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1 Introduction
In recent years, there has been put focus on developing the existence theory for initial and
boundary value problems of g-difference equations and inclusions. The pioneer work on
the topic dates back to the first quarter of the 20th century. In contrast to the classical
definition of the derivative, the concept of g-calculus does not involve the idea of limit.
The importance of g-difference equations lies in the fact that these equations are always
completely controllable and appear in the g-optimal control problems [1]. The g-analog of
continuous variational calculus, known as variational g-calculus, is regarded as a general-
ization of the continuous variational calculus due to the presence of an extra parameter g,
which may be physical or economical in nature. The variational calculus on a g-uniform
lattice helps to find the extremum of the functional involved in Lagrange problems of
g-Euler equations rather than solving the Euler-Lagrange equation itself [2]. The appli-
cations of g-calculus appear in several disciplines such as special functions, supersymme-
try, control theory, operator theory, combinatorics, initial and boundary value problems
of g-difference equations, etc. For details and examples, we refer the reader to the books
[3-6] and [7-18]. In a recent paper [17], the authors discussed the existence and unique-
ness of solutions for impulsive gi-difference equations. However, it has been found that
the study of gx-difference equations is still at its initial phase and needs further attention.
Motivated by [17], in this paper, we obtain positive extremal solutions for a new class of
nonlinear impulsive gx-difference equations by the method of successive iterations. Pre-
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cisely, we investigate the following problem:

Dy u(t) =f(t,u(t), O<qr<Lte],
Aulty) = L(u(t), k=1,2,...,m, (1.1)
u(0)=ru(n)+d, nej,rek,

where D, are gx-derivatives (k=0,1,2,...,m), f € C(J x R,R*), I ¢ C(R,R*), ] = [0, T,
T>0,0=tg<ty< - <bx<-<by<tma=T1,] =]\{tn,to,...,tm}, Jr =&, T],0 <A <1,
d>0,0<r<mand Au(t) = ut}) — u(ty), u(t{), and u(t;) denote the right and the left
limits of u(¢) at £ = tx (k=1,2,...,m), respectively.

The paper is organized as follows. In Section 2, we present some preliminary material
and prove an auxiliary lemma, which plays a pivotal role in establishing the main result.
Section 3 contains the main result, while an illustrative example is presented in Section 4.

2 Preliminaries
Let us fix Jo = [0, 1], /1 = (t1, 2], ... w1 = (bnts ) Jm = (&, T] with T = ¢,,,,1 and intro-
duce the Banach space

PC(J,R) = {u:]—>R | ueC(]k),kz0,1,...,m,andu(t,?) exist,k=1,2,...,m}

with the norm ||u|| = sup,; [u(?)|.
Next we outline some basic concepts of the gx-calculus [17].
For 0 < gx <1 and ¢ € Ji, we define the gi-derivatives of a real valued continuous func-
tion f as
SO = f(git + 0 - qi)te)

Dyf) =" ST Daf (@)= Jim Dyfo) (2.0)

Higher order gi-derivatives are given by
Dy f@)=f(t), Dl f(t)=DyDs'f(t), neNte

The gy-integral of a function f is defined by

4 Lqf (t) 1= / f&)dgs=1-q)(t-t) Zqﬁf(th +(1-q))t), t€o (2.2)
Ik

n=0

provided the series converges. If a € (¢, ¢) and f is defined on the interval (¢, ¢), then

/f(s)qus:/f(s)qus—/f(s)qus.
Observe that
Dy, (TS 0) = Dy [ 16 dys =110

T (Duf(0) = [ Duf dys=110)
Lk
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Ly (Dqkf(t)) = / Dy f(s)dgs=f(t)-f(a), ac(tt)

In the case #; = 0 and gx = g in (2.1) and (2.2), then Dy, f = D,f, , 1, f = oZ,f, where D,
and (Z, are the well-known g-derivative and g-integral of the function f(¢) defined by

Do = L0110 =@ 7 - f F6) dgs =3 60 - )" (a”).
q)t n=0

Lemma 2.1 For a given o(t) € C(J,R), a function u € PC(J,R) is a solution of the linear

impulsive qi-difference equations

Dyju(t)=0c(t), O<qr<lte],
Au(tk) :[k(l/l(tk)), k= 1,2,...,m, (2.3)
u(0) =ru(n) +d, nej,

if and only if u satisfies the following impulsive qy-integral equations:

fota(s) dgos + 125 ft? o (s)dy,s

-1 rlis
u(t) = + i Yo i o (s dys + 5 Lo Lu(®)) + 1%, t € Jo; 24)

ft (s)d,,ks+zk— j”la(s)dqlﬁzl11(u(t))+uft s)dy,s
+ 25 Y :’“ () dgs+ 25 Yo Lut) + %, tek.

