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Abstract
Based on the boundary layer function method, a class of generalized
high-dimensional delayed systems in the critical case is studied. In the framework of
this paper, we not only construct the asymptotic expansion of the solution for the
original equation but also give the proof of the uniformly valid asymptotic expansion.
Meanwhile, we give an example to demonstrate our result.
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1 Introduction
The dielectric constants of the basic semiconductor devices are usually small, and there-
fore boundary value problems for semiconductor equations with higher derivative terms
can be regarded as singular perturbation problems with small parameters. The singular
perturbation approach to semiconductor problems was started by Vasil’eva, Kardosysove
and Stelmach. It is a kind of specially effective uncoupled method for solving semicon-
ductor device simulation problems and is a general analysis method for finding an ap-
proximate solution of the systems in the natural sciences and engineering. During the
past decade the method of averaging [], the boundary layer function method, the princi-
ple of matched asymptotic expansion [] and multiple scales [], to name but a few, have
been developed and refined. Using these methods, many approximate solution problems,
including organic compounds reaction, neural networks [], polymer rheology [], and
so on were solved. However, studies of the singularly perturbed delayed boundary value
problem in the critical case rarely appeared. Until now, singularly perturbed initial value
problems in the critical case have been solved. But, for boundary value problems, only
some special cases have been considered []. The reason for it lies is two-fold. Firstly, the
smooth approximate solution on the intersection of the two adjacent intervals is not easy
to get. Secondly, the complex boundary layer and the internal layer of the zero order equa-
tions are very difficult.

In recent years, the great importance of semiconductor device simulation caused inten-
sive work on the subject [–]. However, in practical applications, we need to consider
the effect of delays. As is well known, there are a close relation between the current state
and the previous state for the electric field, the electron density, and the hole density in
a semiconductor device. Since the electric field is produced by the potential difference of
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the device and the time that the movement of electrons makes the electric field reach a
balanced equilibrium is very short, the delays are easier to miss. In fact, we know that
even a small delay is also likely to have an important impact on the stability of the system.
Therefore it is necessary for us to consider the influence of delays and to study nonlinear
systems which are more realistic. Our work is based on such a background.

In this paper, using the boundary layer function method, we consider the asymptotic be-
havior of solution for the problem, and the formal asymptotic solution is also constructed.
The asymptotical behavior of solutions for the singular perturbation problem is usually re-
fer to as ‘under certain conditions the solution x(t,μ) of the original problem converges to
the solution x̄(t,μ) of the degradation problem as μ → ’. The asymptotic behavior of a
solution and the research of using a degenerate solution to approximate the exact solution
provide a theoretical basis for constructing the numerical simulation of the semiconductor
devices.

We consider the following quasi-linear delayed boundary value problems:

μ
dz
dt

= A
(
u(t), u(t – σ ), t

)
y + μB

(
u(t), u(t – σ ), t

)
, (.)

μ
dy
dt

= f
(
z(t), z(t – σ ), t

)
,  ≤ t ≤ T , (.)

μ
du
dt

= C
(
u(t), u(t – σ ), t

)
y + μD

(
u(t), u(t – σ ), t

)
, (.)

with the initial and boundary value conditions

z(t,μ) = ρ(t), u(t,μ) = θ (t), –σ ≤ t ≤ , (.)

z(T ,μ) = zT , (.)

where μ >  is a small parameter, σ >  is also a small shifting parameter, y and z are scalar
functions, u is a k-dimensional vector function and σ ≤ T ≤ σ , functions A, B, C, and
D are analytic in some domain G(u, [u], t), f is analytic in I(z, [z], t). It is easy to see that
in this case the system is quasi-linear because it is linear with respect to y. The choice
of such a system is motivated in part by its occurrence in the study of applied problems
from semiconductor theory. The symbol [ ] stands for the deviation operation, namely,
[u] ≡ u(t – σ ).

(H′
) Suppose that Afz > .

Next, we will use the method of fractional steps to discuss the systems (.)-(.). Setting
μ =  and obtaining the so-called left degenerate problems

A
(
ū(t), θ (t – σ ), t

)
ȳ(t) = , (.)

f
(
z̄(t),ρ(t – σ ), t

)
= , (.)

C
(
ū(t), θ (t – σ ), t

)
ȳ(t) = , (.)

on the interval [,σ ] and the right degenerate problems

A
( ¯̄u(t), ū(t), t

)
ȳ(t) = , (.)
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f
( ¯̄z(t), z̄(t), t

)
= , (.)

C
( ¯̄u(t), ū(t), t

)
ȳ(t) = , (.)

on the interval [σ , T], respectively.
The left degenerate problems are algebraic equations. We suppose that systems (.)-

(.) have a family of solutions

z̄(t) = z̄(–)(t), ȳ(t) = ȳ(–)(t) = , ū(t) = ū(–)(t). (.)

Similarly, substituting (.) into the right degenerate problems gives

¯̄z(t) = z̄(+)(t), ¯̄y(t) = ȳ(+)(t) = , ¯̄u(t) = ū(+)(t). (.)

Here ū(–)(t) and ū(+)(t) are two arbitrary k-dimensional vector functions. The matrix Fx

(evaluated at z = z̄(–)(t), y = μ = , u = ū(–)(t) and z = z̄(+)(t), y = μ = , u = ū(+)(t)), for
F = (Ay f Cy)T and x = (z y u)T , is equal to the block matrix

⎛

⎜
⎝

 A 
fz  
 C 

⎞

⎟
⎠ .

