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1 Introduction
During the past decades, high-order cellular neural networks (HCNNs) have been exten-
sively investigated due to their immense potential of application perspective in various
fields such as signal and image processing, pattern recognition, optimization, and many
other subjects. Many results on the problem of global stability of equilibrium points and
periodic solutions of HCNNs have been reported (see [–]). In applied sciences, the exis-
tence of anti-periodic solutions plays a key role in characterizing the behavior of nonlinear
differential equations [–]. In recent years, there have been some papers which deal
with the problem of existence and stability of anti-periodic solutions. For example, Gong
[] investigated the existence and exponential stability of anti-periodic solutions for a
class of Cohen-Grossberg neural networks; Peng and Huang [] studied the anti-periodic
solutions for shunting inhibitory cellular neural networks with continuously distributed
delays, Zhang [] focused on the existence and exponential stability of anti-periodic so-
lutions for HCNNs with time-varying leakage delays. For details, we refer readers to [,
–]. We know that many evolutionary processes exhibit impulsive effects [, –].
Thus, it is worthwhile to investigate the existence and stability of anti-periodic solutions
for HCNNs with impulses. To the best of our knowledge, very few scholars have consid-
ered the problem of anti-periodic solutions for such impulsive systems. In this paper, we
study the anti-periodic solution of the following high-order cellular neural network with
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mixed delays and impulses modeled by

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

ẋi(t) = –bi(t)xi(t) +
∑n

j= cij(t)gj(xj(t – τij(t)))
+

∑n
j= dij(t)

∫ σ

 kij(s)gj(xj(t – s)) ds
+

∑n
j=

∑n
l= eijl(t)gj(xj(t – αjl(t)))gl(xl(t – βjl(t))) + Ii(t), t �= tk ,

xi(t+
k ) = ( + γik)xi(tk), k = , , . . . ,

(.)

where i = , , . . . , n, xi(t) denotes the state of the ith unit, bi(t) >  denotes the passive
decay, cij, dij, eijl are the synaptic connections strengths, τij(t) ≥ , αjl(t) ≥  and βjl(t) ≥ 
correspond to the delays, Ii(t) stands for the external inputs, gj is the activation function
of signal transmission, the delay kernels kij is a real-valued negative continuous function
defined on R+ := [,∞), tk is the impulsive moment, and γik characterizes the impulsive
jump at time tk for the ith unit.

For convenience, we introduce some notations as follows.

cij = sup
t∈R

∣
∣cij(t)

∣
∣, dij = sup

t∈R

∣
∣dij(t)

∣
∣, eijl = sup

t∈R

∣
∣eijl(t)

∣
∣, Ii = sup

t∈R

∣
∣Ii(t)

∣
∣,

bi = inf
t∈R

∣
∣bi(t)

∣
∣, τ = sup

t∈R
max

≤i,j,l≤n

{
τij(t),αjl(t),βjl(t),σ

}
.

Throughout this paper, we assume that
(H) For i, j, l = , , . . . , n, bi, cij, dij, eijl, Ii(t), gj : R → R, kij : R+ → R+, αjl,βjl : R → R+ are

continuous functions, and there exists a constant T >  such that

bi(t + T) = bi(t), Ii(t + T) = –Ii(t), τij(t + T) = τij(t), αjl(t + T) = αjl(t),

cij(t + T)gj(u) = –cij(t)gj(–u), dij(t + T)gj(u) = –dij(t)gj(–u),

βjl(t + T) = βjl(t), eijl(t + T)gj(u)gl(u) = –eijl(t)gj(–u)gl(–u).

(H) The sequence of times {tk} (k ∈ N ) satisfies tk < tk+ and limk→+∞ tk = +∞, and γik

satisfies – ≤ γik ≤  for i ∈ {, , . . . , n} and k ∈ N .
(H) There exists q ∈ N such that γi(k+q) = γik , tk+q = tk + T , k ∈ N .
(H) For each j ∈ {, , . . . , n}, the activation function gj : R → R is continuous, and there

exist nonnegative constants Lj
g and Mg such that, for all u, v ∈ R,

gj() = ,
∣
∣gj(u)

∣
∣ ≤ Mg ,

∣
∣gj(u) – gj(v)

∣
∣ ≤ Lj

g |u – v| for all u, v ∈ R.

