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Abstract
In this paper, state estimation for discrete-time BAM neural networks with
time-varying delay is discussed. Under a weaker assumption on activation functions,
by constructing a novel Lyapunov-Krasovskii functional (LKF), a set of sufficient
conditions are derived in terms of linear matrix inequality (LMI) for the existence of
state estimator such that the error system is global exponentially stable. Based on the
delay partitioning method and the reciprocally convex approach, some less
conservative stability criteria along with lower computational complexity are
obtained. Finally, a numerical example is given to show the effectiveness of the
derived result.
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1 Introduction
In the past few years, neural networks have been widely studied and applied in various
fields such as load frequency control in pattern recognition, static image processing, asso-
ciative memories, mechanics of structures and materials, optimization and other scientific
areas (see [–]). The BAM neural network model is an extension of the unidirectional
auto-associator of Hopfield. A BAM neural network is composed of neurons arranged in
two layers: X- and Y -layers. The neurons in one layer are fully interconnected to the neu-
rons in the other layer, while there are no interconnection among neurons in the same layer
[]. The BAM neural networks have potential applications in many fields such as signal
processing, artificial intelligence and so on. In addition, time delays are inevitable in many
biological and artificial neural networks such as signal transmission delay, propagation
and signal processing delay. It is well known that the existence of time delays is the source
of oscillation and instability in neural networks which can change the dynamic characters
of neural networks dramatically. The stability of neural networks has drawn particular re-
search interest. The stability of BAM neural networks also has been widely studied, and a
lot of results have been reported (see [, ] and the references cited therein).

In relatively large-scale neural networks, the state components of the neural network
model are unknown or not available for direct measurement, normally only partial infor-
mation about the neuron states is available in the network outputs. In order to make use
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of the neural networks in practice, it is important and necessary to estimate the neuron
states through available measurements. Recently, the state estimation problem for neu-
ral networks has received increasing research interest (see [–]). The state estimation
problem for delayed neural networks has been proposed in []. Mou et al. [] studied
state estimation for discrete-time neural networks with time-varying delays. A sufficient
condition was derived for the design of the state estimator to guarantee the global ex-
ponential stability of the error system. The problem of state estimation for discrete-time
delayed neural networks with fractional uncertainties and sensor saturations was stud-
ied in []. In [], the state estimation problem for a new class of discrete-time neural
networks with Markovian jumping parameters as well as mode-dependent mixed time-
delays is studied. New techniques are developed to deal with the mixed time-delays in the
discrete-time setting, and a novel Lyapunov-Krasovskii functional is put forward to reflect
the mode-dependent time-delays. Sufficient conditions are established in terms of linear
matrix inequalities (LMIs) that guarantee the existence of the state estimators.

However, only very little attention has been paid to state estimation for BAM neural
networks with time-varying delay. The robust delay-dependent state estimation problem
for a class of discrete-time BAM neural networks with time-varying delays is considered
in []. By using the Lyapunov-Krasovskii functional together with linear matrix inequal-
ity (LMI) approach, a new set of sufficient conditions is derived for the existence of state
estimator such that the error state system is asymptotically stable. The problem of state
estimator of BAM neural network with leakage delays is studied in []. A sufficient con-
dition is established to ensure that the error system was globally asymptotically stable. It
should be pointed out that only the global asymptotical stability of the error system was
discussed in [, ]. To the best of our knowledge, the exponential stability of the error
system for the discrete-time BAM neural networks with time-varying delay has not been
fully addressed yet. Motivated by this consideration, in this paper we aim to establish some
new sufficient conditions for the existence of state estimations which guarantee the error
system for the discrete-time BAM neural networks with time-varying delays to be globally
exponentially stable. These conditions are expressed in the form of LMIs.

The rest of this paper is organized as follows. In Section , some notations and lem-
mas, which will be used in this paper, are given. In Section , based on utilizing both the
delay partitioning method and the reciprocally convex approach, we construct a novel
Lyapunov-Krasovskii functional, and a new set of sufficient conditions are derived for the
global exponential stability of the error system. In Section , an illustrative example is
provided to demonstrate the effectiveness of the proposed result.

2 Problem formulation and preliminaries
For the sake of convenience, we introduce some notations firstly. ∗ denotes the symmetric
term in a symmetric matrix. For an arbitrary matrix A, AT stands for the transpose of A.
A– denotes the inverse of A. Rn×n denotes the n×n-dimensional Euclidean space. If A is a
symmetric matrix, A >  (A ≥ ) means that A is positive definite (positive semidefinite).
Similarly, A <  (A ≤ ) means that A is negative definite (negative semidefinite). λm(A),
λM(A) denote the minimum and maximum eigenvalues of a square matrix A, respectively.
‖A‖ =

√
λM(AT A).
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In this paper, we consider the following class of discrete-time BAM neural networks
with time-varying delays:

x(k + ) = Ax(k) + Cf
(
y(k)

