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1 Introduction
In the classical probability theory, which is based on the Kolmogorov axiomatic system [],
a random event is every element of the σ -algebra S of subsets of a set X. A probability is
a normalized measure defined on the σ -algebra S. The notion of a σ -algebra S of random
events and the concept of a probability space (X, S, P) are the basis of the classical concept
of probability theory. In doing so, the event in the classical probability theory is understood
as an exactly defined phenomenon and from a mathematical point of view (as mentioned
above) it is a classical set. In real life, however, we often talk about events that carry im-
portant information, but they are less exact. For example, ‘tomorrow will be nice’, ‘a large
number will be scored’, ‘the patient’s condition improved’ are vaguely defined events, so-
called fuzzy events. Their probability can be studied using the apparatus of fuzzy sets
theory. The first attempts to develop a concept of fuzzy events and their probability came
from the founder of fuzzy sets theory, Zadeh [, ]. Assuming that the probability space
(X, S, P) is given, Zadeh defined a fuzzy event as any S-measurable function f : X → 〈, 〉
and the probability p(f ) of a fuzzy event f by the formula p(f ) =

∫
X f dP. An axiomatic ap-

proach to the creation of a probability concept of fuzzy events was devised by Klement
[]. Generally the Klement probability cannot be represented by the Zadeh construction;
necessary and sufficient conditions were given by Klement et al. in []. A different ap-
proach was found in [–]. The object of our studies in [–] was the fuzzy probabi-
lity space (X, M, m) defined by Polish mathematician K Piasecki. In [], the concept of
a fuzzy dynamical system was introduced. By a fuzzy dynamical system we understand a
system (X, M, m, τ ), where (X, M, m) is any fuzzy probability space and τ : M → M is an
m-invariant σ -homomorphism. Fuzzy dynamical systems include the classical dynamical
systems; on the other hand they enable one to study more general situations, for example,
Markov’s operators. Note that the other approaches to a fuzzy generalization of notion
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of dynamical system can be found in [] and []. In the papers [, ] (see also []),
we defined the entropy of fuzzy dynamical systems, and using the method of F-σ -ideals
we proved a fuzzy version of Kolmogorov-Sinai theorem on generators. Our aim in this
contribution is to prove analogies of the following Mesiar ergodic theorems for the case
of a fuzzy dynamical system (X, M, m, τ ).

Theorem . [] Let (X, S, P) be a given probability space, ξ, ξ, . . . be a sequence of ran-
dom variables on it. Let T : X → X be a measure preserving transformation, K >  a real
constant. Suppose that |ξn| ≤ K for n = , , . . . and ξn →  almost everywhere in P (i.e.,
P(

⋃∞
k=

⋂∞
n=k ξ–

n (〈–ε, ε〉)) = ). Then


n

n∑

i=

ξi ◦ Ti →  almost everywhere in P.

Theorem . [] Let (X, S, P) be a given probability space, ζ , ξ, ξ, . . . be random variables
on it such that  ≤ ξn ≤ ζ for n = , , . . . . Let T : X → X be a measure preserving transfor-
mation and ξn →  almost everywhere in P. Then


n

n∑

i=

ξi ◦ Ti →  almost everywhere in P.

In Section  we give fuzzy analogies of the above results. In the proofs we will use the
method of F-σ -ideals. Note that the first authors, who were interested in the ergodic the-
ory on fuzzy measurable spaces, were Harman and Riečan []. They proved the validity
of Birkhoff’s individual ergodic theorem [] for the compatible case.

2 Fuzzy probability spaces and fuzzy dynamical systems
First, we recall the definitions of basic notions and some facts which will be used in the
following.

Definition . [] A fuzzy probability space is a triplet (X, M, m), where X is a nonempty
set; M is a fuzzy σ -algebra of fuzzy subsets of X (i.e., (i) X ∈ M; (/)X /∈ M; (ii) if an ∈ M,
n = , , . . . , then

∨∞
n= an ∈ M; (iii) if a ∈ M, then a′ ∈ M) and the mapping m : M → 〈,∞)

fulfils the following conditions:
(P) m(a ∨ a′) =  for every a ∈ M;
(P) if {an}∞n= is a sequence of pairwise W-separated fuzzy subsets from M (i.e., ai ≤ a′

j
for i �= j), then m(

∨∞
n= an) =

∑∞
n= m(an).

