ≥ t + T . This completes the proof of Lemma .. �

By using the same arguments as in Lemma ., we can prove the following lemma.

Lemma . The zero solution of (.) is uniformly stable if and only if, for any ρ > , there
exists a γ (ρ) >  such that t ∈ I and ‖(x,φp∗ (y))‖p < γ (ρ) imply

∥
∥
(
x(t; t, x, y),φp∗

(
y(t; t, x, y)

))∥
∥

p < ρ

for all t ≥ t.
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Proof First we prove the necessity. We suppose that the zero solution of (.) is uniformly
stable. That is, for any ε > , there exists a δ(ε) >  such that t ∈ I and ‖(x, y)‖ < δ(ε)
imply ‖(x(t; t, x, y), y(t; t, x, y))‖ < ε for all t ≥ t. For every  < ρ < , we determine an
ε = ρp/. Let

p = max
{

p, p∗} and γ (ρ) = min

{

,
(

√

δ

(
ρp



)) p
p
}

.

We consider the solution (x(t; t, x, y), y(t; t, x, y)) of (.) with t ∈ I and ‖(x,
φp∗ (y))‖p < γ . From p

√|x|p + |y|p∗ = ‖(x,φp∗ (y))‖p < γ it follows that

|x| < γ and |y| < γ
p

p∗ .

Hence, combining this estimation with  < γ ≤  ≤ p/p and p/p∗ ≥ , we obtain

∥
∥(x, y)

∥
∥ =

√
x + y <

√

γ  + γ
p
p∗

=

√
√
√
√

min

{

,
(

δ√


) p
p
}

+ min

{

,
(

δ√


) p
p∗ }

≤
√

 min

{

,
(

δ√


)}

≤ δ,

and, therefore,

∥
∥
(
x(t; t, x, y), y(t; t, x, y)

)∥
∥ < ε =

ρp



for t ≥ t. Taking into account that this inequality and  < ρp/ <  < p and p∗ >  hold, we
have

∣
∣x(t; t, x, y)

∣
∣p <

(
ρp



)p

<
ρp


and

∣
∣y(t; t, x, y)

∣
∣p∗

<
(

ρp



)p∗

<
ρp



for t ≥ t. From these inequalities, we see that

∥
∥
(
x(t; t, x, y),φp∗

(
y(t; t, x, y)

))∥
∥

p < p

√
ρp


+

ρp


= ρ

for t ≥ t.
Conversely, we prove the sufficiency. We suppose that for any ρ > , there exists a γ (ρ) >

 such that t ∈ I and ‖(x,φp∗ (y))‖p < γ (ρ) imply

∥
∥
(
x(t; t, x, y),φp∗

(
y(t; t, x, y)

))∥
∥

p < ρ

for all t ≥ t. For every  < ε < , we determine a ρ = (ε/
√

)p/p. Let

δ(ε) = min

{

,


γ p

((
ε√


) p
p
)}

.
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We consider the solution (x(t; t, x, y), y(t; t, x, y)) of (.) with t ∈ I and ‖(x, y)‖ < δ.
From ‖(x, y)‖ < δ it follows that

|x| < δ and |y| < δ.

Hence, combining this estimation with  < δ ≤  < p and p∗ > , we obtain

∥
∥
(
x,φp∗ (y)

)∥
∥

p < p√
δp + δp∗ = p

√

min

{

,
(

γ p



)p}

+ min

{

,
(

γ p



)p∗}

≤ p

√

 min

{

,
γ p



}

≤ γ ,

and, therefore,

∥
∥
(
x(t; t, x, y),φp∗

(
y(t; t, x, y)

))∥
∥

p < ρ =
(

ε√


) p
p

for t ≥ t. Taking into account that this inequality and  < ε/ <  ≤ p/p and p/p∗ ≥ 
hold, we have

x(t; t, x, y) <
(

ε



) p
p

≤ ε


and y(t; t, x, y) <

(
ε



) p
p∗

≤ ε



for t ≥ t. From these inequalities, we see that

∥
∥
(
x(t; t, x, y), y(t; t, x, y)

)∥
∥ < ε

for t ≥ t. This completes the proof of Lemma .. �

Furthermore, by using the same arguments as in Lemmas . and ., we have the fol-
lowing result.

Lemma . The zero solution of (.) is exponentially stable if and only if there exists a
μ >  and, given any ρ > , there exists a γ (ρ) >  such that t ∈ I and ‖(x,φp∗ (y))‖p <
γ (ρ) imply

∥
∥
(
x(t; t, x, y),φp∗

(
y(t; t, x, y)

))∥
∥

p ≤ ρe–μ(t–t)

for all t ≥ t.

Proof First we prove the necessity. We suppose that the zero solution of (.) is expo-
nentially stable. That is, there exists a λ >  and, given any ε > , there exists a δ(ε) > 
such that t ∈ I and ‖(x, y)‖ < δ(ε) imply ‖(x(t; t, x, y), y(t; t, x, y))‖ ≤ εe–λ(t–t) for
all t ≥ t. Let μ = λ/p. For every  < ρ < , we determine an ε = ρp/. Let

p = max
{

p, p∗} and γ (ρ) = min

{

,
(

√

δ

(
ρp



)) p
p
}

.
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We consider the solution (x(t; t, x, y), y(t; t, x, y)) of (.) with t ∈ I and ‖(x,
φp∗ (y))‖p < γ . From p

√|x|p + |y|p∗ = ‖(x,φp∗ (y))‖p < γ it follows that

|x| < γ and |y| < γ
p

p∗ .