(H) There exist constants η > , λ > , i = , , . . . , n, such that

(λ – bi) +
n∑

j=

cijLj
geλτ +

n∑

j=

|dij|
∫ σ



∣
∣kij(s)

∣
∣Lj

geλs ds

+
n∑

j=

n∑

l=

eijl
(
MgLl

geλτ + MgLj
geλτ

)
< –η < .

(H) For i = , , . . . , n, the following condition holds:

{
–bi +

∑n
j= c̄ijL

j
g +

∑n
j= Lj

g d̄ij
∫ σ

 |kij(s)|ds < ,
(–bi +

∑n
j= c̄ijL

j
g +

∑n
j= Lj

g d̄ij
∫ σ

 |kij(s)|ds) – Īi
∑n

j=
∑n

l= ēijlL
j
gLl

g > .
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Let x = (x, x, . . . , xn)T ∈ Rn, in which ‘T ’ denotes the transposition. We define |x| =
(|x|, |x|, . . . , |xn|)T and ‖x‖ = max≤i≤n |xi|. Obviously, the solution x(t) = (x(t), x(t),
. . . , xn(t))T of (.) has components xi(t) piece-wise continuous on (–τ , +∞), x(t) is dif-
ferentiable on the open intervals (tk–, tk) and x(t+

k ) exists.

Definition . Let u(t) : R → R be a piece-wise continuous function having a countable
number of discontinuous {tk}|+∞

k= of the first kind. It is said to be T-anti-periodic on R if

{
u(t + T) = –u(t), t �= tk ,
u((tk + T)+) = –u(t+

k ), k = , , . . . .

Definition . Let x∗(t) = (x∗
 (t), x∗

(t), . . . , x∗
n(t))T be an anti-periodic solution of (.)

with initial value ϕ∗ = (ϕ∗
 (t),ϕ∗

 (t), . . . ,ϕ∗
n(t))T . If there exist constants λ >  and M > 

such that for every solution x(t) = (x(t), x(t), . . . , xn(t))T of (.) with an initial value
ϕ = (ϕ(t),ϕ(t), . . . ,ϕn(t))T ,

∣
∣xi(t) – x∗

i (t)
∣
∣ ≤ M

∥
∥ϕ – ϕ∗∥∥e–λt for all t > , i = , , . . . , n,

where

∥
∥ϕ – ϕ∗∥∥ = sup

–τ≤s≤
max
≤i≤n

∣
∣ϕi(s) – ϕ∗

i (s)
∣
∣.

Then x∗(t) is said to be globally exponentially stable.

The purpose of this paper is to present sufficient conditions of existence and exponen-
tial stability of anti-periodic solution of system (.). Not only can our results be applied
directly to many concrete examples of cellular neural networks, but they also extend, to a
certain extent, the results in some previously known ones. In addition, an example with
its numerical simulations is presented to illustrate the effectiveness of our main results.

The rest of this paper is organized as follows. In the next section, we give some prelim-
inary results. In Section , we derive the existence of T-anti-periodic solution, which is
globally exponential stable. In Section , we present an example to illustrate the effective-
ness of our main results.

2 Preliminary results
In this section, we present two important lemmas which are used to prove our main results
in Section .

Lemma . Let (H)-(H) hold. Suppose that x(t) = (x(t), x(t), . . . , xn(t))T is a solution of
(.) with initial conditions

xi(s) = ϕi(s),
∣
∣ϕi(s)

∣
∣ < δ, s ∈ [–τ , ], i = , , . . . , n. (.)

Then

∣
∣xi(t)

∣
∣ < δ and

∣
∣xi

(
t+
k
)∣
∣ < δ for all t ≥ , i = , , . . . , n, (.)
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where δ satisfies

–biδ +
n∑

j=

cijLj
gδ +

n∑

j=

Lj
gdijδ

∫ σ



∣
∣kij(s)

∣
∣ds +

n∑

j=

n∑

l=

eijlLj
gLl

gδ
 + Ii < . (.)