The operations with fuzzy sets are defined here by Zadeh [], i.e., the union of fuzzy
subsets a, b of X is a fuzzy set a ∨ b defined by (a ∨ b)(x) = sup(a(x), b(x)) for all x ∈ X
and the intersection of fuzzy subsets a, b of X is a fuzzy set a ∧ b defined by (a ∧ b)(x) =
inf(a(x), b(x)) for all x ∈ X. The complement of a fuzzy subset a of X is the fuzzy set a′

defined by a′(x) =  – a(x) for all x ∈ X. The difference of fuzzy subsets a, b of X is the
fuzzy set a – b := a ∧ b′. The partial ordering relation ≤ is defined in the following way: for
every a, b ∈ M, a ≤ b if and only if a(x) ≤ b(x) for all x ∈ X. Using the complementation
′ : a → a′ for every fuzzy subset a ∈ M, we see that the complementation ′ satisfies two
conditions: (i) (a′)′ = a for every a ∈ M; (ii) if a ≤ b, then b′ ≤ a′. So, M is a distributive
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σ -lattice with the complementation ′ for which the de Morgan laws hold: (
∨∞

n= an)′ =
∧∞

n= a′
n and (

∧∞
n= an)′ =

∨∞
n= a′

n for any sequence {an}∞n= ⊂ M. A couple (X, M), where
X is a nonempty set and M is a fuzzy σ -algebra of fuzzy subsets of X, is called a fuzzy
measurable space. The fuzzy set (/)X is defined by (/)X = / for all x ∈ X. The empty
fuzzy set X is defined by X(x) =  for all x ∈ X. The complement of empty fuzzy set is a
fuzzy set X defined by the equality X(x) =  for all x ∈ X. It is called a universum. Fuzzy
subsets a, b of X such that a ∧ b = X are called separated fuzzy sets. Analogous weak
notions (W-notions) were defined by Piasecki in [] as follows: each fuzzy subset a ∈ M
such that a ≥ a′ is called a W-universum; each fuzzy subset a ∈ M such that a ≤ a′ is called
a W-empty set. Fuzzy subsets a, b ∈ M such that a ≤ b′ are called W-separated. It can be
proved that a fuzzy set a ∈ M is a W-universum if and only if there exists a fuzzy set b ∈ M
such that a = b ∨ b′. Each mapping m : M → 〈,∞) having the properties (P) and (P)
is called in the terminology of Piasecki a fuzzy P-measure. Any fuzzy P-measure has the
properties analogous to the properties of classical probability measure.

Definition . [] By a fuzzy dynamical system we shall mean a quadruplet (X, M, m, τ ),
where (X, M, m) is a fuzzy probability space and τ : M → M is an m-invariant σ -
homomorphism, i.e., τ (a′) = (τ (a))′, τ (

∨∞
n= an) =

∨∞
n= τ (an) and m(τ (a)) = m(a), for every

a ∈ M and any sequence {an}∞n= ⊂ M.

An analog of a random variable from the classical probability theory is an F-observable.

Definition . [] An F-observable on a fuzzy measurable space (X, M) is a mapping
x : B(R) → M such that

(i) x(EC) = X – x(E) for every E ∈ B(R);
(ii) x(

⋃∞
n= En) =

∨∞
n= x(En) for any sequence {En}∞n= ⊂ B(R),

where B(R) is the family of all Borel subsets of the real line R and EC denotes the com-
plement of a set E ⊂ R.

It is easy to see that if x is an F-observable, then the range of the F-observable x, i.e., the
set R(x) := {x(E); E ∈ B(R)}, is a Boolean σ -algebra of (X, M) with a minimal and maximal
element x(∅) and x(R), respectively. If τ : M → M is a σ -homomorphism and x is an
F-observable on (X, M), then it is easy to verify that τ ◦ x : E → τ (x(E)), E ∈ B(R), is an
F-observable on (X, M), too. Let any fuzzy probability space (X, M, m) be given. If x is an
F-observable on (X, M), then the mapping mx : E �→ m(x(E)), E ∈ B(R), is a probability
measure on B(R). The probability that an F-observable x has a value in E ∈ B(R) is given
by m(x(E)).

We present some examples of the above notions.