Hence, combining this estimation with  < γ ≤  ≤ p/p and p/p∗ ≥  we obtain

∥
∥(x, y)

∥
∥ =

√
x + y <

√

γ  + γ
p
p∗

=

√
√
√
√

min

{

,
(

δ√


) p
p
}

+ min

{

,
(

δ√


) p
p∗ }

≤
√

 min

{

,
(

δ√


)}

≤ δ,

and, therefore,

∥
∥
(
x(t; t, x, y), y(t; t, x, y)

)∥
∥ ≤ εe–λ(t–t) =

ρp


e–pμ(t–t)

for t ≥ t. Taking into account that this inequality and

 <
ρp


e–pμ(t–t) ≤ ρp


<  < p and  < p∗

hold, we have

∣
∣x(t; t, x, y)

∣
∣p ≤

(
ρp


e–pμ(t–t)

)p

<
ρp


e–pμ(t–t)

and

∣
∣y(t; t, x, y)

∣
∣p∗ ≤

(
ρp


e–pμ(t–t)

)p∗

<
ρp


e–pμ(t–t)

for t ≥ t. From these inequalities, we see that

∥
∥
(
x(t; t, x, y),φp∗

(
y(t; t, x, y)

))∥
∥

p < ρe–μ(t–t)

for t ≥ t.
Conversely, we prove the sufficiency. We suppose that there exists a μ >  and, given any

ρ > , there exists a γ (ρ) >  such that t ∈ I and ‖(x,φp∗ (y))‖p < γ (ρ) imply

∥
∥
(
x(t; t, x, y),φp∗

(
y(t; t, x, y)

))∥
∥

p ≤ ρe–μ(t–t)

for all t ≥ t. Let λ = μp/p. For every  < ε < , we determine a ρ = (ε/
√

)p/p. Let

δ(ε) = min

{

,


γ p

((
ε√


) p
p
)}

.
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We consider the solution (x(t; t, x, y), y(t; t, x, y)) of (.) with t ∈ I and ‖(x, y)‖ < δ.
From ‖(x, y)‖ < δ it follows that

|x| < δ and |y| < δ.

Hence, combining this estimation with  < δ ≤  < p and p∗ > , we obtain

∥
∥
(
x,φp∗ (y)

)∥
∥

p < p√
δp + δp∗ = p

√

min

{

,
(

γ p



)p}

+ min

{

,
(

γ p



)p∗}

≤ p

√

 min

{

,
γ p



}

≤ γ ,

and, therefore,

∥
∥
(
x(t; t, x, y),φp∗

(
y(t; t, x, y)

))∥
∥

p ≤ ρe–μ(t–t) =
(

ε√


) p
p

e– pλ
p (t–t)

for t ≥ t. Taking into account that this inequality and

 <
ε√


e–λ(t–t) ≤ ε√


<  ≤ p
p

and  ≤ p
p∗

hold, we have

∣
∣x(t; t, x, y)

∣
∣ ≤

(
ε√


e–λ(t–t)
) p

p
≤ ε√


e–λ(t–t)

and

∣
∣y(t; t, x, y)

∣
∣ ≤

(
ε√


e–λ(t–t)
) p

p∗
≤ ε√


e–λ(t–t)

for t ≥ t. From these inequalities, we see that

∥
∥
(
x(t; t, x, y), y(t; t, x, y)

)∥
∥ ≤ εe–λ(t–t)

for t ≥ t. This completes the proof of Lemma .. �

In the special case in which p = , (.) becomes the linear system. As is well known, the
solution space of the linear system is homogeneous and additive. On the other hand, in
the general case in which p �= , the solution space of (.) is not homogeneous or additive.
However, we can show that (.) has a homogeneous-like property on the solution space.

Lemma . If (x(t), y(t)) is a solution of (.) passing through a point (x, y) ∈ R
 at t =

t ∈ I , then (cx(t),φp(c)y(t)) is also a solution of (.) passing through a point (cx,φp(c)y) ∈
R

 at t = t for any c ∈ R.
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Proof We consider the solution (x(t), y(t)) of (.) passing through a point (x, y) at t = t.
Let x̃(t) = cx(t) and ỹ(t) = φp(c)y(t) with c ∈R. It is clear that (x̃(t), ỹ(t)) = (cx,φp(c)y) is
satisfied. Since φp∗ is the inverse function of φp, we have

x̃′(t) = a(t)cx(t) + a(t)φp∗
(
φp(c)y(t)

)
= a(t)x̃(t) + a(t)φp∗

(
ỹ(t)

)

and

ỹ′(t) = a(t)φp
(
cx(t)

)
+ a(t)φp(c)y(t) = a(t)φp

(
x̃(t)

)
+ a(t)ỹ(t).