Proof For any given initial condition, hypothesis (H) guarantees the existence and
uniqueness of x(t), the solution to (.) in [–τ , +∞). Consider the following polynomial
ax +bx+c, where a, b, c are all real numbers. If a <  and b –ac < , then ax +bx+c > .
In view of (H), we know that there exists a positive constant δ which satisfies (.). By
way of contradiction, we assume that (.) does not hold. Notice that xi(t+

k ) = ( + γik)xi(tk)
and by assumption (H), – ≤ γik ≤ , then |xi(t+

k )| = |( + γik)||xi(tk)| ≤ |xi(tk)|. Then, if
|xi(t+

k )| ≥ δ, then |xi(tk)| ≥ δ. Thus we may assume that there must exist i ∈ {, , . . . , n} and
t̃ ∈ (tk , tk+] such that

∣
∣xi (̃t)

∣
∣ = δ and

∣
∣xj (̃t)

∣
∣ < δ for all t ∈ (–τ ,̃ t), j = , , . . . , n. (.)

By directly computing the upper left derivative of |xi(t)|, together with assumptions (.),
(H) and (.), we deduce that

 ≤ D+(∣
∣xi (̃t)

∣
∣
)

≤ –bi(t)
∣
∣xi (̃t)

∣
∣ +

∣
∣
∣
∣
∣

n∑

j=

cij (̃t)gj
(
xj

(
t̃ – τij (̃t)

))
+

n∑

j=

dij (̃t)
∫ σ


kij(s)gj

(
xj (̃t – s)

)
ds

+
n∑

j=

n∑

l=

eijl (̃t)gj
(
xj

(
t̃ – αjl (̃t)

))
gl

(
xl

(
t̃ – βjl (̃t)

))
+ Ii (̃t)

∣
∣
∣
∣
∣

≤ –bi(t)
∣
∣xi (̃t)

∣
∣ +

n∑

j=

∣
∣cij (̃t)

∣
∣
∣
∣gj

(
xj

(
t̃ – τij (̃t)

))∣
∣ +

n∑

j=

∣
∣dij (̃t)

∣
∣
∫ σ



∣
∣kij(s)

∣
∣
∣
∣gj

(
xj (̃t – s)

)∣
∣ds

+
n∑

j=

n∑

l=

∣
∣eijl (̃t)

∣
∣
∣
∣gj

(
xj

(
t̃ – αjl (̃t)

))∣
∣
∣
∣gl

(
xl

(
t̃ – βjl (̃t)

))∣
∣ +

∣
∣Ii (̃t)

∣
∣

≤ –bi(t)
∣
∣xi (̃t)

∣
∣ +

n∑

j=

cijLj
g
∣
∣xj

(
t̃ – τij (̃t)

)∣
∣ +

n∑

j=

Lj
gdij

∫ σ



∣
∣kij(s)

∣
∣
∣
∣xj (̃t – s)

∣
∣ds

+
n∑

j=

n∑

l=

eijlLj
gLl

g
∣
∣xj

(
t̃ – αjl (̃t)

)∣
∣
∣
∣xl

(
t̃ – βjl (̃t)

)∣
∣ + Ii

≤ –biδ +
n∑

j=

cijLj
gδ +

n∑

j=

Lj
gdijδ

∫ σ



∣
∣kij(s)

∣
∣ds

+
n∑

j=

n∑

l=

eijlLj
gLl

gδ
 + Ii < , (.)

which is a contradiction and implies that (.) holds. This completes the proof. �

Lemma . Suppose that (H)-(H) hold. Let x∗(t) = (x∗
 (t), x∗

(t), . . . , x∗
n(t))T be the so-

lution of (.) with initial value ϕ∗ = (ϕ∗
 (t),ϕ∗

 (t), . . . ,ϕ∗
n(t))T , and x(t) = (x(t), x(t),
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. . . , xn(t))T be the solution of (.) with initial value ϕ = (ϕ(t),ϕ(t), . . . ,ϕn(t))T . Then there
exist constants λ >  and M >  such that

∣
∣xi(t) – x∗

i (t)
∣
∣ ≤ M

∥
∥ϕ – ϕ∗∥∥e–λt for all t > , i = , , . . . , n.