)
+ Ef

(
y
(
k – d(k)

))
+ I,

y(k + ) = By(k) + Dg
(
x(k)

)
+ Wg

(
x
(
k – h(k)

))
+ J

()

for k = , , . . . , n, where x(k) = (x(k), x(k), . . . , xn(k))T , y(k) = (y(k), y(k), . . . , yn(k))T are
the neuron state vectors; A = diag(a, a, . . . , an), and B = diag(b, b, . . . , bn) are the state
feedback coefficient matrices, |ai| < , |bi| < , i = , , . . . , n; C = [cij]n×n, D = [dij]n×n

are the connection weight matrices; E = [eij]n×n, and W = [wij]n×n are the delayed
connection weight matrices; f (y(k)) = (f(y(k)), f(y(k)), . . . , fn(yn(k)))T , and g(x(k)) =
(g(x(k)), g(x(k)), . . . , gn(xn(k)))T denote the neuron activation functions; h(k) and d(k)
denote the time-varying delays satisfying  ≤ hm ≤ h(k) ≤ hM ,  ≤ dm ≤ d(k) ≤ dM , where
hm, hM , dm, dM are known positive integers; I and J denote the external constant inputs
from outside network.

Throughout this paper, we make the following assumptions.

Assumption  There exist constants F–
i , F+

i , G–
i and G+

i such that

G–
i ≤ gi(x) – gi(y)

x – y
≤ G+

i for all x, y ∈ R, x �= y, i = , , . . . , n,

F–
i ≤ fi(x) – fi(y)

x – y
≤ F+

i for all x, y ∈ R, x �= y, i = , , . . . , n,

fi() = gi() = .

Remark  In Assumption , the constants F–
i , F+

i , G–
i and G+

i are allowed to be positive,
negative, or zero. So the activation functions in this paper are more general than nonneg-
ative sigmoidal functions used in [, ]. The stability condition developed in this paper
is less restrictive than that in [, ].

For presentation convenience, we denote

F = diag
(
F–

 F+
 , F–

 F+
 , . . . , F–

n F+
n
)
, F = diag

(
F–

 + F+



,

F–
 + F+




, . . . ,
F–

n + F+
n



)
,

G = diag
(
G–

 G+
 , G–

 G+
 , . . . , G–

nG+
n
)
, G = diag

(
G–

 + G+



,

G–
 + G+




, . . . ,
G–

n + G+
n



)
.

For some relatively large scale neural networks, it is difficult to achieve all the infor-
mation about the network computer. So, one often needs to utilize the estimated neuron
states to achieve certain design objectives. We assume that the network measurements are
as follows:

zx(k) = Mx(k),

zy(k) = My(k),
()
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where zx(k), zy(k) are the measurement outputs, and M, M are the known constant ma-
trices with appropriate dimensions. Therefore, the full-order state estimator is of the form

x̂(k + ) = Âx(k) + Cf
(
ŷ(k)

)
+ Ef

(
ŷ
(
k – d(k)

))
+ I

+ K
(
zx(k) – M̂x(k)

)
,

ŷ(k + ) = B̂y(k) + Dg
(
x̂(k)

)
+ Wg

(
x̂
(
k – h(k)

))
+ J

+ K
(
zy(k) – M̂y(k)

)
,

()

where x̂(k), ŷ(k) are the estimations of x(k), y(k), respectively, K, K are the gain matrices
of the estimator to be designed later.

Let the estimation error be e(k) = x(k) – x̂(k) and e(k) = y(k) – ŷ(k). Then the error
system can be written as

e(k + ) = (A – KM)e(k) + C
(
f
(
y(k)

)
– f

(
ŷ(k)

))

+ E
(
f
(
y
(
k – d(k)

))
– f

(
ŷ
(
k – d(k)

)))
,

e(k + ) = (B – KM)e(k) + D
(
g
(
x(k)

)
– g

(
x̂(k)

))

+ W
(
g
(
x
(
k – h(k)

))
– g

(
x̂
(
k – h(k)

)))
.

()

By defining ξ(k) = f (y(k)) – f (̂y(k)), ξ(k – d(k)) = f (y(k – d(k))) – f (̂y(k – d(k))), ξ(k) =
g(x(k)) – g (̂x(k)), ξ(k – h(k)) = g(x(k – h(k))) – g (̂x(k – h(k))), system () can be rewritten
as

e(k + ) = (A – KM)e(k) + Cξ(k) + Eξ
(
k – d(k)

)
,

e(k + ) = (B – KM)e(k) + Dξ(k) + Wξ
(
k – h(k)

)
.

()

Before presenting the main results of the paper, we need the following definition and
lemmas.