Example . Let (X, S, P) be a classical probability space and ξ : X → R be a random
variable in the sense of classical probability theory. Put M = {χA; A ∈ S}, where χA is a cha-
racteristic function of a set A ∈ S, and define the mapping m : M → 〈, 〉 by m(χA) = P(A).
Then the triplet (X, M, m) is a fuzzy probability space and the mapping x : B(R) → M de-
fined by x(E) = χξ–(E), E ∈ B(R), is an F-observable on the fuzzy measurable space (X, M).
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Example . Let (X, M) be any fuzzy measurable space. If a ∈ M, then the mapping xa

defined by putting

xa(E) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

a ∨ a′, if ,  ∈ E;
a′, if  ∈ E,  /∈ E;
a, if  /∈ E,  ∈ E;
a ∧ a′, if ,  /∈ E

for any E ∈ B(R), is an F-observable on the fuzzy measurable space (X, M), called the
question observable of the fuzzy set a. It is evident that xa plays the role of an indicator
of the fuzzy set a. We denote the question observable of the empty fuzzy set X by σ , i.e.,
σ = xX . We have

σ (E) =

{
X , if  /∈ E;
X , if  ∈ E

for every E ∈ B
(
R).

Lemma . Let x be an F-observable on a fuzzy measurable space (X, M) and f : R → R

be a Borel measurable function. Then the mapping f (x) : B(R) → M defined, for every
E ∈ B(R), by f (x)(E) = x(f –(E)), is an F-observable on (X, M) such that R(f (x)) ⊂ R(x).

Proof For every E ∈ B(R),

f (x)
(
EC)

= x
(
f –(EC))

= x
((

f –(E)
)C)

= X – x
(
f –(E)

)
= X – f (x)(E)

and for any sequence {En}∞n= ⊂ B(R),

f (x)

( ∞⋃

n=

En

)

= x

(

f –

( ∞⋃

n=

En

))

= x

( ∞⋃

n=

f –(En)

)

=
∞∨

n=

x
(
f –(En)

)
=

∞∨

n=

f (x)(En).

This means that the mapping f (x) : B(R) → M is an F-observable on (X, M). If a ∈ R(f (x)),
then a = f (x)(E) = x(f –(E)) for some set E ∈ B(R). Since the function f : R → R is a Borel
measurable function, f –(E) ∈ B(R), and hence a ∈ R(x). The proof is finished. �

In particular, if f (t) = t, t ∈ R, we put x := f (x), etc. If k ∈ R, then the mapping
kx : B(R) → M defined by (kx)(E) = x({t ∈ R; kt ∈ E}), for every E ∈ B(R), is an F-
observable on (X, M).

Since there is a one-to-one correspondence between an F-observable x and the sys-
tem {Bx(t) := x((–∞, t)); t ∈ R} (Dvurečenskij and Tirpáková []), the sum of any pair of
F-observables x, y on (X, M) has been defined in the following way.

Definition . [] Let (X, M) be a fuzzy measurable space. By the sum of any pair of two
F-observables x, y on (X, M) we mean an F-observable z such that

z
(
(–∞, t)

)
=

∨

r∈Q

x
(
(–∞, r)

) ∧ y
(
(–∞, t – r)

)
, t ∈ R,

where Q is the set of all rational numbers in the real line R. We write z = x + y.
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In [], it has been proved that the sum of any pair of F-observables always exists and it
is determined uniquely. Moreover, for any F-observables x, y, z on (X, M) we have x + y =
y + x; (x + y) + z = x + (y + z). The difference of two F-observables x, y on (X, M) is defined
by x – y = (x + (–y)), where (–y)(E) = y({t; –t ∈ E}), for every E ∈ B(R). The product x · y of
two F-observables x, y on (X, M) is defined as follows:

x · y =
(
(x + y) – x – y)/.

By the spectrum of an F-observable x we mean the set σ (x) :=
⋂{C ⊂ R; C is closed

and x(C) = x(R)}. An F-observable x is called bounded if σ (x) is a bounded set; in this
case we define the norm of x via ‖x‖ = sup{|t|; t ∈ σ (x)}. Let x and y be two F-observables
on (X, M). We write x ≤ y if σ (y – x) ⊂ 〈,∞).