Proof Let y(t) = {yj(t)} = {xj(t) – x∗
j (t)} = x(t) – x∗(t). Then

y′
i(t) = –bi(t)

[
xi(t) – x∗

i (t)
]

+
n∑

j=

cij(t)
[
gj
(
xj

(
t – τij(t)

))
– gj

(
x∗

j
(
t – τij(t)

))]

+
n∑

j=

dij(t)
∫ σ


kij(s)

[
gj
(
xj(t – s)

)
– gj

(
x∗

j (t – s)
)]

ds

+
n∑

j=

n∑

l=

eijl(t)
[
gj
(
xj

(
t – αjl(t)

))
gl

(
xl

(
t – βjl(t)

))

– gj
(
x∗

j
(
t – αjl(t)

))
gl

(
x∗

l
(
t – βjl(t)

))]
+ Ii(t)

= –bi(t)
[
xi(t) – x∗

i (t)
]

+
n∑

j=

cij(t)
[
gj
(
xj

(
t – τij(t)

))
– gj

(
x∗

j
(
t – τij(t)

))]

+
n∑

j=

dij(t)
∫ σ


kij(s)

[
gj
(
xj(t – s)

)
– gj

(
x∗

j (t – s)
)]

ds

+
n∑

j=

n∑

l=

eijl(t)
[
gj
(
xj

(
t – αjl(t)

))
gl

(
xl

(
t – βjl(t)

))

– gj
(
xj

(
t – αjl(t)

))
gl

(
x∗

l
(
t – βjl(t)

))

+ gj
(
xj

(
t – αjl(t)

))
gl

(
x∗

l
(
t – βjl(t)

))

– gj
(
x∗

j
(
t – αjl(t)

))
gl

(
x∗

l
(
t – βjl(t)

))]
, t �= tk , (.)

yi
(
t+
k
)

= ( + γik)yi(tk), k = , , . . . , (.)

where i = , , . . . , n. Next, define a Lyapunov functional as

Vi(t) =
∣
∣yi(t)

∣
∣eλt , i = , , . . . , n. (.)

It follows from (.), (.) and (.) that

D+(
Vi(t)

) ≤ D+(∣
∣yi(t)

∣
∣
)
eλt + λ

∣
∣yi(t)

∣
∣eλt

≤ (
λ – bi(t)

)∣
∣yi(t)

∣
∣eλt +

[ n∑

j=

∣
∣cij(t)

∣
∣
∣
∣gj

(
xj

(
t – τij(t)

))
– gj

(
x∗

j
(
t – τij(t)

))∣
∣

+
n∑

j=

∣
∣dij(t)

∣
∣
∫ σ



∣
∣kij(s)

∣
∣
∣
∣gj

(
xj(t – s)

)
– gj

(
x∗

j (t – s)
)∣
∣ds

+
n∑

j=

n∑

l=

∣
∣eijl(t)

∣
∣
∣
∣gj

(
xj

(
t – αjl(t)

))
gl

(
xl

(
t – βjl(t)

))
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–gj
(
xj

(
t – αjl(t)

))
gl

(
x∗

l
(
t – βjl(t)

))∣
∣

+
∣
∣gj

(
xj

(
t – αjl(t)

))
gl

(
x∗

l
(
t – βjl(t)

))

–gj
(
x∗

j
(
t – αjl(t)

))
gl

(
x∗

l
(
t – βjl(t)

))∣
∣

]

eλt

≤ (
λ – bi(t)

)∣
∣yi(t)

∣
∣eλt +

{ n∑

j=

∣
∣cij(t)

∣
∣Lj

g
∣
∣yj(xj

(
t – τij(t)

)∣
∣

+
n∑

j=

∣
∣dij(t)

∣
∣
∫ σ



∣
∣kij(s)

∣
∣Lj

g
∣
∣yj(t – s)

∣
∣ds

+
n∑

j=

n∑

l=

∣
∣eijl(t)

∣
∣
[
MgLl

g
∣
∣yl

(
t – βjl(t)

)∣
∣

+ MgLj
g
∣
∣yj

(
t – αjl(t)

)∣
∣
]
}

eλt , t �= tk , (.)

and

Vi
(
t+
k
)

=
∣
∣yi

(
t+
k
)∣
∣eλtk =

∣
∣xi

(
t+
k
)

– x∗
i
(
t+
k
)∣
∣eλtk = | + γik|

∣
∣yi(tk)

∣
∣eλtk , (.)

where i = , , . . . , n. Let M >  denote an arbitrary real number and set

∥
∥ϕ – ϕ∗∥∥ = sup

–τ≤s≤
max
≤j≤n

∣
∣ϕj(s) – ϕ∗

j (s)
∣
∣ > , j = , , . . . , n.