We therefore conclude that (cx(t),φp(c)y(t)) is also a solution of (.) passing through a
point (cx,φp(c)y) at t = t. �

We state the following proposition, which is the most important property for the proof
of Theorem ..

Proposition . If the zero solution of (.) is uniformly attractive, then there exists a γ >
 and, for every ν > , there exists a T(ν) >  such that t ∈ I and ‖(x,φp∗ (y))‖p < γν

–(k–)

imply

∥
∥
(
x
(
t; t + (k – )T(ν), x, y

)
,φp∗

(
y
(
t; t + (k – )T(ν), x, y

)))∥
∥

p < γν
–k

for all t ≥ t + kT(ν) and k ∈N.

Proof By using the assumption and Lemma ., there exists a γ >  and, for every ν > ,
there exists an S(γ/ν) >  such that τ ≥  and ‖(ξ ,φp∗ (η))‖p < γ imply

∥
∥
(
x(t; τ , ξ ,η),φp∗

(
y(t; τ , ξ ,η)

))∥
∥

p <
γ

ν

for all t ≥ τ + S.
Let T(ν) = S(γ/ν). We consider the solution

(
x
(
t; t + (k – )T , x, y

)
, y

(
t; t + (k – )T , x, y

))

of (.) with t ∈ I and ‖(x,φp∗ (y))‖p < γν
–(k–). From Lemma ., we conclude that

(
νk–x

(
t; t + (k – )T , x, y

)
,φp

(
νk–)y

(
t; t + (k – )T , x, y

))

is also a solution of (.) passing through a point (νk–x,φp(νk–)y) at t = t + (k – )T .
Since

∥
∥
(
νk–x,νk–φp∗ (y)

)∥
∥

p = νk–∥∥
(
x,φp∗ (y)

)∥
∥

p < γ

holds, we have

γ

ν
>

∥
∥
(
νk–x

(
t; t + (k – )T , x, y

)
,νk–φp∗

(
y
(
t; t + (k – )T , x, y

)))∥
∥

p

= νk–∥∥
(
x
(
t; t + (k – )T , x, y

)
,φp∗

(
y
(
t; t + (k – )T , x, y

)))∥
∥

p
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for all t ≥ t + (k – )T + T = t + kT . That is, we obtain

∥
∥
(
x
(
t; t + (k – )T , x, y

)
,φp∗

(
y
(
t; t + (k – )T , x, y

)))∥
∥

p < γν
–k

for all t ≥ t + kT . This completes the proof of Proposition .. �

3 Exponential asymptotic stability
In this section, we give the proof of the main theorem.

Proof of Theorem . By using uniform attractivity of (.) and Proposition ., there exist
a γ >  and a T(e) >  such that t ∈ I and ‖(ξ ,φp∗ (η))‖p < γe–(k–) imply

∥
∥
(
x
(
t; t + (k – )T , ξ ,η

)
,φp∗

(
y
(
t; t + (k – )T , ξ ,η

)))∥
∥

p < γe–k (.)

for all t ≥ t + kT and k ∈N.
Because of the uniform stability of (.) and Lemma ., there exists a γ (γ) >  such

that t ∈ I and ‖(ξ ,φp∗ (η))‖p < γ imply

∥
∥
(
x(t; t, ξ ,η),φp∗

(
y(t; t, ξ ,η)

))∥
∥

p < γ (.)

for all t ≥ t. Let λ = /T . For every ε > , we determine a

δ(ε) =
γ ε

γe
> .

We now consider the solution (x(t; t, x, y), y(t; t, x, y)) of (.) with t ∈ I and ‖(x,
φp∗ (y))‖p < δ. For the sake of simplicity, let

(
x(t), y(t)

)
=

(
x(t; t, x, y), y(t; t, x, y)

)
.

Using Lemma ., we can find a solution

(
γe
ε

x(t),φp

(
γe
ε

)

y(t)
)

of (.) passing through a point ((γe/ε)x,φp(γe/ε)y) at t = t. From δ = γ ε/(γe), we see
that

∥
∥
∥
∥

(
γe
ε

x,φp∗
(

φp

(
γe
ε

)

y

))∥
∥
∥
∥

p
=

∥
∥
∥
∥

(
γe
ε

x,
γe
ε

φp∗ (y)
)∥

∥
∥
∥

p

=
γe
ε

∥
∥
(
x,φp∗ (y)

)∥
∥

p < γ

at t = t. From this inequality and (.) with

(ξ ,η) =
(

γe
ε

x,φp

(
γe
ε

)

y

)

,
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we have

γe
ε

∥
∥
(
x(t),φp∗

(
y(t)

))∥
∥

p =
∥
∥
∥
∥

(
γe
ε

x(t),
γe
ε

φp∗
(
y(t)

)
)∥

∥
∥
∥

p

=
∥
∥
∥
∥

(
γe
ε

x(t),φp∗
(

φp

(
γe
ε

)

y(t)
))∥

∥
∥
∥

p
< γ (.)

for t ≥ t. We therefore conclude that

∥
∥
(
x(t),φp∗

(
y(t)