Definition  The error system () is said to be globally exponentially stable if there exist
two scalars λ >  and r >  such that

∥∥e(k)
∥∥ +

∥∥e(k)
∥∥ ≤ λr–k

(
sup

–hM≤s≤

∥∥e(s)
∥∥ + sup

–dM≤s≤

∥∥e(s)
∥∥

)
. ()

Lemma  [] For any positive definite matrix J ∈ Rn×n, two positive integers r and r

satisfying r ≥ r ≥ , and vector function x(i) ∈ Rn, one has

( r∑

i=r

x(i)

)T

J

( r∑

i=r

x(i)

)

≤ (r – r + )
r∑

i=r

xT (i)Jx(i).

Lemma  [] Let f, f, . . . , fN : Rm �→ R have positive values in an open subset D of Rm.
Then the reciprocally convex combination of fi over D satisfies

min
{αi|αi>,

∑
i αi=}

∑ 
αi

fi(k) =
∑

i

fi(k) + max
gi,j(k)

∑

i�=j

gi,j(k)
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subject to
{

gi,j : Rm �→ R, gj,i(k) � gi,j(k),

[
fi(k) gi,j(k)

gi,j(k) fj(k)

]

≥ 

}

.

3 Main results
In this section, we construct a novel Lyapunov-Krasovskii functional together with free-
weighting matrix technique. A delay-dependent condition is derived to estimate the neu-
ron state through available output measurements such that the resulting error system ()
is globally exponentially stable.

Theorem  Under Assumption , the error state system () is globally exponentially sta-
ble if there exist symmetric positive define matrices P > , P > , Qi > , Ri >  (i =
, , , , , ), positive diagonal matrices Uj >  (j = , , , ), and matrices L, L, S, S,
X, Y of appropriate dimensions such that the following LMIs hold:

[
Ri Sj

� Ri

]

≥  (i = , ; j = , ), ()

� = [�ij]× < , ()

where �, = P + h
mR + h

MR + (hM – hm)R + LT
 + L, �, = –h

mR – h
MR – (hM –

hm)R –LA+XM, �, = –LC, �, = –LE, �, = –P +(hM –hm +)Q +Q +Q +(h
m –

)R + (h
M – )R + (hM – hm)R – GU, �, = R, �, = R, �, = GU, �, = –Q –

R + ST
 + S – GU, �, = RT

 – S, �, = –ST
 + R, �, = GU, �, = –Q – R – R,

�, = ST
 , �, = –Q – R – R, �, = –U, �, = FU, �, = –U, �, = FU, �, =

P + d
mR + d

MR + (dM – dm)R + LT
 + L, �, = –d

mR – d
MR – (dM – dm)R – LA +

YM, �, = –LD, �, = –LW , �, = –P + (dM – dm + )Q + Q + Q + (d
m – )R +

(d
M – )R + (dM – dm)R – FU, �, = R, �, = R, �, = –Q – R + ST

 + S – FU,
�, = RT

 –S, �, = –ST
 +R, �, = –Q –R –R, �, = ST

 , �, = –Q –R –R,
�, = –U, �, = –U, and other terms are zeros. Then the gain matrices K, K of state
estimator are given by K = L–

 X, K = L–
 Y .

Proof Consider the LKFs for the error state system () as follows:

V (k) =
∑

i=

Vi(k), ()

where

V(k) = eT
 (k)Pe(k) + eT

 (k)Pe(k),

V(k) =
k–∑

i=k–h(k)

eT
 (i)Qe(i) +

k–∑

i=k–d(k)

eT
 (i)Qe(i),

V(k) =
k–∑

i=k–hm

eT
 (i)Qe(i) +

k–∑

i=k–dm

eT
 (i)Qe(i),
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V(k) =
k–∑

i=k–hM

eT
 (i)Qe(i) +

k–∑

i=k–dM

eT
 (i)Qe(i),

V(k) =
–hm∑

i=–hM+

k–∑

j=k+i

eT
 (j)Qe(j) +

–dm∑

i=–dM+

k–∑

j=k+i

eT
 (j)Qe(j),

V(k) = hm

–∑

i=–hm

k–∑

j=k+i

ηT
 (j)Rη(j) + dm

–∑

i=–dm

k–∑

j=k+i

ηT
 (j)Rη(j),

V(k) = hM

–∑

i=–hM

k–∑

j=k+i

ηT
 (j)Rη(j) + dM

–∑

i=–dM

k–∑

j=k+i

ηT
 (j)Rη(j),

V(k) = (hM – hm)
–hm–∑

i=–hM

k–∑

j=k+i

ηT
 (j)Rη(j) + (dM – dm)

–dm–∑

i=–dM

k–∑

j=k+i

ηT
 (j)Rη(j),

where η(k) = e(k + ) – e(k), and η(k) = e(k + ) – e(k). We define forward difference
of Vi(k) as �Vi(k) = Vi(k + ) – Vi(k). Then the forward difference of Vi(k) can be derived
as follows:

�V(k) = eT
 (k + )Pe(k + ) – eT

 (k)Pe(k)