Definition . [] Let (X, M, m) be a given fuzzy probability space, x, x, x, . . . be
F-observables on (X, M). We say that the sequence {xn}∞n= converges to x almost every-
where in m (and we write xn → x m-a.e.), if, for every ε > ,

m

( ∞∨

k=

∞∧

n=k

(xn – x)
(〈–ε, ε〉)

)

= .

3 Main results
In this section, we give analogies of Mesiar’s ergodic theorems for the case of a fuzzy dy-
namical system (X, M, m, τ ). In the proofs we will use the method of F-σ -ideals described
below as well as the properties of a σ -homomorphism τ . It is noted that these results can
be obtained also by factorizing over the σ -ideal of W-empty sets; details of this approach
can be found, e.g., in [].

Let any fuzzy probability space (X, M, m) be given. Put I◦ = {a ∈ M;∃c ≥ / such that
a ∧ c ≤ /}. It is easy to verify that I◦ is a σ -ideal, i.e., (i) if a ∈ M, b ∈ I◦, a ≤ b, then a ∈ I◦;
(ii) if {ai}∞i= ⊂ I◦, then

∨∞
i= ai ∈ I◦; (iii) a ∧ a′ ∈ I◦ for every a ∈ M; (iv) if a ∧ c ∈ I◦ for some

c ≥ /, c ∈ M, then a ∈ I◦. In the set M we define the relation of equivalence ∼ in the fo-
llowing way: for every a, b ∈ M, a ∼ b if and only if a∧b′, a′ ∧b ∈ I◦. Put [a] = {b ∈ M; b ∼ a}
for every a ∈ M. The system M/I◦ = {[a]; a ∈ M} is a Boolean σ -algebra, where

∨∞
n=[an] =

[
∨∞

n= an] and [a]′ = [a′]. It is easy to verify that if a, a ∈ [a], then m(a) = m(a). If we
define the mapping μ : M/I◦ → 〈, 〉 by the equality μ([a]) := m(a) for every [a] ∈ M/I◦,
then μ is a probability measure on the Boolean σ -algebra M/I◦.

Let (X, M, m, τ ) be any fuzzy dynamical system. Then the mapping τ̄ : M/I◦ → M/I◦
defined by τ̄ ([a]) = [τ (a)], a ∈ M, is a σ -homomorphism of the Boolean σ -algebra M/I◦,
i.e., for every a ∈ M, τ̄ ([a]′) = (τ̄ ([a]))′, and for every sequence {an}∞n= ⊂ M, τ̄ (

∨∞
n=[an]) =

∨∞
n= τ̄ ([an]); moreover, τ̄ is invariant in μ, i.e., μ(τ̄ ([a])) = μ([a]), for every a ∈ M.

Remark . Let (X, M) be a given fuzzy measurable space and x be an F-observable on it.
Let us define the mapping h : M → M/I◦ via h(a) = [a], a ∈ M. Then it is easy to verify that
h is a σ -homomorphism from M onto M/I◦ and x̄ := h ◦ x is an observable on the Boolean
σ -algebra M/I◦, i.e., the following properties hold:

(i) x̄(∅) = [X];
(ii) x̄(EC) = (x̄(E))′, for every E ∈ B(R);

(iii) x̄(
⋃∞

n= En) =
∨∞

n= x̄(En), for any sequence {En}∞n= ⊂ B(R).
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Figure 1 The basic idea of the method of
F-σ -ideals for verification of validity of ergodic
theorems on a fuzzy dynamical system.

Lemma . Let (X, M, m, τ ) be a fuzzy dynamical system and let {xn}∞n= be a sequence of
F-observables on (X, M). If h is the mapping from the preceding remark and x̄n := h ◦ xn,
n = , , . . . , then we have:

(i) τ̄ k ◦ x̄n = h ◦ τ k ◦ xn, for k = , , . . . , n = , , . . . .
(ii) Let A be the minimal Boolean sub-σ -algebra of M/I◦ containing all ranges of τ̄ k ◦ x̄n,

k = , , . . . , n = , , . . . . Then τ̄ ([a]) ∈A for any [a] ∈A.