Then, by (.), we have

Vi(t) =
∣
∣yi(t)

∣
∣eλt < M

∥
∥ϕ – ϕ∗∥∥ for all t ∈ [–τ , ], i = , , . . . , n.

Thus we can claim that

Vi(t) =
∣
∣yi(t)

∣
∣eλt < M

∥
∥ϕ – ϕ∗∥∥ for all t ∈ [–τ , t], i = , , . . . , n. (.)

Otherwise, there must exist i ∈ {, , . . . , n} and σ ∈ (–τ , t] such that

Vi(σ ) = M
∥
∥ϕ – ϕ∗∥∥, Vj(t) < M

∥
∥ϕ – ϕ∗∥∥ for all t ∈ [–τ ,σ ), j = , , . . . , n. (.)

Combining (.), (.) with (.), we obtain

 ≤ D+(
Vi(σ ) – M

∥
∥ϕ – ϕ∗∥∥)

= D+(
Vi(σ )

)

≤ (
λ – bi(σ )

)∣
∣yi(σ )

∣
∣eλσ +

{ n∑

j=

∣
∣cij(σ )

∣
∣Lj

g
∣
∣yj(xj

(
σ – τij(σ )

)∣
∣

+
n∑

j=

∣
∣dij(σ )

∣
∣
∫ σ



∣
∣kij(s)

∣
∣Lj

g
∣
∣yj(σ – s)

∣
∣ds
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+
n∑

j=

n∑

l=

∣
∣eijl(σ )

∣
∣
[
MgLl

g
∣
∣yl

(
σ – βjl(σ )

)∣
∣ + MgLj

g
∣
∣yj

(
σ – αjl(σ )

)∣
∣
]
}

eλσ

=
(
λ – bi(σ )

)∣
∣yi(σ )

∣
∣eλσ +

n∑

j=

∣
∣cij(σ )

∣
∣Lj

g
∣
∣yj(xj

(
σ – τij(σ )

)∣
∣eλ(σ–τij(σ ))eλτij(σ )

+
n∑

j=

∣
∣dij(σ )

∣
∣
∫ σ



∣
∣kij(s)

∣
∣Lj

g
∣
∣yj(σ – s)

∣
∣eλ(σ–s)eλs ds

+
n∑

j=

n∑

l=

∣
∣eijl(σ )

∣
∣
[
MgLl

g
∣
∣yl

(
σ – βjl(σ )

)∣
∣eλ(σ–βjl(σ ))eλβjl(σ )

+ MgLj
g
∣
∣yj

(
σ – αjl(σ )

)∣
∣eλ(σ–αjl(σ ))eλαjl(σ )]

≤ (
λ – bi(σ )

)
M

∥
∥ϕ – ϕ∗∥∥ +

n∑

j=

∣
∣cij(σ )

∣
∣Lj

gM
∥
∥ϕ – ϕ∗∥∥eλτij(σ )

+
n∑

j=

∣
∣dij(σ )

∣
∣
∫ σ



∣
∣kij(s)

∣
∣Lj

gM
∥
∥ϕ – ϕ∗∥∥eλs ds

+
n∑

j=

n∑

l=

∣
∣eijl(σ )

∣
∣
[
MgLl

gM
∥
∥ϕ – ϕ∗∥∥eλβjl(σ ) + MgLj

gM
∥
∥ϕ – ϕ∗∥∥eλαjl(σ )]

=

[
(
λ – bi(σ )

)
+

n∑

j=

∣
∣cij(σ )

∣
∣Lj

geλτij(σ ) +
n∑

j=

∣
∣dij(σ )

∣
∣
∫ σ



∣
∣kij(s)

∣
∣Lj

geλs ds

+
n∑

j=

n∑

l=

∣
∣eijl(σ )

∣
∣
(
MgLl

geλβjl(σ ) + MgLj
gMeλαjl(σ ))

]

M
∥
∥ϕ – ϕ∗∥∥

≤
[

(λ – bi) +
n∑

j=

cijLj
geλτ +

n∑

j=

|dij|
∫ σ



∣
∣kij(s)

∣
∣Lj

geλs ds

+
n∑

j=

n∑

l=

eijl
(
MgLl

geλτ + MgLj
geλτ

)
]

M
∥
∥ϕ – ϕ∗∥∥. (.)