+ eT
 (k + )Pe(k + ) – eT

 (k)Pe(k), ()

�V(k) =
k∑

i=k+–h(k+)

eT
 (i)Qe(i) –

k–∑

i=k–h(k)

eT
 (i)Qe(i)

+
k∑

i=k+–d(k+)

eT
 (i)Qe(i) –

k–∑

i=k–d(k)

eT
 (i)Qe(i)

= eT
 (k)Qe(k) – eT


(
k – h(k)

)
Qe

(
k – h(k)

)

+
k–∑

i=k+–h(k+)

eT
 (i)Qe(i) –

k–∑

i=k+–h(k)

eT
 (i)Qe(i)

+ eT
 (k)Qe(k) – eT


(
k – d(k)

)
Qe

(
k – d(k)

)

+
k–∑

i=k+–d(k+)

eT
 (i)Qe(i) –

k–∑

i=k+–d(k)

eT
 (i)Qe(i)

≤ eT
 (k)Qe(k) – eT


(
k – h(k)

)
Qe

(
k – h(k)

)

+
k–hm∑

i=k+–h(k+)

eT
 (i)Qe(i) +

k–∑

i=k+–hm

eT
 (i)Qe(i)

–
k–∑

i=k+–hm

eT
 (i)Qe(i) + eT

 (k)Qe(k)

– eT

(
k – d(k)

)
Qe

(
k – d(k)

)
+

k–dm∑

i=k+–d(k+)

eT
 (i)Qe(i)
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+
k–∑

i=k+–dm

eT
 (i)Qe(i) –

k–∑

i=k+–dm

eT
 (i)Qe(i)

≤ eT
 (k)Qe(k) – eT


(
k – h(k)

)
Qe

(
k – h(k)

)

+
k–hm∑

i=k+–hM

eT
 (i)Qe(i) + eT

 (k)Qe(k)

– eT

(
k – d(k)

)
Qe

(
k – d(k)

)
+

k–dm∑

i=k+–dM

eT
 (i)Qe(i), ()

�V(k) = eT
 (k)Qe(k) – eT

 (k – hm)Qe(k – hm)

+ eT
 (k)Qe(k) – eT

 (k – dm)Qe(k – dm), ()

�V(k) = eT
 (k)Qe(k) – eT

 (k – hM)Qe(k – hM)

+ eT
 (k)Qe(k) – eT

 (k – dM)Qe(k – dM), ()

�V(k) = (hM – hm)eT
 (k)Qe(k) –

k–hm∑

i=k+–hM

eT
 (i)Qe(i)

+ (dM – dm)eT
 (k)Qe(k) –

k–dm∑

i=k+–dM

eT
 (i)Qe(i). ()

From Lemma , we can obtain

�V(k) = h
mηT

 (k)Rη(k) + d
mηT

 (k)Rη(k)

– hm

k–∑

i=k–hm

ηT
 (i)Rη(i)

– dm

k–∑

i=k–dm

ηT
 (i)Rη(i)

≤ h
mηT

 (k)Rη(k) + d
mηT

 (k)Rη(k)

–
(
e(k) – e(k – hm)

)T R
(
e(k) – e(k – hm)

)

–
(
e(k) – e(k – dm)

)T R
(
e(k) – e(k – dm)

)
, ()

�V(k) = h
MηT

 (k)Rη(k) + d
MηT

 (k)Rη(k)

– hM

k–∑

i=k–hM

ηT
 (i)Rη(i)

– dM

k–∑

i=k–dM

ηT
 (i)Rη(i)

≤ h
MηT

 (k)Rη(k) + d
MηT

 (k)Rη(k)

–
(
e(k) – e(k – hM)

)T R
(
e(k) – e(k – hM)

)

–
(
e(k) – e(k – dM)

)T R
(
e(k) – e(k – dM)

)
, ()
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�V(k) = (hM – hm)ηT
 (k)Rη(k) – (hM – hm)

[k–h(k)–∑

i=k–hM

ηT
 (i)Rη(i)

+
k–hm–∑

i=k–h(k)

ηT
 (i)Rη(i)

]

+ (dM – dm)ηT
 (k)Rη(k)

– (dM – dm)

[k–d(k)–∑

i=k–dM

ηT
 (i)Rη(i) +

k–dm–∑

i=k–d(k)

ηT
 (i)Rη(i)

]

≤ (hM – hm)ηT
 (k)Rη(k) –


hM–h(k)
hM–hm

ζ T
 (k)Rζ(k)

–


h(k)–hm
hM–hm

ζ T
 (k)Rζ(k) + (dM – hm)ηT

 (k)Rη(k)

–


dM–d(k)
dM–dm

ζ T
 (k)Rζ(k) –


d(k)–dm
dM–dm

ζ T
 (k)Rζ(k).