It is easy to see that Fx has λ ≡  as an eigenvalue of multiplicity k as well as two eigenvalues
of opposite signs in the domain G(ū(∓)(t), [ū(∓)(t)], t), namely λ, = ±√

Afz . Thus we have
indeed a critical conditionally stable case.

From (.) and (.), we obtain the degenerate solution on the interval [, T], that is,

x̄ =

⎧
⎨

⎩
x̄(–)(t),  ≤ t ≤ σ ,

x̄(+)(t), σ ≤ t ≤ T .
(.)

In general, the right limit solution is not equal to the left limit solution at t = σ , i.e.,

x̄(σ–) = lim
t→σ+

x̄(–)(t) �= lim
t→σ– x̄(+)(t) = x̄(σ+).

It turns out that the internal layer may occur at t = σ . Besides, boundary layers may occur
at t =  and t = T , because the solution of reduced problems may not satisfy the initial
boundary value conditions. Since the reduced problem has a family of solutions x̄ = x̄(t),
our questions consequently arise as previously. Under what conditions will the solution
of the systems (.)-(.) converge to one of the solutions of this family as μ → , and,
in particular, to which one? In this paper, we will discuss this problem and construct the
uniformly valid asymptotic solution x(t,μ) on the interval [, T].

2 Construction of the formal asymptotics
We seek a solution of systems (.)-(.) in the form

x(t,μ) =

⎧
⎨

⎩

∑∞
i= μi{x̄i(t) + Lix(τ) + Q(–)

i x(τc)},  ≤ t ≤ σ ,
∑∞

i= μi{¯̄xi(t) + Q(+)
i x(τc) + Rix(τ)}, σ ≤ t ≤ T ,

(.)
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where τ = t
μ

, τc = t–σ
μ

, τ = t–T
μ

. By the initial and boundary value conditions, we obtain

ū() + Lu() = θ (), ūk() = –Lku(),

z̄() + Lz() = ρ(), z̄k() = –Lkz(),

¯̄z(T) + Rz() = zT , ¯̄zk(T) = –Rkz().

In order to make x(t,μ) continuous at t = σ , the following equation must be satisfied:

x(–)(σ ,μ) = x(+)(σ ,μ). (.)

From the continuity condition (.), we get

z̄(σ ) + Q(–)
 z() = ¯̄z(σ ) + Q(+)

 z() = p,

z̄k(σ ) + Q(–)
k z() = ¯̄zk(σ ) + Q(+)

k z() = pk ,

where pk (k ≥ ) are unknown parameters.

2.1 The construction of asymptotic solutions on the interval [0,σ ]
First, we consider the regular part of the solution. Substituting (.) into the original prob-
lem and setting μ = , we obtain the so-called degenerate problems of x̄(t):

A
(
ū(t), θ (t – σ ), t

)
ȳ(t) = ,

f
(
z̄(t),ρ(t – σ ), t

)
= , (.)

C
(
ū(t), θ (t – σ ), t

)
ȳ(t) = .

The root of (.) is

z̄(t) = ᾱ(t), ȳ(t) = , ū(t) = γ̄ (t), (.)

where γ̄ (t) is an arbitrary k-dimensional vector function.
The equations of Lx(τ) are

d
dτ

Lz = Ã
(
γ̄ () + Lu(τ), θ (–σ ), 

)
Ly(τ),

d
dτ

Ly = f̃
(
ᾱ() + Lz(τ),ρ(–σ ), 

)
– f̄

(
ᾱ(),ρ(–σ ), 

)
, (.)

d
dτ

Lu = C̃
(
γ̄ () + Lu(τ), θ (–σ ), 

)
Ly(τ),

with the initial and boundary conditions

Lz() = ρ() – ᾱ(), Lu() = θ () – γ̄ (), Lx(+∞) = , (.)

where γ̄ () is unknown, and the initial value of Ly(τ) is as yet arbitrary. We will use this
arbitrariness to ensure that Lx(τ) satisfies condition Lx(+∞) = .
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From (.), we have

dLu
dLz

=
C̃(γ̄ () + Lu(τ), θ (), )
Ã(γ̄ () + Lu(τ), θ (), )

. (.)

Integrating the above formula after separating variable and using implicit function theo-
rem, we find that (.) has a solution. Let us denote by

Lu = Ū
(
γ̄ (), Lz

)
(.)

the solution of this system such that Lu =  for Lz = , that is, Ū(γ̄ (), ) = .
The condition (H′

) shows that there exists a unique solution in a certain neighborhood
of the point Lz = . Then substituting (.) into (.), we obtain the system of equations

d
dτ

Lz = Ã
(
γ̄ () + Ū

(
γ̄ (), Lz

)
, θ (), 

)
Ly(τ),

d
dτ

Ly = f̃
(
ᾱ() + Lz(τ),ρ(–σ ), 

)
– f̄

(
ᾱ(),ρ(–σ ), 

)
.

(.)

The equilibrium point (, ) of (.) is a saddle, since the roots of the corresponding char-
acteristic equation are clearly equal to ±

√
Ãf̃Lz and, by virtue of the condition (H′

), are
real and have opposite signs.

By integrating (.), we get the separate equation of the saddle point

L: Ly(τ) = –
(


∫ Lz



f̃ (ᾱ() + ξ ,ρ(), ) – f̄ (ᾱ(),ρ(), )
Ã(γ̄ () + Ū(γ̄ (), ξ ),ρ(), )

dξ

) 


. (.)