Proof (i) For every E ∈ B(R) we have

(
h ◦ τ k ◦ xn

)
(E) = h

(
τ k(xn(E)

))
=

[
τ k(xn(E)

)]
= τ̄ k([xn(E)

])

= τ̄ k(h
(
xn(E)

))
= τ̄ k(x̄n(E)

)
=

(
τ̄ k ◦ x̄n

)
(E),

i.e., τ̄ k ◦ x̄n = h ◦ τ k ◦ xn, n = , , . . . , k = , , . . . .
(ii) Put A = {[a] ∈ A; τ̄ ([a]) ∈ A}. Since A ⊂ A, it is sufficient to show the inclu-

sion A ⊂ A. We will prove that A is a Boolean σ -algebra. If [a] ∈ A, then τ̄ ([a]) ∈ A,
and since A is a Boolean σ -algebra, (τ̄ ([a]))′ ∈ A. The equality τ̄ ([a]′) = (τ̄ ([a]))′ implies
[a]′ ∈ A. Let [an] ∈ A for n = , , . . . . Then τ̄ ([an]) ∈ A for n = , , . . . , and since A is
a Boolean σ -algebra,

∨∞
n= τ̄ ([an]) ∈ A. From the equality

∨∞
n= τ̄ ([an]) = τ̄ (

∨∞
n=[an]) we

get
∨∞

n=[an] ∈A. Moreover, [X], [X] ∈A. Thus A is a Boolean sub-σ -algebra of [M]
containing all ranges of τ̄ k ◦ x̄n, k = , , . . . , n = , , . . . , and therefore A ⊂ A. The proof
is finished. �

Figure  shows the basic idea of using the method of F-σ -ideals for the verification of
extending the possibility of ergodic theory on a fuzzy measurable space.

The following theorem is a fuzzy analogy of Theorem ..

Theorem . Let (X, M, m, τ ) be a given fuzzy dynamical system and {xn}∞n= be a se-
quence of bounded F-observables on (X, M). Let there exists a real constant K >  such
that ‖xn‖ ≤ K for n = , , . . . . Suppose xn → σ almost everywhere in m. Then


n

n∑

i=

τ i ◦ xi → σ almost everywhere in m. (.)

Proof The Boolean sub-σ -algebra A in Lemma . has a countable generator, hence, due
to Varadarajan [], there exists an observable

z : B
(
R) → M/I◦ such that

{
z(E) : E ∈ B

(
R)} = A,
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and a sequence of real-valued Borel functions {fn}∞n=, such that

x̄n(E) = z
(
f –
n (E)

)
, E ∈ B

(
R), n = , , . . . .

The sequence {fn}∞n= is essentially unique in the following sense: if z(f –
n (E)) = z(g–

n (E)),
E ∈ B(R), then z({t : fn(t) �= gn(t)}) = [X]. From the construction of z it follows that τ̄

is z-measurable, i.e., τ̄ (z(B(R))) ⊂ z(B(R)). Due to Dvurečenskij and Riečan [], this is
possible iff there is a Borel measurable transformation T : R → R such that

τ̄
(
z(E)

)
= z

(
T–(E)

)
for every E ∈ B

(
R).

Therefore we have

τ̄ k(z(E)
)

= z
(
T–k(E)

)
, E ∈ B

(
R), k = , , . . . ,

and consequently, for every E ∈ B(R),

(
τ̄ k ◦ x̄n

)
(E) = τ̄ k(x̄n(E)

)
= τ̄ k(z

(
f –
n (E)

))
= z

(
T–k(f –

n (E)
))

, k = , , . . . .

Moreover, σ (xn) ⊃ σ (x̄n) ⊃ σ (f –
n ), and therefore |fn| ≤ ‖x̄n‖ ≤ ‖xn‖ ≤ K .

Take into account the system (R, B(R),μz, T), where μz is the mapping defined by
μz(E) = μ(z(E)), for every E ∈ B(R). Then μz is a probability measure on B(R). More-
over, for every E ∈ B(R),

μz
(
T–(E)

)
= μ

(
z
(
T–(E)

))
= μ

(
τ̄
(
z(E)

))
= μ

(
z(E)

)
= μz(E),

i.e., the transformation T is μz-invariant. This means that the system (R, B(R),μz, T) is
a dynamical system in the classical sense. For observables in a Boolean σ -algebra, there
is a well-known way to define their sum [], and the convergence almost everywhere of
observables in M/I◦ is the same as for F-observables.

By the assumption xn → σ almost everywhere in m, i.e., for every ε > ,

m

( ∞∨

k=

∞∧

n=k

xn
(〈–ε, ε〉)

)

= .