Using Lemma  gives

�V(k) ≤ (hM – hm)ηT
 (k)Rη(k) + (dM – dm)ηT

 (k)Rη(k)

–

[
ζ(k)
ζ(k)

]T [
R S

� R

][
ζ(k)
ζ(k)

]

–

[
ζ(k)
ζ(k)

]T [
R S

� R

][
ζ(k)
ζ(k)

]

, ()

where ζ(k) = e(k – h(k)) – e(k – hM), ζ(k) = e(k – hm) – e(k – h(k)), ζ(k) = e(k – d(k)) –
e(k – dM), ζ(k) = e(k – dm) – e(k – d(k)).

Obviously, ζ(k) = , or ζ(k) = , if h(k) = hM or h(k) = hm. Similarly, ζ(k) = , or
ζ(k) = , if d(k) = dM or d(k) = dm.

Hence, for any matrices L and L with appropriate dimensions, we get

eT
 (k + )L

[
e(k + ) – (A – KM)e(k) – Cξ(k) – Eξ

(
k – d(k)

)]
= ,

eT
 (k + )L

[
e(k + ) – (B – KM)e(k) – Dξ(k) – Wξ

(
k – h(k)

)]
= .

()

Moreover, it follows from Assumption  that

[
ξi(k) – F–

i ei(k)
][

ξi(k) – F+
i ei(k)

] ≤ ,

which is equivalent to

[
e(k)
ξ(k)

]T [
F–

i F+
i eieT

i – F–
i +F+

i
 eieT

i

� eieT
i

][
e(k)
ξ(k)

]

≤ ,



Qiu et al. Advances in Difference Equations  (2015) 2015:189 Page 9 of 15

where ei denotes the unit column vector having an element on its ith row and zeros else-
where. For positive diagonal matrices Uk = diag(uk, uk, . . . , ukn), k = , , , :

n∑

i=

ui

[
e(k)
ξ(k)

]T [
F–

i F+
i eieT

i – F–
i +F+

i
 eieT

i

� eieT
i

][
e(k)
ξ(k)

]

≤ ,

that is,

[
e(k)
ξ(k)

]T [
FU –FU

� U

][
e(k)
ξ(k)

]

≤ . ()

Similarly, for any positive diagonal matrices U, U, U, we obtain

[
e(k – d(k))
ξ(k – d(k))

]T [
FU –FU

� U

][
e(k – d(k))
ξ(k – d(k))

]

≤ , ()

[
e(k)
ξ(k)

]T [
GU –GU

� U

][
e(k)
ξ(k)

]

≤ , ()

[
e(k – h(k))
ξ(k – h(k))

]T [
GU –GU

� U

][
e(k – h(k))
ξ(k – h(k))

]

≤ . ()

Combining all the above inequalities, we deduce

�V (k) ≤ uT (k)�u(k), ()

where u(k) = [eT
 (k + ), eT

 (k), eT
 (k – h(k)), eT

 (k – hm), eT
 (k – hM), ξT

 (k), ξT
 (k – d(k)),

eT
 (k + ), eT

 (k), eT
 (k – d(k)), eT

 (k – dm), eT
 (k – dM), ξT

 (k), ξT
 (k – h(k))]T and � is defined

as in ().
Combined () with () and (), it can be deduced that there exists a scalar σ <  and

|σ | < λmax(P) + λmax(P) such that

�V (k) ≤ σ
(∥∥e(k)

∥∥ +
∥∥e(k)

∥∥). ()

Now we are in a position to prove the global exponential stability of the error system ().
Firstly, from the definition of V (k), it can be verified that

V (k) ≤ λmax(P)
∥∥e(k)

∥∥ + λmax(P)
∥∥e(k)

∥∥

+ σ

k–∑

i=k–hM

∥∥e(i)
∥∥ + σ

k–∑

i=k–dM

∥∥e(i)
∥∥, ()

where σ = (hM – hm + )λmax(Q) + λmax(Q) + λmax(Q) + h
mλmax(R) + h

Mλmax(R) +
(hM – hm)λmax(R), σ = (dM – dm + )λmax(Q) + λmax(Q) + λmax(Q) + d

mλmax(R) +
d

Mλmax(R) + (dM – dm)λmax(R).
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Consider the following equation:

σ r + (r – )
(
λmax(P) + λmax(P)

)
+ (r – )(σ + σ)

(
hMrhM + dMrdM

)
= . ()

The solution of equation ()

r =
λmax(P) + λmax(P) + (σ + σ)(hMrhM + dMrdM )

λmax(P) + λmax(P) + (σ + σ)(hMrhM + dMrdM ) + σ
.