Equations (.) and (.) give an analytic expression of the one-dimensional manifold 
̄

having the property that if Lx() ∈ 
̄, then Lx(τ) ∈ 
̄ for τ > , and the inequality

∥∥Lx(τ)
∥∥ ≤ ce–στ (τ ≥ ) (.)

is satisfied. In order to make the solution of system (.) satisfy an exponential decay esti-
mation, we need the following assumption.

(H) Suppose that Lz() ∩ 
̄ �= ∅.

Substituting (.) into (.), we have

θ () – γ̄ () = Ū
(
γ̄ (),ρ() – ᾱ()

)
, (.)

which represents a system of k scalar equations in the k unknown components of the
vector γ̄ (). The following condition is concerned with the solvability of γ̄ ().

(H) Suppose that (.) has a root γ̄ () = γ̄ .

By means of (H) and by taking (.) into account, we can determine the initial value
Ly(), and consequently, Lx(τ) satisfies an exponential decay. For determining Lx(τ),
it is necessary to substitute (.) into (.) and to solve the resulting scalar equation for
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Lz(τ) with the initial value condition Lz() = ρ() – ᾱ(). By virtue of (.) and (.)
we obtain Lu(τ) and Ly(τ). Thus Lx(τ) are completely determined, while for the as
yet unknown function γ̄ (t) we only know its initial value γ̄ . The function γ̄ (t) need to be
determined in the first approximation.

For x̄(t), we get

Ā
(
γ̄ (t), θ (t – σ ), t

)
ȳ(t) + B̄

(
γ̄ (t), θ (t – σ ), t

)
= ᾱ′(t),

fz
(
ᾱ(t),ρ(t – σ ), t

)
z̄(t) = ,

C̄
(
γ̄ (t), θ (t – σ ), t

)
ȳ(t) + D̄

(
γ̄ (t), θ (t – σ ), t

)
= γ̄ ′(t),

which has a solution

z̄(t) = , wȳ(t) =
ᾱ′(t) – B̄

Ā
,

dγ̄

dt
=

C̄(ᾱ′(t) – B̄)
Ā

+ D̄, (.)

where Ā, B̄, C̄, and D̄ are all taken value at the point (γ̄ (t), θ (t –σ ), t). From the existence of
a solution for the initial value problem, (.) together with the initial condition γ̄ () = γ̄ 

has the solution γ̄ = γ̄ (t) for  ≤ t ≤ σ . Therefore x̄(t) can be completely determined.
Equation (.) has only determined z̄(t) and ȳ(t), while ū(t) is yet unknown. We will
take advantage of the first approximation to determine ū(t).

The equations for Lx(τ) have the form

d
dτ

Lz = Ã
(
γ̄ () + Lu(τ), θ (–σ ), 

)
Ly(τ)

+ Ãu
(
ū() + Lu(τ)

)
Ly(τ) + ϕ(τ),

d
dτ

Ly = f̃zLz(τ) + ϕ(τ), (.)

d
dτ

Lu = C̃
(
γ̄ () + Lu(τ), θ (–σ ), 

)
Ly(τ)

+ C̃u
(
ū() + Lu(τ)

)
Ly(τ) + ϕ(τ),

where

ϕ(τ) = Ãȳ(μτ) +
[
Ãuγ

′()τ + Ãθ θ
′()τ + Ãtτ

]
Ly(τ)

– Āȳ(μτ) + (B̃ – B̄),

ϕ(τ) = f̃zᾱ
′()τ + f̃ρρ ′()τ + f̃tτ,

ϕ(τ) = C̃ȳ(μτ) +
[
C̃uγ

′()τ + C̃θ θ
′()τ + C̃tτ

]
Ly(τ)

– C̄ȳ(μτ) + (D̃ – D̄),

here Ā, B̄, C̄, D̄ take values at the point (γ̄ (), θ (–σ ), ), Ã, Ãu, Ãθ , Ãt , B̃, C̃, C̃u, C̃θ , C̃t ,
D̃ take values at the point (γ̄ () + Lu(τ), θ (–σ ), ), and f̃z , f̃ρ , f̃t take values at the point
(ᾱ() + Lz(τ),ρ(–σ ), ).

The initial and boundary conditions of Lx(τ) are

Lz() = , Lu() = –ū(), Lx(+∞) = . (.)
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Like the case of Lx(τ), we will take advantage of the arbitrariness of Ly() and choose
the appropriate value to guarantee that Ly() satisfies condition (.). For this purpose,
we introduce the diagonalization transform

Lz = δ, Ly = δ, Lu = δ +
δC̃
Ã

.

It is easy to verify that we obtain the system

dδ

dτ
=

ÃuC̃
Ã

Ly(τ)δ + Ãδ + ÃuLy(τ)
(
δ + ū()

)
+ ϕ(τ),

dδ

dτ
= f̃zδ + ϕ(τ), (.)

dδ

dτ
=

(
C̃u –

C̃Ãu

Ã

)
Ly(τ)

(
δ + ū()

)
+

(
ϕ(τ) –

C̃
Ã

ϕ(τ)
)

.

Obviously, (.) has already separated δ from δ and δ completely. The initial and
boundary conditions of δ, δ, and δ are δ() = , δ() = –ū(), and δi(+∞) =  (i =
, , ). Together with initial condition, the solution of δ in (.) is

δ(τ) = –ū() +
∫ τ


(τ)–(s)ϕ(s) ds,

where ϕ(τ) = ϕ(τ) – ϕ(τ)C̃
Ã

, (τ) is the fundamental matrix of the corresponding ho-
mogeneous equation with () = Ek .

The condition δ(+∞) =  uniquely determines ū():

ū() = (τ)
∫ +∞


–(s)ϕ(s) ds.