Then

(λ – bi) +
n∑

j=

cijLj
geλτ +

n∑

j=

|dij|
∫ σ



∣
∣kij(s)

∣
∣Lj

geλs ds

+
n∑

j=

n∑

l=

eijl
(
MgLl

geλτ + MgLj
geλτ

)
> ,

which contradicts (H). Then (.) holds. In view of (.), we know that

Vi(t) =
∣
∣yi(t)

∣
∣eλt < M

∥
∥ϕ – ϕ∗∥∥, i = , , . . .

and

Vi
(
t+

)

= | + γi|
∣
∣yi(t)

∣
∣eλt ≤ ∣

∣yi(t)
∣
∣eλt .
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Then

Vi
(
t+

)

< M
∥
∥ϕ – ϕ∗∥∥. (.)

Thus, for t ∈ [t, t], we can repeat the above procedure and obtain

Vi(t) =
∣
∣yi(t)

∣
∣eλt < M

∥
∥ϕ – ϕ∗∥∥ for all t ∈ [t, t], i = , , . . . .

Similarly, we have

Vi(t) =
∣
∣yi(t)

∣
∣eλt < M

∥
∥ϕ – ϕ∗∥∥ for all t > , i = , , . . . .

Namely,

∣
∣xi(t) – x∗

i (t)
∣
∣ =

∣
∣yi(t)

∣
∣ < M

∥
∥ϕ – ϕ∗∥∥ for all t > , i = , , . . . .

This completes the proof. �

Remark . If x∗(t) = (x∗
 (t), x∗

(t), . . . , x∗
n(t))T is a T-anti-periodic solution of (.), it fol-

lows from Lemma . and Definition . that x∗(t) is globally exponentially stable.

3 Main result
In this section,we present our main result that there exists the exponentially stable anti-
periodic solution of (.).

Theorem . Assume that (H)-(H) are satisfied. Then (.) has exactly one T-anti-
periodic solution x∗(t). Moreover, this solution is globally exponentially stable.

Proof Let v(t) = (v(t), v(t), . . . , vn(t))T be a solution of (.) with initial conditions

vi(s) = ϕv
i (s),

∣
∣ϕv

i (s)
∣
∣ < δ, s ∈ (–τ , ], i = , , . . . , n. (.)

Thus, according to Lemma ., the solution v(t) is bounded and

∣
∣vi(t)

∣
∣ < δ for all t ∈ R, i = , , . . . , n. (.)

For p ∈ N , if t /∈ tk , then t + (p + )T /∈ {tk}; if t ∈ tk , then t + (p + )T ∈ {tk}. From (.), we
obtain

(
(–)p+vi

(
t + (p + )T

))′

= (–)p+

{

–bi
(
t + (p + )T

)
vi

(
t + (k + )T

)

+
n∑

j=

cij
(
t + (p + )T

)
gj
(
vj

(
t + (p + )T – τij

(
t + (p + )T

)))

+
n∑

j=

dij
(
t + (p + )T

)
∫ σ


kij(s)gj

(
vj

(
t + (p + )T – s

))
ds
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+
n∑

j=

n∑

l=

eijl
(
t + (p + )T

)
gj
(
vj

(
t + (p + )T – αjl

(
t + (p + )T

)))

× gl
(
vl

(
t + (p + )T – βjl

(
t + (p + )T

)))
+ Ii

(
t + (p + )T

)
}

= –bi(t)(–)p+vi
(
t + (p + )T

)

+
n∑

j=

cij(t)gj
(
(–)p+vj

(
t + (p + )T – τij(t)

))

+
n∑

j=

dij(t)
∫ σ


kij(s)gj

(
(–)p+vj

(
t + (p + )T – s

))
ds

+
n∑

j=

n∑

l=

eijl(t)gj
(
(–)p+vj

(
t + (p + )T – αjl(t)

))

× gl
(
(–)p+vl

(
t + (p + )T – βjl(t)

))
+ Ii(t), t �= tk (.)