Proof As argued in [18], the solution of the gx-difference equations (2.3) can be written as

u(e) = u(0) + / s)qus+2 / dqluzz te i 25)

Substituting ¢ = 1 in (2.5), we have

tiv1

u(n) = u(0)+/ o(s)dy s+2/ o(s)dy s+21 u(t nej. (2.6)

Using the nonlocal boundary condition (2.3), we obtain

t k-1 ti1 k N .
u(t) = ] o(s)dgs+ Z/ o (s)dys + Zli(”(ti)) n ﬁ/ o(s)dys
t i=0 b i=1 —AJy
-1 tiv1
—)\;):/t: o(s)d, WS+ TS )LZI (u(®)) I te. (2.7)

Conversely, assume that u(¢) satisfies the gx-integral equation (2.4). Then, by employing
the operator D,, on both sides of (2.4) and applying ¢ = 5, we obtain (2.3). This completes
the proof. O
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3 Main result
Define a cone P C PC(J,R) by

P={uePC(,R):ut)>0,te]}

and an operator 2 : PC(J,R) — PC(J,R) by

k-1

(u)(t) = / f(s,u(s)) qus+z / f(s,us))d, s+21 (u(t))
A =l g
f s,u d S+ f(s,u(s)) dy;s
= i e

a d
- ;Ii(u(ti)) Y (3.1)

For the sake of convenience, we introduce some notations and assumptions.

Let b,c > 0 be constantsand R=b + ¢ + %.

(Hy) f(t,-)is nondecreasing on J x [0,R], and f (¢, u) < = on] x [0,R], where M = T + )"7
(Ha) (), k=1,2,...,m, are nondecreasing on [0, R], and L(u) < 4 Wf)c on [0, R].
(Hs) f(t,0) % 0 on any subinterval of J.

We construct two explicit monotone iterative sequences, which converge to positive
extremal solutions of nonlinear impulsive g -difference equations (1.1):

tt+1

k
Ve (t / S(5,va(s)) dgs + Zf (8, vn(s)) dys + Zli(vn(ti))
i=1
738
/ Sf(5,vals)) dg,s + —— = Z/ SF(s,va(s)) dys

d
(&) + T with initial value vo(£) = 0,

(3.2)

t k1 ot k
tia® = [ Sl s+ 3 [ 5606 dys + 3 0)
tk i=0 Vi i=1

Lis1

/ f S, un(s) dq,s+ —Z/ S, Mn(s)

d
+
1-2

+ T , with initial value u(£) = R.
=0

Recall that a solution u* of problem (1.1) is called maximal (minimal) if #z* > (<)u holds
for any solution u of problem (1.1). The maximal and minimal solutions of problem (1.1)
are called its extremal solutions.

Theorem 3.1 If assumptions (H;)-(Hs) hold, then the nonlinear impulsive qi-difference
equations (1.1) has positive extremal solutions v*, u* in (0,R], which can be achieved by

Page 4 of 8
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monotone iterative sequences defined by (3.2). Moreover, the following relation holds:

VoSV < SV SV S St Sy <o < iy < . (3.3)

Proof By Lemma 2.1, one can transform the nonlocal boundary value problem (1.1) to an
equivalent fixed point problem: u = Zu. That is, a fixed point of the operator equation
u = Qu is a solution of the problem (1.1).

Obviously, 2 : P — P. By a similar process to that employed in [18], it is easy to show
that 2 : P — P is completely continuous.