Since (τ) exponentially converges to (+∞) as τ → +∞, the exponential estimate of
δ(τ) can be obtained. After determining δ(τ), the first two questions in (.) can be
rewritten as

dδ

dτ
=

ÃuC̃
Ã

Ly(τ)δ + Ãδ + ϕ(τ),

dδ

dτ
= f̃zδ + ϕ(τ),

(.)

where ϕ(τ) = ÃuLy(τ)(δ + ū()) + ϕ(τ), and ϕ(τ) is an exponentially decreasing
function. The homogeneous equation of (.) is the variational equation of (.). There-
fore, by Lemma . in [], (.) has a unique solution which is satisfied with conditions
δ() = , δi(+∞) =  (i = , , ), and which is exponentially decreasing. Thus Lx(τ) is
determined.

As for the unknown function ū(t), the determination of ū(t) is entirely similar to the
case of γ̄ (t). We have already solved its initial value ū(). The fundamental difference
between the system of ū(t) and the system of γ̄ (t) is that the equation of ū(t) is linear,
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while the equation of γ̄ (t) is nonlinear. Hence we can construct an asymptotic solution up
to an arbitrary order.

Next, we will construct the right boundary layer terms. The determination of Q(–)
i x(τc)

is similar to that of Lix(τ). For Q(–)
 x(τc), we have

d
dτc

Q(–)
 z = Â

(
γ̄ (σ ) + Q(–)

 u(τc), θ (),σ
)
Q(–)

 y(τc),

d
dτc

Q(–)
 y = f̂

(
ᾱ(σ ) + Q(–)

 z(τc),ρ(),σ
)

– f̌
(
ᾱ(σ ),ρ(),σ

)
, (.)

d
dτc

Q(–)
 u = Ĉ

(
γ̄ (σ ) + Q(–)

 u(τc), θ (),σ
)
Q(–)

 y(τc),

and the initial and boundary value conditions

Q(–)
 z() = p – ᾱ(σ ), Q(–)

 x(–∞) = , (.)

where p is an undetermined parameter. The difference between (.) and (.) is that
γ̄ (σ ) in (.) is a known quantity, while γ̄ () in (.) is unknown.

From (.), we obtain

dQ(–)
 u

dQ(–)
 z

=
Ĉ(γ̄ (σ ) + Lu(τc), θ (σ ),σ )
Â(γ̄ (σ ) + Lu(τc), θ (σ ),σ )

. (.)

Integrating the above formula after separating the variable and using the implicit function
theorem, one can claim that the system (.) has a solution. Let us denote by

Q(–)
 u = Û

(
γ̄ (σ ), Q(–)

 z
)

(.)

the solution of (.) satisfying the condition Q(–)
 u =  for Q(–)

 z = , namely Û(γ̄ (σ ),
) = .

Then substituting (.) into the first two equations of (.), we get

d
dτc

Q(–)
 z = Â

(
γ̄ (σ ) + Û

(
γ̄ (σ ), Q(–)

 z
)
, θ (),σ

)
Q(–)

 y(τc),

d
dτc

Q(–)
 y = f̂

(
ᾱ(σ ) + Q(–)

 z(τc),ρ(),σ
)

– f̌
(
ᾱ(σ ),ρ(),σ

)
.

(.)

From this we obtain the separate equation of the saddle point

L: Q(–)
 y(τc) =

(

∫ Q(–)

 z



f̂ (ᾱ(σ ) + ξ ,ρ(),σ ) – f̌ (ᾱ(σ ),ρ(),σ )
Â(γ̄ (σ ) + Û(γ̄ (σ ), ξ ), θ (),σ )

dξ

) 


. (.)

Equations (.) and (.) give an analytic expression of the one-dimensional manifold

̄, which is similar to that for the manifold 
̄. Therefore we require that the following
condition is established.

(H) Suppose that Q(–)
 z() ∩ 
̄ �= ∅.
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Substituting Q(–)
 z() into (.) and (.), we get the initial values Q(–)

 u() and Q(–)
 y(),

and these initial values are related to the unknown parameter p.
For Q(–)

 z(τc), we have

d
dτc

Q(–)
 z = ÂQ(–)

 y(τC) + Âu
(
ū(σ ) + Q(–)

 u(τc)
)
Q(–)

 y(τc) + ψ(τc),

d
dτc

Q(–)
 y = f̂zQ(–)

 z(τc) + ψ(τc), (.)

d
dτc

Q(–)
 u = ĈQ(–)

 y(τc) + Ĉu
(
ū(σ ) + Q(–)

 u(τc)
)
Q(–)

 y(τc) + ψ(τc),

where

ψ(τc) = Âȳ(σ + μτc) +
[
Âuγ̄

′(σ )τc + Âθ θ
′(σ )τc + Âtτc

]
Q(–)

 y(τc)

– Ǎȳ(σ + μτc) + (B̂ – B̌),

ψ(τc) = f̂zᾱ
′(σ )τc + f̂ρρ ′(σ )τc + f̂tτc,

ψ(τc) = Ĉȳ(σ + μτc) +
[
Ĉuγ̄

′(σ )τc + Ĉθ θ
′(σ )τc + Ĉtτc

]
Q(–)

 y(τc)

– Čȳ(σ + μτc) + (D̂ – Ď),

here Ǎ, B̌, Č, Ď take values at the point (γ̄ (σ ), θ (),σ ), Â, Âu, Âθ , Ât , B̂, Ĉ, Ĉu, Ĉθ , Ĉt ,
D̂ take values at the point (γ̄ (σ ) + Q(–)

 u(τc), θ (),σ ), and f̂z , f̂ρ , f̂t take values at the point
(ᾱ(σ ) + Q(–)

 z(τc),ρ(),σ ). The initial and boundary conditions of Q(–)
 z(τc) are

Q(–)
 z() = p – z̄(σ ), Q(–)

 x(–∞) = . (.)