))∥
∥

p <
ε

e

for t ≤ t ≤ t + T . By using (.), we obtain

∥
∥
∥
∥

(
γe
ε

x,φp∗
(

φp

(
γe
ε

)

y

))∥
∥
∥
∥

p
< γ

at t = t. From this inequality and (.) with

(ξ ,η) =
(

γe
ε

x,φp

(
γe
ε

)

y

)

, k = ,

we get

γe
ε

∥
∥
(
x(t),φp∗

(
y(t)

))∥
∥

p =
∥
∥
∥
∥

(
γe
ε

x(t),φp∗
(

φp

(
γe
ε

)

y(t)
))∥

∥
∥
∥

p
<

γ

e
(.)

for t ≥ t + T . We therefore conclude that

∥
∥
(
x(t),φp∗

(
y(t)

))∥
∥

p <
ε

e

for t + T ≤ t ≤ t + T . By using (.), we obtain

∥
∥
∥
∥

(
γe
ε

x(t + T),φp∗
(

φp

(
γe
ε

)

y(t + T)
))∥

∥
∥
∥

p
<

γ

e

at t = t + T . From this inequality and (.) with

(ξ ,η) =
(

γe
ε

x(t + T),φp

(
γe
ε

)

y(t + T)
)

, k = ,

we get

γe
ε

∥
∥
(
x(t),φp∗

(
y(t)

))∥
∥

p =
∥
∥
∥
∥

(
γe
ε

x(t),φp∗
(

φp

(
γe
ε

)

y(t)
))∥

∥
∥
∥

p
<

γ

e

for t ≥ t + T . We therefore conclude that

∥
∥
(
x(t),φp∗

(
y(t)

))∥
∥

p <
ε

e
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for t + T ≤ t ≤ t + T . By means of the same process as in the above mentioned esti-
mates, we see that

∥
∥
(
x(t),φp∗

(
y(t)

))∥
∥

p < εe–κ

for t + (κ – )T ≤ t ≤ t + κT and κ ∈N. Hence, by t ≤ t + κT we have

–κ ≤ –

T

(t – t) = –λ(t – t),

and therefore

∥
∥
(
x(t),φp∗

(
y(t)

))∥
∥

p < εe–κ ≤ εe–λ(t–t)

for t + (κ – )T ≤ t ≤ t + κT and κ ∈N. Note that we can divide the interval [t, t + κT]
as

[t, t + κT] =
κ⋃

n=

[
t + (n – )T , t + nT

]

for κ ∈N. Thus, it turns out that

∥
∥
(
x(t),φp∗

(
y(t)

))∥
∥

p ≤ εe–λ(t–t)

for t ≥ t. Using Lemma ., we conclude that the zero solution of (.) is exponentially
stable. This completes the proof of Theorem .. �

Note here that the proof of Theorem . does not require the uniqueness of solutions
for the initial value problem.

4 Global exponential stability
Clearly concepts of above mentioned stability are local theory about the zero solution.
In this section, we will discuss any initial disturbance and initial state. We consider the
nonlinear scalar equation x′ = –x + x (see [], p.). It is easy to see that the solution of
this equation is given by

x(t; t, x) =
x

x – (x – )et–t
,

where t ∈ I and x ∈ R. Clearly, x(t; t, ) ≡  and x(t; t, ) ≡  are the trivial solution. If
x < , then x(t; t, x) →  as t → ∞. Moreover, for every  < ε < , we choose δ(ε) = ε/.
If |x| < δ(ε), then we have

∣
∣x(t; t, x)

∣
∣ ≤ |x|e–(t–t)

 – |x|( – e–(t–t))
<

|x|e–(t–t)

 – |x| < εe–(t–t)

for t ≥ t. This means that the zero solution is exponentially stable. On the other hand, if
 < x, then x(t; t, x) → ∞ as t → t + log(x/(x – )); that is, in the case that  < x, all
solutions are unbounded. Therefore, we can conclude that local theory and global theory
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are completely different concepts. Here, the second question of this paper arises. Will ex-
ponential stability guarantee global exponential stability, even if the half-linear differential
system (.) is nonlinear? We now give the answer to this question.

Theorem . If the zero solution of (.) is uniformly asymptotically stable, then there
exist a λ >  and a β >  such that t ∈ I and (x, y) ∈ R

 imply

∥
∥
(
x(t; t, x, y),φp∗

(
y(t; t, x, y)

))∥
∥

p ≤ βe–λ(t–t)∥∥
(
x,φp∗ (y)

)∥
∥

p

for all t ≥ t, where β >  is independent of the size of ‖(x,φp∗ (y))‖p.

Proof By virtue of Theorem ., it turns out that the uniform asymptotic stability of (.)
implies exponential stability. Using Lemma ., there exist a λ >  and a δ() >  such that
t ∈ I and ‖(ξ ,φp∗ (η))‖p < δ imply

∥
∥
(
x(t; t, ξ ,η),φp∗

(
y(t; t, ξ ,η)

))∥
∥

p ≤ e–λ(t–t)

for all t ≥ t.
We choose β = /δ. Let t ∈ I and (x, y) ∈ R

 be given. We may assume without loss of
generality that (x, y) �= (, ). Consider the solution (x(t; t, x, y), y(t; t, x, y)) of (.).
For the sake of convenience, we write

(
x(t), y(t)

)
=

(
x(t; t, x, y), y(t; t, x, y)

)
, c =

δ

‖(x,φp∗ (y))‖p
.