Obviously r > .
It follows from () and () that

rk+V (k + ) – rkV (k) = rk+�V (k) + rk(r – )V (k)

≤ σrk(∥∥e(k)
∥∥ +

∥∥e(k)
∥∥)

+ σrk

( k–∑

i=k–hM

∥∥e(i)
∥∥ +

k–∑

i=k–dM

∥∥e(i)
∥∥

)

, ()

where σ = σ r + (r – )(λmax(P) + λmax(P)), σ = (r – )(σ + σ).
Moreover, for any positive integer n ≥ max{hM + , dM + }, by summing up both sides

of () from  to n –  with respect to k, we get the following inequality:

rnV (n) – V () ≤ σ

n–∑

k=

rk(∥∥e(k)
∥∥ +

∥∥e(k)
∥∥)

+ σ

n–∑

k=

rk

( k–∑

i=k–hM

∥∥e(i)
∥∥ +

k–∑

i=k–dM

∥∥e(i)
∥∥

)

. ()

Noting that the time-varying delays hM ≥  and dM ≥ , we have

n–∑

k=

k–∑

i=k–hM

rk∥∥e(i)
∥∥ ≤

( –∑

i=–hM

i+hM∑

k=

+
n––hM∑

i=

i+hM∑

k=i+

+
n–∑

i=n–hM

i+hM∑

k=i+

)

rk∥∥e(i)
∥∥

≤ hM

–∑

i=–hM

ri+hM
∥∥e(i)

∥∥ + hM

n––hM∑

i=

ri+hM
∥∥e(i)

∥∥

+ hM

n–∑

i=n––hM

ri+hM
∥∥e(i)

∥∥

≤ hM(hM + )rhM sup
–hM≤i≤

∥∥e(i)
∥∥ + hMrhM

n–∑

i=

ri∥∥e(i)
∥∥. ()

Similarly, we can get

n–∑

k=

k–∑

i=k–dM

rk∥∥e(i)
∥∥ ≤ dM(dM + )rdM sup

–dM≤i≤

∥∥e(i)
∥∥ + dMrdM

n–∑

i=

ri∥∥e(i)
∥∥. ()
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Combining () with () and () yields

rnV (n) ≤ [
σ + σ

(
hMrhM + dMrdM

)] n–∑

k=

rk(∥∥e(k)
∥∥ +

∥∥e(k)
∥∥)

+ σ
[
hM(hM + )rhM + dM(dM + )rdM

]

×
(

sup
–hM≤i≤

∥∥e(i)
∥∥ + sup

–dM≤i≤

∥∥e(i)
∥∥

)
+ V (). ()

It follows from () that

V () ≤ [
λmax(P) + σhM

]
sup

–hM≤i≤

∥∥e(i)
∥∥

+
[
λmax(P) + σdM

]
sup

–dM≤i≤

∥∥e(i)
∥∥

≤ d
[

sup
–hM≤i≤

∥∥e(i)
∥∥ + sup

–dM≤i≤

∥∥e(i)
∥∥

]
, ()

where d = max{λmax(P) + σhM,λmax(P) + σdM}. Again, from () we can observe that

V (n) ≥ V(n)

≥ min
{
λmin(P),λmin(P)

}[∥∥e(n)
∥∥ +

∥∥e(n)
∥∥]. ()

Substituting (), () and () into (), we get

∥∥e(n)
∥∥ +

∥∥e(n)
∥∥ ≤ λr–n

(
sup

–hM≤i≤

∥∥e(i)
∥∥ + sup

–dM≤i≤

∥∥e(i)
∥∥

)
, ()

where λ = d+σ[hM(hM+)rhM +dM(dM+)rdM ]
min{λmin(P),λmin(P)} . Therefore, the error system () is globally expo-

nentially stable. This completes the proof. �

Remark  A state estimator to the neuron states is designed through available output
measurements in our paper. A new sufficient condition is established to ensure the global
exponential stability of the error system () in this paper. The numerical complexity of
Theorem  in this paper is proportional to n + n. However, only the sufficient condi-
tion is established to ensure the global asymptotical stability of the error system in [].
The numerical complexity of Theorem . in [] is proportional to n + n. It is ob-
vious that Theorem  in this paper has lower computational complexity.

Corollary  Suppose that h(k) = h, and d(k) = d are constant scalars. Then, under As-
sumption , the error system () is globally exponentially stable if there exist positive ma-
trices Pi, Qi, Ri, i = , , positive diagonal matrices Uj >  (j = , , , ), and matrices L, L,
X, Y of appropriate dimensions such that the following LMIs hold:

� = [�ij]× < , ()

where �, = P + hR + L + LT
 , �, = –hR – LA + XM, �, = –LC, �, = –LE, �, =

P + Q + (h – )R – GU, �, = R, �, = GU, �, = –Q – R – GU, �, = GU,
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�, = –U, �, = FU, �, = –U, �, = FU, �, = P +dR +L +LT
 , �, = –dR –

LA + YM, �, = –LD, �, = –LW , �, = P + Q + (d – )R – FU, �, = R, �, =
–Q – R – FU, �, = –U, �, = –U, and other terms are zeros.