Analogously to the determination of Lx(τ), performing the diagonalization transform,
Q(–)

 z = δ, Q(–)
 y = δ, Q(–)

 u = δ + δĈ
Â

. We obtain from (.) the system

dδ

dτc
=

ÂuĈ
Â

Q(–)
 y(τc)δ + Âδ + ÂuQ(–)

 y(τc)
(
δ + ū(σ )

)
+ ψ(τc),

dδ

dτc
= f̂zδ + ψ(τc), (.)

dδ

dτc
=

(
Ĉu –

ĈÂu

Â

)
Q(–)

 y(τc)
(
δ + ū(σ )

)
+

(
ϕ(τc) –

Ĉ
Â

ϕ(τc)
)

,

with the initial and boundary value conditions

δ() = p, δ() = Q(–)
 u() –

pĈ
Â

, δi(–∞) =  (i = , , ).

Under the initial and boundary value conditions, the solution of the third equation
of (.) is δ(τc) = Q(–)

 u() – pĈ
Â

+
∫ τc

 ̂(τc)̂–(s)ψ(s) ds, where ψ(τc) = ψ(τc) –
ψ(τc)Ĉ

Â
, ̂(τc) is the fundamental matrix of the corresponding homogeneous equation with

() = Ek .
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The condition δ(+∞) =  uniquely determines Q(–)
 u():

Q(–)
 u() =

pĈ
Â

– ̂(+∞)
∫ +∞


̂–(s)ψ(s) ds.

After computing δ(τc), we transform the expression for the first two equations of (.)

dδ

dτc
=

ÂuĈ
Â

Q(–)
 y(τc)δ + Âδ + ψ(τc),

dδ

dτc
= f̂zδ + ψ(τc),

(.)

where ϕ(τc) = ÂuQ(–)
 y(τc)(δ + ū(σ )) +ψ(τc). The homogeneous equation of (.) is the

variational equation of (.). Therefore, by Lemma . in [], (.) has a unique solution
which is satisfied with the conditions δ() = p and δi(–∞) =  (i = , , ). It should be
noted that Q(–)

 x(τc) is related to p, and we will use the continuous condition to determine
pk (k ≥ ).

2.2 The construction of asymptotic solutions on the interval [σ , T]
By analogy with the regular part on the interval [,σ ], one can get the degenerate problem

A
( ¯̄u(t), γ̄ (t), t

) ¯̄y(t) = ,

f
( ¯̄z(t), ᾱ(t), t

)
= , (.)

C
( ¯̄u(t), γ̄ (t), t

) ¯̄y(t) = .

Clearly, the solution of (.) is

¯̄z(t) = ¯̄α(t), ¯̄y(t) = , ¯̄u(t) = ¯̄γ (t), (.)

where ¯̄γ (t) is an arbitrary k-dimensional vector function.
Now we consider the left boundary system

d
dτc

Q(+)
 z = ˜̃A( ¯̄γ (σ ) + Q(+)

 u(τc), γ̄ (σ ) + Lu,σ
)
Q(+)

 y(τc),

d
dτc

Q(+)
 y = ˜̃f ( ¯̄α(σ ) + Q(+)

 z(τc), ᾱ(σ ) + Lz,σ
)

– ¯̄f ( ¯̄α(σ ), ᾱ(σ ),σ
)
, (.)

d
dτc

Q(+)
 u = ˜̃C( ¯̄γ (σ ) + Q(+)

 u(τc), γ̄ (σ ) + Lu,σ
)
Q(+)

 y(τc),

and the initial and boundary conditions

Q(+)
 z() = p – ¯̄α(σ ), Q(+)

 x(–∞) = . (.)

Note that p and ¯̄γ () in (.)-(.) are both unknown and the initial value of Q(+)
 y(τc)

is arbitrary.
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We first consider the stability manifold ¯̄
. From (.), we have

dQ(+)
 u

dQ(+)
 z

=
˜̃C( ¯̄γ (σ ) + Q(+)

 u(τc), γ̄ (σ ) + Lu,σ )
˜̃A( ¯̄γ (σ ) + Q(+)

 u(τc), γ̄ (σ ) + Lu,σ )
. (.)

Similarly, we denote the solution of (.) by

Q(+)
 u = ¯̄U

( ¯̄γ (σ ), Q(+)
 z

)
, (.)

satisfying the condition Q(+)
 u =  for Q(+)

 z = , namely ¯̄U( ¯̄γ (σ ), ) = .
By assumption (H′

), one can claim that there exists a unique solution in a certain neigh-
borhood of the point Q(+)

 z = . Then substituting (.) into (.), we get

dQ(+)
 z

dτc
= ˜̃A( ¯̄γ (σ ) + ¯̄U

( ¯̄γ (σ ), Q(+)
 z

)
, γ̄ (σ ) + Lu,σ

)
Q(+)

 y(τc),

dQ(+)
 y

dτc
= ˜̃f ( ¯̄α(σ ) + Q(+)

 z(τc), ᾱ(σ ) + Lz,σ
)

– ¯̄f ( ¯̄α(σ ), ᾱ(σ ),σ
)
.

(.)