Denote a ball B = {u € P, ||u|| < R}. Now, we show that Z(B) C B. Then, for u € B, by
(H;) and (H;), we have

tl+1

k
[(Qu)(t)| = /f (s, u(s)) dg.s + Z/ (s, 1(s)) dys + Zli(u(t )
i-1
/ f(suls))dg,s + —— — Z/ i1 Flous)d

b t”l k(1-A
|:/ quS + Z[ :| m )C
tivl ric d
- A)M[/ d"'”Z/ S}*?*ﬁ
L kL-Ac  Ab —
|:t—tk+;): z+1_ti):|+ " +(1—A)M n_tr+;(ti+l_ti)

ric d
oL 2
m 1-A
AD
<—+({1-A)c+ 7 +Ac+
1-)M 1-x
<R, (3.4)

which implies that || 2u|| < R. Thus 2(B) C B.

Next, let us denote the iterative sequence v,,1(¢) = 2v,(¢) (n = 0,1,2,...) and pick
vo(t) = 0. Then v; = Qvy = 20, Vt € J. In view of vo(t) =0 € Band 2 : B — B, it follows
that v, € 2(B) CB(n=0,1,2,...). Thus, we have

ni(t) = (20)(t) = 0=wo(t), Vie].

Applying the conditions (H;) and (Hy), it is easy to prove the operator 2 is nondecreasing.
So, we have

va(£) = (2n) () = (Zvo)(t) = w1 (), Vee].
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By mathematical induction, one can show that the sequence {v,}°; satisfies
Vun(£) > vu(8), Vte],n=0,1,2,.... (3.5)
Similarly, we denote the iterative sequence u,.1(t) = Qu,(t) (n = 0,1,2,...) and pick
uo(t) = R. Then u; = Lug. In view of up(t) =ReBand 2:B — B, u, € 2(B) C B

(n=0,1,2,...). Thus, by (H;) and (H;), we obtain

tiv

k

/f s, 7N s) qus+ Z/ s uo(s)) dgs + le‘(uo(ti))
i=1

/ S (s,uo(s)) dg,s + —— — Z/ i+1 Floo)) dys

+ (
1-2 i=0 l

b[/k dwz/ } ==

bT nAb
<t A=At — b ach ——
M A- M 1-2

<R=uy(t), Vtel.
Noting that 2 is nondecreasing, we have
uz(8) = (Lun) () = (Luo)(t) =m (1), Vee].
Again, by mathematical induction, it can be shown that the sequence {u,};°, satisfies
Upa(t) <u,t), Vitel,n=0,1,2,.... (3.6)

By the complete continuity of the operator 2, the sequences {v,}°°, and {u,,}32, are relative
compact. It means that {v,};2; and {u,};2, have convergent subsequences {v,,}2; and
{un, } 321, respectively, and there exist v*,u* € B such that v,, — v*, u,, — u* as k — oo.
Using this fact together with (3.5) and (3.6) yields
lim v, =%, lim u, = u®.
n—00 n—00
In consequence, from the continuity of the operator 2, it follows that 2v* = v*, Qu* = u*.
This means that #* and v* are two solutions of problem (1.1).
Finally, we prove that #* and v* are positive extremal solutions of problem (1.1) in (0, R].
If w € [0, R] is any solution of problem (1.1), then 2w = w and vo(¢) < w(t) < uo(¢). This

implies that 2 is nondecreasing and that

vu(t) < wl(t) <u,(t), Viel,n=0,1,2,.... (3.7)
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Thus, employing (3.5)-(3.7), we obtain
VoSV < SV SV SwsuteSu, <o S S . (3.8)

In view of f(£,0) # 0, V£ € /, 0 is not a solution of the problem (1.1). Consequently, it fol-
lows from (3.8) that * and v* are positive extremal solutions of the nonlinear impulsive
qk-difference equations (1.1) in (0, R], which can be achieved by monotone iterative se-
quences given in (3.2).

This completes the proof. d

4 Example

Example 4.1 Consider the impulsive nonlocal boundary value problem of the nonlinear
qx-difference equation

Du(t)=ftu)=t>+Lu?, tel0,i],t#5,

5+k
Au() = arctanu(;),  k=1,2, (4.1)
w(0) = gu(3) + Z,

where qi = 2 (k=0,1,2), ty = 757 (k=1,2),m=2,A=%,n=3,d=2, M= 2, f(t,u) =

£+ %uz, and [i(u) = arctanu. Taking b =4 — 7, c =, R = 5, it is easy to verify that all

conditions of Theorem 3.1 hold. Hence, by Theorem 3.1, the problem (4.1) has positive
extremal solutions in (0, 5], which can be achieved by the monotone iterative sequences
given by (3.2).
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