4 Illustrative example
In this section, we provide a numerical example to illustrate the effectiveness of our result.

Consider system () and the measurement outputs () with the following parameters:

A =

[
. 

 .

]

, C =

[
–. –.
. .

]

, E =

[
. –.
. .

]

,

M =

[
. 
. –.

]

, B =

[
. 

 .

]

, D =

[
–. –.
. –.

]

,

W =

[
. –.

–. .

]

, M =

[
. 

 .

]

.

The activation functions are described by f(y(k)) = . tanh(y(k)), f(y(k)) = –. tanh(y(k)),
g(x(k)) = . tanh(x(k)), g(x(k)) = –. tanh(x(k)). Further, it follows from Assumption 
that F = G = diag{, }, F = G = diag{., –.}.

By using the MATLAB LMI toolbox, we can obtain the feasible solution which is not
given here due to the page constraint. If we choose the lower delay bound as hm = dm = .,
the upper delay bounds are hM = dM = , then the corresponding state estimation gain

Figure 1 State trajectories of x1(k) and its
estimations.

Figure 2 State trajectories of x2(k) and its
estimations.
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Figure 3 State trajectories of y1(k) and its
estimations.

Figure 4 State trajectories of y2(k) and its
estimations.

Figure 5 State trajectories of errors e1(k).

matrices K and K can be obtained as follows:

K = L–
 X =

[
. –.
. –.

]

, K = L–
 Y =

[
. –.

–. .

]

.

We choose the initial values x() = [., .]T , x̂() = [–., –.]T , y() = [., .]T and
ŷ() = [–., –.]T . The simulation results for state response and estimation error are
shown in Figures -. Figures - show the response of the state dynamics of (x(k), x̂(k))
and (y(k), ŷ(k)). The estimation errors e(k) and e(k) are shown in Figures  and . The
result reveals that the error state goes to zero after a short period time. We conclude that
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Figure 6 State trajectories of errors e2(k).

system () is a proper estimator of the BAM neural networks (), which also demonstrates
the effectiveness of our design approach.

5 Conclusions
In this paper, the problem of state estimation for BAM discrete-time neural network with
time-varying delays has been studied. Based on the delay partitioning method, the recip-
rocally convex approach and a new Lyapunov-Krasovskii functional, a new set of sufficient
conditions which guarantee the global exponential stability of the error system is derived.
A numerical example is presented to demonstrate that the new criterion has lower com-
putational complexity than previously reported criteria.

Competing interests
The authors declare that they have no competing interests.

Authors’ contributions
All authors contributed equally and significantly in writing this paper. All authors read and approved the final manuscript.

Author details
1School of Mathematics and Statistics, Central South University, Changsha, Hunan 410082, P.R. China. 2College of
Mathematics and Computer Science, Hunan City University, Yiyang, Hunan 413000, P.R. China.

Acknowledgements
The authors would like to thank the reviewers for their valuable comments and constructive suggestions. This project is
partly supported by the National Natural Science Foundation of China under Grants 61271355 and 61375063 and Zhong
Nan Da Xue Foundation under Grant 2015JGB21.

Received: 30 January 2015 Accepted: 12 May 2015

References
1. Zhu, QX, Cao, JD: Robust exponential stability of Markovian impulsive stochastic Cohen-Grossberg neural networks

with mixed time delays. IEEE Trans. Neural Netw. 21, 1314-1325 (2010)
2. Li, Y, Shao, YF: Dynamic analysis of an impulsive differential equation with time-varying delays. Appl. Math. 59, 85-98

(2014)
3. Guo, S, Tang, XH, Huang, LH: Stability and bifurcation in a discrete system of two neurons with delays. Nonlinear

Anal., Real World Appl. 9, 1323-1335 (2008)
4. Liu, XG, Wu, M, Martin, R, Tang, ML: Delay-dependent stability analysis for uncertain neutral systems with

time-varying delays. Math. Comput. Simul. 75, 15-27 (2007)
5. Liu, XG, Wu, M, Martin, R, Tang, ML: Stability analysis for neutral systems with mixed delays. J. Comput. Appl. Math.

202, 478-497 (2007)
6. Chen, P, Tang, XH: Existence and multiplicity of solutions for second-order impulsive differential equations with

Dirichlet problems. Appl. Math. Comput. 218, 11775-11789 (2012)
7. Zang, YC, Li, JP: Stability in distribution of neutral stochastic partial differential delay equations driven by a-stable

process. Adv. Differ. Equ. 2014, 13 (2014)
8. Wu, YY, Li, T, Wu, YQ: Improved exponential stability criteria for recurrent neural networks with time-varying discrete

and distributed delays. Int. J. Autom. Comput. 7, 199-204 (2010)
9. Tang, XH, Shen, JH: New nonoscillation criteria for delay differential equations. J. Math. Anal. Appl. 290, 1-9 (2004)