The equilibrium point (, ) on the phase plane (Q(+)
 z, Q(+)

 y) is also a saddle point. Inte-
grating (.), we can get a separate equation for the saddle point,

L: Q(+)
 y(τc) = –

(

∫ Q(+)

 z



˜̃f ( ¯̄α(σ ) + ξ , ᾱ(σ ) + Lz,σ ) – ¯̄f ( ¯̄α(σ ), ᾱ(σ ),σ )
˜̃A( ¯̄γ (σ ) + ¯̄U( ¯̄γ (σ ), ξ ), γ̄ (σ ) + Lu,σ )

dξ

) 


. (.)

Equations (.) and (.) give an analytic representation of the one-dimensional mani-
fold 
̃. In order to make sure (.) has a solution, we need the condition that follows:

(H) Suppose that Q(+)
 z() ∩ 
̃ �= .

Putting (.) into (.), we have

Q(+)
 u() = ¯̄U

( ¯̄γ (σ ), p – ¯̄α(σ )
)
, (.)

which represents a system of k scalar equations in the k unknown components of the
vector ¯̄γ (σ ).

(H) Suppose that (.) has a solution ¯̄γ (σ ) = ¯̄γ .

Here ¯̄γ  is related to p, namely ¯̄γ  = ¯̄γ (p, ¯̄α(σ )). Q(+)
 x(τc) can be determined in the

same manner as Lx(τ). Q(+)
 x(τc) is also related to p. For ¯̄γ (t), we only know its initial

value γ̄ . The determination of ¯̄γ (t) should be in the next step.
For ¯̄x(t), we have

¯̄A( ¯̄γ (t), γ̄ (t), t
) ¯̄y(t) + ¯̄B( ¯̄γ (t), γ̄ (t), t

)
= ¯̄α′(t),

fz
( ¯̄α(t), ᾱ(t), t

) ¯̄z(t) = ,

¯̄C( ¯̄γ (t), γ̄ (t), t
) ¯̄y(t) + ¯̄D( ¯̄γ (t), γ̄ (t), t

)
= γ̄ ′(t),
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whose solution is

¯̄z(t) = , ¯̄y(t) =
¯̄α′(t) – ¯̄B

¯̄A
,

d ¯̄γ
dt

=
¯̄C( ¯̄α′(t) – ¯̄B)

¯̄A
+ ¯̄D. (.)

By the existence of solution for the initial value problem, (.) together with the initial
condition ¯̄γ (σ ) = ¯̄γ  has a solution ¯̄γ = ¯̄γ (t) for σ ≤ t ≤ T . Therefore ¯̄x(t) can be com-
pletely determined. For ¯̄x(t), the determination of it is similar to that of x̄(t). Equation
(.) has only determined ¯̄z(t) and ¯̄y(t), while ¯̄u(t) is yet unknown. We need use the
first approximation of the left boundary term to determine ¯̄u(t).

For Q(+)
 (τc), we obtain

d
dτc

Q(+)
 z = ˜̃A( ¯̄γ (σ ) + Q(+)

 u(τc), γ̄ (σ ) + Lu(τc),σ
)
Q(+)

 y(τc)

+ ˜̃Au
( ¯̄u(σ ) + Q(+)

 u(τc)
)
Q(+)

 y(τc) + ϕ̃(τc),

d
dτc

Q(+)
 y = ˜̃fzQ(+)

 z(τc) + ϕ̃(τc), (.)

d
dτc

Q(+)
 u = ˜̃C( ¯̄γ () + Q(+)

 u(τc), γ̄ (σ ),σ
)
Q(+)

 y(τc)

+ ˜̃Cu
( ¯̄u() + Q(+)

 u(τc)
)
Q(+)

 y(τc) + ϕ̃(τc),

where the expression of ϕ̃i(τc) (i = , , ) is similar to that of ϕi(τc) (i = , , ). The initial
and boundary conditions of Q(+)

 x(τc) are

Q(+)
 z() = p – ¯̄z(σ ), Q(+)

 x(+∞) = . (.)

Similar to Lx(τ), we introduce the diagonalization transform Q(+)
 z = δ̃, Q(+)

 y = δ̃,
Q(+)

 u = δ̃ + δ̃
˜̃C

˜̃A
. The system (.) takes the form

dδ̃

dτc
=

˜̃Au
˜̃C

˜̃A
Q(+)

 y(τc)δ̃ + ˜̃Aδ̃ + ˜̃AuQ(+)
 y(τc)

(
δ̃ + ¯̄u(σ )

)
+ ϕ̃(τc),

dδ̃

dτc
= ˜̃fzδ̃ + ϕ̃(τc), (.)

dδ̃

dτc
=

(
˜̃Cu –

˜̃C ˜̃Au

˜̃A

)
Q(+)

 y(τc)
(
δ̃ + ¯̄u(σ )

)
+

(
ϕ̃(τc) –

˜̃C
˜̃A
ϕ̃(τc)

)
,

with the initial and boundary value conditions

δ̃() = p, δ̃() = Q(+)
 u() –

p
˜̃C

˜̃A
, δ̃i(+∞) =  (i = , , ).

Then the solution of the third equation of (.) is

δ̃(τc) = Q(+)
 u() –

p
˜̃C

˜̃A
+

∫ τc


̃(τc)̃–(s)ϕ̃(s) ds,
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where ϕ̃(τc) = ϕ̃(τc) – ϕ̃(τc) ˜̃C
˜̃A

, ̃(τc) is the fundamental solution matrix of the correspond-

ing homogeneous equations with ̃() = Ek .
The condition δ̃(–∞) =  uniquely determines Q(+)

 u():

Q(+)
 u() =

p
˜̃C

˜̃A
– ̃(–∞)

∫ –∞


̃–(s)ϕ̃(s) ds.