Hence, we have

∥
∥
(
cx,φp∗

(
φp(c)y

))∥
∥

p =
∥
∥
(
cx, cφp∗ (y)

)∥
∥

p = c
∥
∥
(
x,φp∗ (y)

)∥
∥

p < δ.

Using Lemma ., (cx(t),φp(c)y(t)) is also a solution of (.) passing through a point
(cx,φp(c)y) at t = t. Thus, we get

c
∥
∥
(
x(t),φp∗

(
y(t)

))∥
∥

p =
∥
∥
(
cx(t),φp∗

(
φp(c)y(t)

))∥
∥

p ≤ e–λ(t–t)

for all t ≥ t, and therefore

∥
∥
(
x(t),φp∗

(
y(t)

))∥
∥

p ≤ 
δ

e–λ(t–t)∥∥
(
x,φp∗ (y)

)∥
∥

p = βe–λ(t–t)∥∥
(
x,φp∗ (y)

)∥
∥

p

for all t ≥ t. This completes the proof of Theorem .. �

Theorem . is a natural generalization of Theorem D with n = . Actually, in the case
that p = , Theorem . becomes Theorem D with n = .

Moreover, let us give some definitions. The zero solution of (.) is said to be glob-
ally uniformly attractive (or uniformly attractive in the large) if for any α >  and any
ε > , there exists a T(α, ε) >  such that t ∈ I and ‖x‖ < α imply ‖x(t; t, x)‖ < ε for
all t ≥ t + T(α, ε). The solutions of (.) are said to be uniformly bounded if, for any α > ,
there exists a B(α) >  such that t ∈ I and ‖x‖ < α imply ‖x(t; t, x)‖ < B(α) for all t ≥ t.
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The zero solution of (.) is globally uniformly asymptotically stable (or uniformly asymp-
totically stable in the large) if it is globally uniformly attractive and is uniformly stable and
if the solutions of (.) are uniformly bounded. For example, we can refer to the books and
papers [, –, , , , ] for those definitions. When restricted to the case of the
linear system (.), the following facts are well known.

Theorem F If the zero solution of (.) is uniformly asymptotically stable, then it is globally
uniformly asymptotically stable.

We can state a natural generalization of Theorem F with n =  as follows.

Theorem . If the zero solution of (.) is uniformly asymptotically stable, then it is glob-
ally uniformly asymptotically stable.

Proof By virtue of Theorem ., if the zero solution of (.) is uniformly asymptotically
stable, then there exist a λ >  and a β >  such that t ∈ I and (ξ ,η) ∈R

 imply

∥
∥
(
x(t; t, ξ ,η),φp∗

(
y(t; t, ξ ,η)

))∥
∥

p ≤ βe–λ(t–t)∥∥
(
ξ ,φp∗ (η)

)∥
∥

p

for all t ≥ t. We have only to show that the zero solution of (.) is globally uniformly
attractive and the solutions of (.) are uniformly bounded.

First we will prove the global uniform attractivity. Let ε >  and α >  be given. We now
consider the solution (x(t; t, x, y), y(t; t, x, y)) of (.) with t ∈ I and ‖(x, y)‖ < α. For
the sake of convenience, we write

(
x(t), y(t)

)
=

(
x(t; t, x, y), y(t; t, x, y)

)
, c(α) =

∥
∥
(
α,φp∗ (α)

)∥
∥

p.

We choose a T(ε,α) such that

T(ε,α) =


min{, p – }λ log

√
(βc(α)) + (βc(α))(p–)

ε
.

Since |x| < α and |y| < α, we get

∥
∥
(
x,φp∗ (y)

)∥
∥

p < c(α).

We therefore conclude that

∣
∣x(t)

∣
∣ ≤ ∥

∥
(
x(t),φp∗

(
y(t)

))∥
∥

p < βc(α)e–λ(t–t)

and

∣
∣y(t)

∣
∣ ≤ φp

(∥
∥
(
x(t),φp∗

(
y(t)

))∥
∥

p

)
<

(
βc(α)e–λ(t–t))p–

for t ≥ t. From these inequalities, we see that

∥
∥
(
x(t), y(t)

)∥
∥ < e– min{,p–}λ(t–t)

√
(
βc(α)

) +
(
βc(α)

)(p–)



Onitsuka and Soeda Advances in Difference Equations  (2015) 2015:158 Page 18 of 24

for t ≥ t. Hence, we obtain

∥
∥
(
x(t), y(t)

)∥
∥ < ε

for t ≥ t + T .
We next prove the uniform boundedness. Let α >  be given. As mentioned in the proof

of global uniform attractivity, we see that

∥
∥
(
x(t), y(t)

)∥
∥ < e– min{,p–}λ(t–t)

√
(
βc(α)

) +
(
βc(α)

)(p–)

for t ≥ t and ‖(x, y)‖ < α, where

(
x(t), y(t)

)
=

(
x(t; t, x, y), y(t; t, x, y)

)
, c(α) =

∥
∥
(
α,φp∗ (α)

)∥
∥

p.