Qiu et al. Advances in Difference Equations  (2015) 2015:189 Page 15 of 15

10. Zhao, HY, Cao, JD: New conditions for global exponential stability of cellular network with delays. Neural Netw. 18,
1332-1340 (2005)

11. Liu, ZG, Chen, A, Cao, JD, Huang, LH: Existence and global exponential stability of periodic solution for BAM neural
networks with periodic coefficients and time-varying delays. IEEE Trans. Circuits Syst. I 50, 1162-1173 (2003)

12. Liu, J, Zhang, J: Note on stability of discrete-time time-varying delay systems. IET Control Theory Appl. 6, 335-339
(2012)

13. Li, XA, Zhou, J, Zhu, E: The pth moment exponential stability of stochastic cellular neural network with impulses. Adv.
Differ. Equ. 2013, 6 (2013)

14. Zhang, BY, Xu, SY, Zou, Y: Improved delay-dependent exponential stability criteria for discrete-time recurrent neural
networks with time-varying delays. Neurocomputing 72, 321-330 (2008)

15. Wu, ZG, Su, HY, Chu, J: New results on exponential passivity of neural networks with time-varying delays. Nonlinear
Anal., Real World Appl. 13, 1593-1599 (2012)

16. Pan, LJ, Cao, JD: Robust stability for uncertain stochastic neural networks with delays and impulses. Neurocomputing
94, 102-110 (2012)

17. Kosko, B: Bidirectional associative memories. IEEE Trans. Syst. Man Cybern. 18, 49-60 (1988)
18. Liu, XG, Tang, ML, Martin, R, Liu, X: Discrete-time BAM neural networks with variable delays. Phys. Lett. A 367, 322-330

(2007)
19. Liu, XG, Martin, R, Wu, M, Tang, ML: Global exponential stability of bidirectional associative memory neural network

with time delays. IEEE Trans. Neural Netw. 19, 397-407 (2008)
20. Wang, Z, Daniel, W, Liu, X: State estimation for delayed neural networks. IEEE Trans. Neural Netw. 16, 279-284 (2005)
21. Mou, SH, Gao, HJ, Qiang, WY, Fei, ZY: State estimation for discrete-time neural networks with time-varying delays.

Neurocomputing 72, 643-647 (2008)
22. Kan, X, Wang, ZD, Shu, HS: State estimation for discrete-time delayed neural networks with fractional uncertainties

and sensor saturations. Neurocomputing 17, 64-71 (2013)
23. He, Y, Wu, QG, Lin, C: Delay-dependent state estimation for delayed neural networks. IEEE Trans. Neural Netw. 17,

1077-1081 (2006)
24. Liang, JL, Lan, J: Robust state estimation for stochastic genetic regulatory networks. Int. J. Syst. Sci. 41, 47-63 (2010)
25. Wang, Z, Liu, Y, Liu, X: State estimation for jumping recurrent neural networks with discrete and distributed delays.

Neural Netw. 22, 41-48 (2009)
26. Liu, YR, Wang, ZD, Liu, XH: State estimation for linear discrete-time Markovian jumping neural networks with mixed

mode-dependent delays. Phys. Lett. A 372, 7147-7155 (2008)
27. Arunkumar, A, Sakthivel, R, Mathiyalagan, K, Marshal Anthoni, S: Robust state estimation for discrete-time BAM neural

networks with time-varying delay. Neurocomputing 131, 171-178 (2014)
28. Sakthivel, R, Vadivel, P, Mathiyalagan, K, Arunkumar, A, Sivachitra, M: Design of state estimator bidirectional associative

memory neural network with leakage delays. Inf. Sci. 296, 263-274 (2015)
29. Lu, CY: A delay-range-dependent approach to design state estimators for discrete-time recurrent neural networks

with interval time-varying delay. IEEE Trans. Circuits Syst. II, Express Briefs 55, 1163-1167 (2008)
30. Lu, CY, Cheng, JC, Su, TJ: Design of delay-range-dependent state estimators for discrete time recurrent neural

networks with interval time-varying delay. In: Press, I (ed.) Proceedings of the American Control Conference,
Washington, 11-13 June 2008, pp. 4209-4231 (2008)

31. Kwon, OM, Park, MJ, Park, JH, Lee, SM, Cha, EJ: New criteria on delay-dependent stability for discrete-time neural
networks with time-varying delays. Neurocomputing 121, 185-194 (2013)

32. Park, P, Ko, J, Jeong, C: Reciprocally convex approach to stability of systems with time-varying delays. Automatica 47,
235-238 (2011)


	New approach to state estimator for discrete-time BAM neural networks with time-varying delay
	Abstract
	Keywords

	Introduction
	Problem formulation and preliminaries
	Main results
	Illustrative example
	Conclusions
	Competing interests
	Authors' contributions
	Author details
	Acknowledgements
	References