But

m

( ∞∨

k=

∞∧

n=k

xn
(〈–ε, ε〉)

)

= 

⇔ μ

( ∞∨

k=

∞∧

n=k

x̄n
(〈–ε, ε〉)

)

= 

⇔ μ

( ∞∨

k=

∞∧

n=k

z
(
f –
n

(〈–ε, ε〉))
)

= 

⇔ μz

( ∞⋃

k=

∞⋂

n=k

f –
n

(〈–ε, ε〉)
)

= 

⇔ fn →  almost everywhere in μz.
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Hence, due to Theorem ., we have


n

n∑

i=

fi ◦ Ti →  almost everywhere in μz.

On the other hand,


n

n∑

i=

τ i ◦ xi → σ m-a.e. iff

n

n∑

i=

τ̄ i ◦ x̄i → σ̄ μ-a.e.,

where σ̄ (E) = [X] if  /∈ E and σ̄ (E) = [X] in the other cases. The previous convergence is
true if and only if


n

n∑

i=

(
fi ◦ Ti)(z) → σ̄ μ-a.e.,

which is possible if and only if


n

n∑

i=

fi ◦ Ti →  μz-a.e.

Therefore, (.) is proved. �

Theorem . Let (X, M, m, τ ) be any fuzzy dynamical system and {xn}∞n= be a sequence
of F-observables on (X, M). Let y be an F-observable on (X, M) such that σ ≤ xn ≤ y for
n = , , . . . . Suppose xn → σ almost everywhere in m. Then


n

n∑

i=

τ i ◦ xi → σ almost everywhere in m.

Proof We will use similar arguments to above. Let A be the minimal Boolean sub-σ -
algebra of M/I◦ containing all ranges of τ̄ k ◦ x̄n and τ̄ k ◦ ȳ for k = , , . . . , n = , , . . . . Then
τ̄A ⊂ A and A has a countable generator. In view of Varadarajan [], there is an ob-
servable z : B(R) → M/I◦ such that

{
z(E) : E ∈ B

(
R)} = A.

Moreover, there are real-valued Borel functions f , fn, n = , , . . . , such that

x̄n(E) = z
(
f –
n (E)

)
, n = , , . . . and ȳ(E) = z

(
f –(E)

)
for any E ∈ B

(
R).

Denote gn = max(, fn), n = , , . . . , and g = max(, f ). Then, for every E ∈ B(R), we have
x̄n(E) = z(g–

n (E)), n = , , . . . , and ȳ(E) = z(g–(E)). Let hn = min(fn, f ), n = , , . . . , and h = f .
Then x̄n(E) = z(h–

n (E)), ȳ(E) = z(h–(E)). Moreover,  ≤ ‖x̄n‖ ≤ ‖ȳ‖ and  ≤ hn ≤ h. Simi-
lar to the proof of the preceding theorem, we take into account the dynamical system
(R, B(R),μz, T), where μz : E → μ(z(E)), E ∈ B(R), is a probability measure on B(R) such
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that μz(T–(E)) = μz(E), for every E ∈ B(R), and τ̄ (z(E)) = z(T–(E)), E ∈ B(R). Thus we
have


n

n∑

i=

τ i ◦ xi → σ m-a.e. iff

n

n∑

i=

τ̄ i ◦ x̄i → σ̄ μ-a.e. iff


n

n∑

i=

hi ◦ Ti →  μz-a.e.

But the last assertion follows from Theorem .. The proof is finished. �

Corollary . Let (X, M, m, τ ) be any fuzzy dynamical system and {xn}∞n= be a sequence
of F-observables on (X, M). Let y be an F-observable on (X, M) such that |xn| ≤ y for n =
, , . . . . If xn → σ almost everywhere in m, then


n

n∑

i=

τ i ◦ xi → σ almost everywhere in m.

Proof We put xn = x+
n – x–

n , where x+
n = f + ◦ xn, x–

n = f – ◦ xn, f +(t) = max(, t) and f –(t) =
– min(, t), t ∈ R. Then |xn| = x+

n + x–
n . Applying Theorem . to both sequences {x+

n}∞n=

and {x–
n}∞n= we get what was claimed. �

4 Conclusions
In this paper we have presented generalizations of some ergodic theorems from the cla-
ssical ergodic theory to the fuzzy case. In the proofs the method of F-σ -ideals was used.
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