and

(–)p+vi
((

tk + (p + )T
)+)

= (–)p+( + γi(k+(p+)q)vi
(
tk + (p + )T

))

= (–)p+( + γik)vi
(
tk + (p + )T

)

= ( + γik)
(
(–)p+vi

(
tk + (p + )T

))
, k = , , . . . , (.)

where i = , , . . . , n. Thus (–)p+v(t + (p + )T) are solutions of (.) on R+ for any natural
number p. Then, from Lemma ., there exists a constant M >  such that

∣
∣(–)p+vi

(
t + (p + )T

)
– (–)kvi(t + pT)

∣
∣

≤ Me–λ(t+pT) sup
–τ≤s≤

max
≤i≤n

∣
∣vi

(
s + (p + )T

)
+ vi(s + pT)

∣
∣

≤ e–λ(t+pT)Mδ, (.)

and

∣
∣(–)p+vi

((
tk + (p + )T

)+)
– (–)pvi

(
(tk + pT)+)∣

∣

=
∣
∣xi

((
tk + (p + )T

)+)
+ xi

(
(tk + pT)+)∣

∣

= | + γik|
∣
∣xi

(
tk + (p + )T

)
+ xi(tk + pT)

∣
∣ ≤ Mδe–λ(pT+tk ), (.)

where k ∈ N , i = , , . . . , n. Thus, for any natural number m, we have

(–)m+vi
(
t + (m + )T

)

= vi(t) +
m∑

k=

[
(–)k+vi

(
t + (k + )T

)
– (–)kvi(t + kT)

]
, t �= tk . (.)



Xu and Wu Advances in Difference Equations  (2015) 2015:161 Page 10 of 14

Hence

∣
∣(–)m+vi

(
t + (m + )T

)∣
∣

≤ ∣
∣vi(t)

∣
∣ +

m∑

k=

∣
∣(–)k+vi

(
t + (k + )T

)
– (–)kvi(t + kT)

∣
∣, t �= tk , (.)

and

∣
∣(–)m+vi

((
tk + (m + )T

)+)∣
∣ =

∣
∣( + γik)(–)m+vi

(
tk + (m + )T

)∣
∣

≤ ∣
∣(–)m+vi

(
tk + (m + )T

)∣
∣, (.)

where i = , , . . . , n. It follows from (.)-(.) that (–)m+vi(t + (m + )T) is a fundamental
sequence on any compact set of R+. Obviously, {(–)mv(t + mT)} uniformly converges to a
piece-wise continuous function x∗(t) = (x∗

 (t), x∗
(t), . . . , x∗

n(t))T on any compact set of R+.
Now we show that x∗(t) is T-anti-periodic solution of (.). Firstly, x∗(t) is T-anti-

periodic, since

x∗(t + T) = lim
m→∞(–)mv(t + T + mT)

= – lim
(m+)→∞

(–)m+v
(
t + (m + )T

)
= –x∗(t), t �= tk , (.)

and

x∗((t + T)+)
= lim

m→∞(–)mv
(
(t + T + mT)+)

= – lim
(m+)→∞

(–)m+v
((

t + (m + )T
)+)

= –x∗(tk)+. (.)

In the sequel, we prove that x∗(t) is a solution of (.). Noting that the right-hand side of
(.) is piece-wise continuous, (.) and (.) imply that {((–)m+v(t + (m + )T))′} uni-
formly converges to a piece-wise continuous function on any compact subset of R+. Thus,
letting m → ∞ on both sides of (.) and (.), we can easily obtain

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

ẋ∗
i (t) = –bi(t)x∗

i (t) +
∑n

j= cij(t)gj(x∗
j (t – τij(t)))

+
∑n

j= dij(t)
∫ σ

 kij(s)gj(x∗
j (t – s)) ds

+
∑n

j=
∑n

l= eijl(t)gj(x∗
j (t – αjl(t)))gl(x∗

l (t – βjl(t))) + Ii(t), t �= tk ,
xi

∗(t+
k ) = ( + γik)x∗

i (tk), k = , , . . . ,

(.)

where i = , , . . . , n. Therefore, x∗(t) is a solution of (.). Finally, by applying Lemma .,
it is easy to check that x∗(t) is globally exponentially stable. The proof of Theorem . is
completed. �

Remark . In [–, , , –, ], although authors consider the existence and
exponential stability of anti-periodic solutions of neural networks, they do not consider
the impulsive case. In this paper, we consider the high-order cellular neural networks with
impulses. The obtained results show that impulses play a certain role in the existence and
exponential stability of anti-periodic solutions of cellular neural networks. If the γik = 
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(i.e., there is no impulse), then Theorem . is still valid if we delete the condition on the
impulse. All the results in [–, , , –, ] cannot be applicable to system (.) to
obtain the existence and exponential stability of anti-periodic solutions. This implies that
the results of this paper are essentially new. Our results complement the previous work.

4 An example
In this section, we give an example to illustrate our main results obtained in previous
sections. Consider the high-order cellular neural network with delays and impulses

ẋ(t) = –x(t) +



g

(
x

(
t – sin t

))
+




g
(
x

(
t –  sin t

))

+



| sin t|

∫ 


e–sg

(
x(t – s)

)
ds +




| cos t|
∫ 


e–sg

(
x(t – s)

)
ds

+



sin tg

(
x

(
t –  sin t

))
g

(
x

(
t –  sin t

))
+  sin t,

ẋ(t) = –x(t) +



g

(
x

(
t – cos t

))
+




g
(
x

(
t –  sin t

))

+



| cos t|

∫ 


e–sg

(
x(t – s)

)
ds +




| sin t|
∫ 


e–sg

(
x(t – s)

)
ds

+



sin tg

(
x

(
t – sin t

))
g

(
x

(
t –  sin t

))
+ sin t, t �= tk ,

x
(
t+
k
)

= .x(tk), k = , , . . . ,

x
(
t+
k
)

= .x(tk), k = , , . . . ,
(.)

where g(u) = g(u) = 
 (|u + | – |u – |) and

[
c(t) c(t)
c(t) c(t)

]

=

[












]

,

[
k(s) k(s)
k(s) k(s)

]

=

[
e–s e–s

e–s e–s

]

,

[
τ(t) τ(t)
τ(t) τ(t)

]

=

[
sin t  sin t
cos t  sin t

]

,

[
d(t) d(t)
d(t) d(t)

]

=

[


 | sin t| 
 | cos t|


 | cos t| 

 | sin t|

]

,

[
ul(t) ul(t)
vl(t) vl(t)

]

=

[
 sin t sin t
 sin t  sin t

]

,

[
el(t) el(t)
el(t) el(t)

]

=

[


 sin t 
 sin t


 sin t 

 sin t

]

,

[
b(t) b(t)
I(t) I(t)

]

=

[
 

 sin t sin t

]

,

where l = , . By a simple calculation, we get

bi = Lg
i = Mg =  (i = , ), c =




, c =



, c =




, c =



,

d =



, d =




, d =



, d =




,

ejl =



, ejl =




(j, l = , ),

τ  = , τ  = , τ  = , τ  = , I = , I = .
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Figure 1 Times series of x1(t) and x2(t) of system (4.1).

Let η = ., λ = .. Then

(λ – bi) +
∑

j=

cijLj
geλτ +

∑

j=

|dij|
∫ σ



∣
∣kij(s)

∣
∣Lj

geλs ds

+
∑

j=

∑

l=

eijl
(
MgLl

geλτ + MgLj
geλτ

)

≤ (. – ) +
(




+



+




+




)

e. +
(




+



+




)

+
(




+



+




+




)

×  × e. = –. < –. < 

and

–bi +
∑

j=

c̄ijLj
g +

∑

j=

Lj
g d̄ij

∫ σ



∣
∣kij(s)

∣
∣ds

< – +



+



+




× 


+



× 


= –. < ,

(

–bi +
∑

j=

c̄ijLj
g +

∑

j=

Lj
g d̄ij

∫ σ



∣
∣kij(s)

∣
∣ds

)

– Īi

∑

j=

∑

l=

ēijlLj
gLl

g

<
(

– +



+



+




× 


+



× 



)

–  ×
(




+




)

= . > ,

which implies that system (.) satisfies all the conditions in Theorem .. Thus, (.) has
exactly one π-anti-periodic solution. Moreover, this solution is globally exponentially sta-
ble. The results are shown in Figure .
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