After determining δ̃(τ), the first two equations of (.) can be rewritten as

dδ̃

dτc
=

˜̃Au
˜̃C

˜̃A
Q(+)

 y(τc)δ̃ + ˜̃Aδ̃ + ϕ̃(τc),

dδ̃

dτc
= ˜̃fzδ̃ + ϕ̃(τc).

(.)

The homogeneous equations of (.) are the variational equations of (.). Thus (.)
has a unique solution, which satisfies the conditions δ̃() = p, δ̃i(+∞) = , and which
meets the exponential decay estimation. Hence Q(+)

 x(τc) is completely determined. As for
¯̄u(t), we have obtained its initial value ¯̄u(σ ). The determination of ¯̄u(t) is in the next step,
which is completely similar to that of ¯̄γ (t). Then we will apply the continuity condition to
solve pk (k ≥ ).

By means of the continuous property of solution, we obtain, in view of (.),

μ: ȳ(σ ) + Q(–)
 y() = ¯̄y(σ ) + Q(+)

 y(),

μ: ȳ(σ ) + Q(–)
 y() = ¯̄y(σ ) + Q(+)

 y(),

. . . , (.)

μk : ȳk(σ ) + Q(–)
k y() = ¯̄yk(σ ) + Q(+)

k y(),

. . . .

From the first relation of (.), we get an equation involving p,

M(p) : = –
(


∫ p–ᾱ(σ )



f̂ (ᾱ(σ ) + ξ ,ρ(),σ ) – f̌ (ᾱ(σ ),ρ(),σ )
Â(γ̄ (σ ) + Û(γ̄ (σ ), ξ ), θ (),σ )

dξ

) 


–
(


∫ p– ¯̄α(σ )



˜̃f ( ¯̄α(σ ) + ξ , ᾱ(σ ) + Lz,σ ) – ¯̄f ( ¯̄α(σ ), ᾱ(σ ),σ )
˜̃A( ¯̄γ (p, ¯̄α(σ )) + ¯̄U( ¯̄γ (p, ¯̄α(σ )), ξ ), γ̄ (σ ) + Lu,σ )

dξ

) 


= . (.)

(H) Suppose that the equation M(p) =  has a solution and dM
dp |p=p �= .

Similarly, by the kth continuous condition, pk (k ≥ ) can be solved in turn. Thus,
Q(+)x(τc) is determined. The solvable method of Rx(τ) is analogous to that of Q(–)x(τc)
and it is omitted here.

3 The existence of a solution and the estimate of the remainder term
We first introduce a curve L in the space of the variables (x, t). The curve L is composed of
the following six pieces: L = {(x, t) : x̄()+Lx(τ), τ ≥ , t = }, L = {(x, t) : x̄(t),  ≤ t ≤
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σ }, L = {(x, t) : x̄(σ ) + Q(–)
 x(τc), τc ≤ , t = σ }, L = {(x, t) : ¯̄x(σ ) + Q(+)

 x(τc), τc ≥ , t = σ },
L = {(x, t) : ¯̄x(t),σ ≤ t ≤ T}, and L = {(x, t) : ¯̄x(T) + Rx(τ), τ ≤ , t = T}. We denote the
projection of L onto the space of the variables (x, t) by L̃. Then we take the domain G(u, t)
in the condition H to be an arbitrary δ-tube of L̃.

(H) Suppose that the functions A, B, C, and D have continuous partial derivatives with
respect to each argument up to order (n + ) inclusive in some δ-tube of L̃ and Afz > .

Denote the kth partial sum of the series (.) by

Xk(t,μ) =

⎧
⎨

⎩

∑k
i= μi{x̄i(t) + Lix(τ) + Q(–)

i x(τc)},  ≤ t ≤ σ ,
∑k

i= μi{¯̄xi(t) + Q(+)
i x(τc) + Rx(τ)}, σ ≤ t ≤ T .

(.)

Theorem Suppose that (H)-(H) hold. Then there exist positive constants μ and c such
that for  < μ ≤ μ there exists a unique solution x(t,μ) of the problem (.)-(.) lying in
a cδ-tube of L. Moreover, the following asymptotic expansion holds:

∥
∥x(t,μ) – Xn(t,μ)

∥
∥ ≤ cμn+,  ≤ t ≤ T . (.)

Proof Let ζ = z – Zn+, η = y – Yn+, w = u – Un+, where (z y u) is an exact solution of the
problem (.)-(.), and (Zn+ Yn+ Un+) is partial sum of (.). Substituting (Zn+ Yn+ Un+)
into (.)-(.) and separating the linear part of the zeroth approximation, we obtain for
(ζ η w) the boundary value problem on the intervals [,σ ] and [σ , T], respectively, namely,

μ
dζ

dt
= A

(
Ū, θ (t – σ ), t

)
η + Aμ

(
Ū, θ (t – σ ), t

)
w + G(η, w, t,μ), (.)

μ
dη

dt
= fμ

(
Z̄,ρ(t – σ ), t

)
ζ + G(ζ , t,μ), (.)

μ
dw
dt

= C
(
Ū, θ (t – σ ), t

)
η + Cμ

(
Ū, θ (t – σ ), t

)
w + G(η, w, t,μ) (.)

and

μ
dζ

dt
= A( ¯̄U, Ū, t)η + Aμ( ¯̄U, Ū, t)w + G(η, w, t,μ), (.)

μ
dη

dt
= fμ( ¯̄Z, Z̄, t)ζ + G(ζ , t,μ), (.)