We choose a B(α) >  such that

B(α) =
√

(
βc(α)

) +
(
βc(α)

)(p–).

Hence, we obtain

∥
∥
(
x(t; t, x, y), y(t; t, x, y)

)∥
∥ < B(α)

for t ≥ t. This completes the proof of Theorem .. �

The claim of Theorem . contributes to clear that uniform asymptotic stability and
global uniform asymptotic stability are completely same concept for the half-linear differ-
ential system (.). Moreover, we can conclude that uniform asymptotic stability, exponen-
tial stability and global exponential stability are equivalent for the half-linear differential
system (.) from the results of Theorems . and ..

5 Converse theorems on exponential stability
In this section, for comparison with Theorems B, C and E, we will discuss the converse
theorems for half-linear system (.). Recall that the right-hand side of (.) does not satisfy
Lipschitz condition at the origin. For this reason, unfortunately, Theorems B, C and E
cannot apply to (.). First, let us consider the existence of a Lyapunov function estimated
by the form ‖x‖p

p. For this purpose, we give a lemma as follows.

Lemma . If (x(t), y(t)) is a solution of (.) passing through a point (x, y) ∈ R
 at t =

t ∈ I , then the following inequality holds:

∥
∥
(
x(t),φp∗

(
y(t)

))∥
∥p

p ≥ ∥
∥
(
x,φp∗ (y)

)∥
∥p

p exp

(∫ t

t

ψ(s) ds
)

for t ≥ t, where the continuous function ψ(t) defined by

ψ(t) = min
{

pa(t) –
∣
∣(p – )a(t) + a(t)

∣
∣, p∗a(t) –

∣
∣a(t) +

(
p∗ – 

)
a(t)

∣
∣
}

.
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Proof Define

w(t) =
∥
∥
(
x(t),φp∗

(
y(t)

))∥
∥p

p =
∣
∣x(t)

∣
∣p +

∣
∣y(t)

∣
∣p∗

for t ≥ t. From the right-hand side of (.), we have

w′(t) = pa(t)
∣
∣x(t)

∣
∣p + p∗a(t)

∣
∣y(t)

∣
∣p∗

+
(
pa(t) + p∗a(t)

)
φp

(
x(t)

)
φp∗

(
y(t)

)

for t ≥ t. Using the classical Young inequality, we obtain

w′(t) ≥ pa(t)
∣
∣x(t)

∣
∣p + p∗a(t)

∣
∣y(t)

∣
∣p∗

–
∣
∣pa(t) + p∗a(t)

∣
∣
∣
∣x(t)

∣
∣p–∣∣y(t)

∣
∣p∗–

≥ pa(t)
∣
∣x(t)

∣
∣p + p∗a(t)

∣
∣y(t)

∣
∣p∗

–
∣
∣pa(t) + p∗a(t)

∣
∣

( |x(t)|(p–)p∗

p∗ +
|y(t)|(p∗–)p

p

)

=
(
pa(t) –

∣
∣(p – )a(t) + a(t)

∣
∣
)∣
∣x(t)

∣
∣p

+
(
p∗a(t) –

∣
∣a(t) +

(
p∗ – 

)
a(t)

∣
∣
)∣
∣y(t)

∣
∣p∗

≥ ψ(t)w(t)

for t ≥ t. Therefore, we get

(

exp

(

–
∫ t

t

ψ(s) ds
)

w(t)
)′

≥ 

for t ≥ t. Integrate this inequality from t to t to obtain

w(t) ≥ w(t) exp

(∫ t

t

ψ(s) ds
)

=
∥
∥
(
x,φp∗ (y)

)∥
∥p

p exp

(∫ t

t

ψ(s) ds
)

for t ≥ t. �

The first converse theorem of this section is as follows. We can prove this theorem with-
out requiring the uniqueness of solutions of (.) for the initial value problem.

Theorem . Suppose that all coefficients of (.) are bounded on I and that there exist a
λ >  and a β >  such that

∥
∥
(
x(t; t, x, y),φp∗

(
y(t; t, x, y)

))∥
∥

p ≤ βe–λ(t–t)∥∥
(
x,φp∗ (y)

)∥
∥

p

for all t ≥ t ≥ , where (x(t; t, x, y), y(t; t, x, y)) is a solution of (.). Then there exist
three positive constants β, β, β and a Lyapunov function V (t, x, y) defined on I × R



which satisfies the following conditions:
(i) β‖(x,φp∗ (y))‖p

p ≤ V (t, x, y) ≤ β‖(x,φp∗ (y))‖p
p;

(ii) V̇(.)(t, x, y) ≤ –β‖(x,φp∗ (y))‖p
p.
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Proof From the assumption, all solutions (x(s; t, x, y), y(s; t, x, y)) of (.) passing through a
point (x, y) ∈R

 at t ∈ I satisfy

∥
∥
(
x(s; t, x, y),φp∗

(
y(s; t, x, y)

))∥
∥

p ≤ β
∥
∥
(
x,φp∗ (y)

)∥
∥

p

for s ≥ t. Therefore, we can consider the function

v(s; t, x, y) = sup
∥
∥
(
x(s; t, x, y),φp∗

(
y(s; t, x, y)

))∥
∥

p

for s ≥ t. Note that if we suppose the uniqueness of solutions of (.) for the initial value
problem, then v(s; t, x, y) = ‖(x(s; t, x, y),φp∗ (y(s; t, x, y)))‖p holds for s ≥ t. However, we can
prove this theorem without requiring the uniqueness of solutions. Let V (t, x, y) be defined
by

V (t, x, y) =
∫ t+T

t
vp(s; t, x, y) ds,

where T = (/λ) log(β p√) is a constant. From the assumption, we obtain the following
estimate:

V (t, x, y) ≤
∫ t+T

t
e–pλ(s–t) ds

(
β
∥
∥
(
x,φp∗ (y)

)∥
∥

p

)p

=
βp( – e–pλT )

pλ

∥
∥
(
x,φp∗ (y)

)∥
∥p

p = β
∥
∥
(
x,φp∗ (y)

)∥
∥p

p.

We will show that β‖(x,φp∗ (y))‖p
p ≤ V (t, x, y). Since all coefficients of (.) are bounded on

I , there exists an L >  such that |ψ(s)| ≤ L for all s ∈ I , where ψ is the continuous function
given in Lemma .. From Lemma ., we have

vp(s; t, x, y) ≥ exp

(∫ s

t
ψ(τ ) dτ

)
∥
∥
(
x,φp∗ (y)

)∥
∥p

p ≥ e–L(s–t)∥∥
(
x,φp∗ (y)

)∥
∥p

p

for s ≥ t. Thus, we get

V (t, x, y) ≥
∫ t+T

t
e–L(s–t) ds

∥
∥
(
x,φp∗ (y)

)∥
∥p

p

=
 – e–LT

L
∥
∥
(
x,φp∗ (y)

)∥
∥p

p = β
∥
∥
(
x,φp∗ (y)

)∥
∥p

p.

Therefore, condition (i) is satisfied.
We next prove the condition (ii). Let h >  and

(
x(s), y(s)

)
=

(
x(s; t, x, y), y(s; t, x, y)

)
for s ≥ t.

From the definition of v, we see that

v
(
s; u, x(u), y(u)

) ≤ v(s; t, x, y)
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for t ≤ u ≤ s. Then we get

V
(
t + h, x(t + h), y(t + h)

)
=

∫ t+h+T

t+h
vp(s; t + h, x(t + h), y(t + h)

)
ds

≤
∫ t+h+T

t+h
vp(s; t, x, y) ds

= V (t, x, y) +
∫ t+h+T

t+T
vp(s; t, x, y) ds –

∫ t+h

t
vp(s; t, x, y) ds

≤ V (t, x, y) +
∫ t+h+T

t+T
βpe–pλ(s–t)∥∥

(
x,φp∗ (y)

)∥
∥p

p ds

–
∫ t+h

t
e–L(s–t)∥∥

(
x,φp∗ (y)

)∥
∥p

p ds

= V (t, x, y)

+
(

βpe–pλT ( – e–pλh)
pλ

–
 – e–Lh

L

)
∥
∥
(
x,φp∗ (y)

)∥
∥p

p

from the assumption and Lemma .. Therefore, we can estimate that


h
(
V

(
t + h, x(t + h), y(t + h)

)
– V (t, x, y)

)

≤
(

βpe–pλT ( – e–pλh)
pλh

–
 – e–Lh

Lh

)
∥
∥
(
x,φp∗ (y)

)∥
∥p

p.

From this inequality and

lim
h→

(
βpe–pλT ( – e–pλh)

pλh
–

 – e–Lh

Lh

)

= βpe–pλT –  = –



,

we obtain

V̇(.)(t, x, y) ≤ –


∥
∥
(
x,φp∗ (y)

)∥
∥p

p = –β
∥
∥
(
x,φp∗ (y)

)∥
∥p

p.

This completes the proof of Theorem .. �

Note that three positive constants β, β, β in Theorem . are independent of the size
of ‖(x,φp∗ (y))‖p. The second converse theorem is as follows.

Theorem . Suppose that there exist a λ >  and a β >  such that

∥
∥
(
x(t; t, x, y),φp∗

(
y(t; t, x, y)

))∥
∥

p ≤ βe–λ(t–t)∥∥
(
x,φp∗ (y)

)∥
∥

p

for all t ≥ t ≥ , where (x(t; t, x, y), y(t; t, x, y)) is a solution of (.). Then there exists
a Lyapunov function V (t, x, y) defined on I ×R

 which satisfies the following conditions:
(i) ‖(x,φp∗ (y))‖p ≤ V (t, x, y) ≤ β‖(x,φp∗ (y))‖p;

(ii) V̇(.)(t, x, y) ≤ –λV (t, x, y).

Proof Let V (t, x, y) be defined by

V (t, x, y) = sup
σ≥

v(t + σ ; t, x, y)eλσ ,
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where v is the function given in the proof of Theorem .. It is clear that ‖(x,φp∗ (y))‖p ≤
V (t, x, y). On the other hand, we can easy to see that

V (t, x, y) ≤ sup
σ≥

βe–λσ
∥
∥
(
x,φp∗ (y)

)∥
∥

peλσ = β
∥
∥
(
x,φp∗ (y)

)∥
∥

p,

by the assumption.
We next prove the condition (ii). Let h >  and

(
x(s), y(s)

)
=

(
x(s; t, x, y), y(s; t, x, y)

)
for s ≥ t.

Then we get

V
(
t + h, x(t + h), y(t + h)

)
= sup

σ≥
v
(
t + h + σ ; t + h, x(t + h), y(t + h)

)
eλσ

= sup
τ≥h

v
(
t + τ ; t + h, x(t + h), y(t + h)

)
eλτ e–λh

≤ sup
τ≥h

v(t + τ ; t, x, y)eλτ e–λh

≤ sup
τ≥

v(t + τ ; t, x, y)eλτ e–λh = V (t, x, y)e–λh

from v(s; u, x(u), y(u)) ≤ v(s; t, x, y) for t ≤ u ≤ s. Therefore, we can estimate that

V (t + h, x(t + h), y(t + h)) – V (t, x, y)
h

≤ e–λh – 
h

V (t, x, y).

From this inequality and

lim
h→

e–λh – 
h

= –λ,

we obtain

V̇(.)(t, x, y) ≤ –λV (t, x, y).

This completes the proof of Theorem .. �
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2. Došlý, O, Řehák, P: Half-Linear Differential Equations. North-Holland Mathematics Studies, vol. 202. Elsevier,

Amsterdam (2005)



Onitsuka and Soeda Advances in Difference Equations  (2015) 2015:158 Page 23 of 24

3. Elbert, Á: Asymptotic behaviour of autonomous half-linear differential systems on the plane. Studia Sci. Math. Hung.
19(2-4), 447-464 (1984)

4. Mirzov, JD: On some analogs of Sturm’s and Kneser’s theorems for nonlinear systems. J. Math. Anal. Appl. 53(2),
418-425 (1976)

5. Mirzov, JD: Principal and nonprincipal solutions of a nonlinear system. Tbil. Gos. Univ. Inst. Prikl. Mat. Tr. 31, 100-117
(1988) (Russian)

6. Mirzov, JD: Asymptotic Properties of Solutions of Systems of Nonlinear Nonautonomous Ordinary Differential
Equations. Folia Facultatis Scientiarium Naturalium Universitatis Masarykianae Brunensis. Mathematica, vol. 14.
Masaryk University, Brno (2004)

7. Onitsuka, M, Sugie, J: Uniform global asymptotic stability for half-linear differential systems with time-varying
coefficients. Proc. R. Soc. Edinb., Sect. A 141(5), 1083-1101 (2011)

8. Sugie, J, Hata, S, Onitsuka, M: Global attractivity for half-linear differential systems with periodic coefficients. J. Math.
Anal. Appl. 371(1), 95-112 (2010)

9. Sugie, J, Onitsuka, M: Global asymptotic stability for half-linear differential systems with coefficients of indefinite sign.
Arch. Math. 44(4), 317-334 (2008)

10. Agarwal, RP, Grace, SR, O’Regan, D: Oscillation Theory for Second Order Linear, Half-Linear, Superlinear and Sublinear
Dynamic Equations. Kluwer Academic, Dordrecht (2002)

11. Elbert, Á: A half-linear second order differential equation. In: Qualitative Theory of Differential Equations (Szeged,
1979), vols. I, II. Colloq. Math. Soc. János Bolyai, vol. 30, pp. 153-180. North-Holland, Amsterdam (1981)
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15. Řehák, P: De Haan type increasing solutions of half-linear differential equations. J. Math. Anal. Appl. 412(1), 236-243
(2014)

16. Sugie, J, Matsumura, K: A nonoscillation theorem for half-linear differential equations with periodic coefficients. Appl.
Math. Comput. 199(2), 447-455 (2008)

17. Sugie, J, Onitsuka, M: Global asymptotic stability for damped half-linear differential equations. Acta Sci. Math. 73(3-4),
613-636 (2007)

18. Sugie, J, Onitsuka, M: Integral conditions on the uniform asymptotic stability for two-dimensional linear systems with
time-varying coefficients. Proc. Am. Math. Soc. 138(7), 2493-2503 (2010)

19. Sugie, J, Onitsuka, M: Growth conditions for uniform asymptotic stability of damped oscillators. Nonlinear Anal. 98,
83-103 (2014)

20. Agarwal, RP, Bohner, M, Li, T: Oscillatory behavior of second-order half-linear damped dynamic equations. Appl. Math.
Comput. 254, 408-418 (2015)

21. Došlý, O, Fišnarová, S: Linearized Riccati technique and (non-)oscillation criteria for half-linear difference equations.
Adv. Differ. Equ. 2008, Article ID 438130 (2008)

22. Došlý, O, Yamaoka, N: Oscillation constants for second-order ordinary differential equations related to elliptic
equations with p-Laplacian. Nonlinear Anal. 113, 115-136 (2015)

23. Fišnarová, S: Oscillatory properties of half-linear difference equations: two-term perturbations. Adv. Differ. Equ. 2012,
101 (2012)
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