μ
dw
dt

= C( ¯̄U, Ū, t)η + Cμ( ¯̄U, Ū, t)w + G(η, w, t,μ), (.)

where we have the functions

G(η, w, t,μ) = A
(
Ūn+ + w, θ (t – σ ), t

)
(Yn+ + η) + μB

(
Ūn+ + w, θ (t – σ ), t

)

– μ
dUn+

dt
– A

(
Ū, θ (t – σ ), t

)
η – Aμ

(
Ū, θ (t – σ ), t

)
w,

G(ζ , t,μ) = f
(
Z̄n+ + ζ ,ρ(t – σ ), t

)
– fμ

(
Z̄,ρ(t – σ ), t

)
ζ – μ

dZn+

dt
,

Gi(η, w, t,μ) (i = , , , ) and Gj(ζ , t,μ) (j = , ), which we define having the following
two important properties:
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. Gi(, , t,μ) = O(μn+), Gj(, t,μ) = O(μn+);
. Gi(η, w, t,μ) is a contraction operator with contraction coefficient of order O(μ) for η

and w of order O(μ); Gj(ζ , t,μ) is a contraction operator with contraction coefficient
of order O(μ) for ζ of order O(μ).

We consider the problem on the interval [,σ ]. For the subsequent analysis, we need to
do some deformations on G and G. We have the following identical equations:

A
(
Ūn+ + w, θ (t – σ ), t

) ≡ A
(
Ūn+, θ (t – σ ), t

)
+ Aμ

(
Ūn+, θ (t – σ ), t

)
w

+ q(w, t,μ),

f
(
Z̄n+ + ζ ,ρ(t – σ ), t

) ≡ f
(
Z̄n+,ρ(t – σ ), t

)
+ fμ

(
Z̄n+,ρ(t – σ ), t

)
ζ

+ q(ζ , t,μ),

where q(w, t,μ), q(ζ , t,μ) are contraction operators with contraction coefficient of order
O(μ) for w and ζ of order O(μ), and q,(, t,μ) = . As C(Ūn+ + w, θ (t – σ ), t) is expressed
in an analog form (corresponding to q(w, t,μ) there is a contraction operator which we
denote by q(w, t,μ)). In the same way, after doing some deformations on B(Ūn+ + w, θ (t –
σ ), t) and D(Ūn+ + w, θ (t – σ ), t), the functions Gi (i = , ) and G can be written in the
form

Gi(η, w, t,μ) = μai(t,μ)η + μbi(t,μ)w + ci(t,μ)ηw

+ qi(w, t,μ)Ȳ(t, u) + Qi(η, w, t,μ),

G(ζ , t,μ) = μa(t,μ)ζ + q(ζ , t,μ) + Q(ζ , t,μ),

where ai, bi and ci (i = , , ) are certain bounded functions or matrices, Qi(η, w, t,μ) are
contraction operators with contraction coefficient of order O(μ) for η and w of order O(μ),
and Qi(, , t,μ) = O(μn+). For brevity, here and in what follows, a function or matrix is
represented by the symbol ω.

Let w = λ + C(Ū,θ (t–σ ),t)
A(Ū,θ (t–σ ),t) ζ . After exchanging w of (.)-(.) into λ, we have

μ
dζ

dt
=

Aμ(Ū, θ (t – σ ), t)C(Ū, θ (t – σ ), t)
A(Ū, θ (t – σ ), t)

ζ + A
(
Ū, θ (t – σ ), t

)
η

+
(

ωȲ(t,μ)λ + G

(
η,λ +

C(Ū, θ (t – σ ), t)
A(Ū, θ (t – σ ), t)

ζ , t,μ
))

, (.)

μ
dη

dt
= fμ

(
Z̄,ρ(t – σ ), t

)
ζ + G(ζ , t,μ), (.)

μ
dλ

dt
= h(t,μ)λ +

(
G(λ,η, ζ , t,μ) + q(λ, ζ , t,μ)Ȳ(t,μ) + Q(λ,η, ζ , t,μ)

)
, (.)

where

h(t,μ) = O
(

μ + exp

(
–σt
μ

)
+ exp

(
–σ(σ – t)

μ

))
, (.)

G(λ,η, ζ , t,μ) = μωη + μωζ + ωλη + ωηζ , (.)

q(λ, ζ , t,μ) = –
C(Ū, θ (t – σ ), t)
A(Ū, θ (t – σ ), t)

q

(
λ +

C(Ū, θ (t – σ ), t)
A(Ū, θ (t – σ ), t)

ζ , t,μ
)
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+ q

(
λ +

C(Ū, θ (t – σ ), t)
A(Ū, θ (t – σ ), t)

ζ , t,μ
)

, (.)

Q(λ,η, ζ , t,μ) = –
C(Ū, θ (t – σ ), t)
A(Ū, θ (t – σ ), t)

Q

(
η,λ +

C(Ū, θ (t – σ ), t)
A(Ū, θ (t – σ ), t)

ζ , t,μ
)

+ Q

(
η,λ +

C(Ū, θ (t – σ ), t)
A(Ū, θ (t – σ ), t)

ζ , t,μ
)

. (.)

The operator q(λ, ζ , t,μ) is a contraction with a contraction coefficient of order O(μ) for
λ and ζ of order O(μ), and q(, , t,μ) = ; Q(λ,η, ζ , t,μ) is for contraction operators with
contraction coefficient of order O(μ) for λ, η and ζ of order O(μ), and Q(, , , t,μ) =
O(μn+).

We will consider G(ζ , t,μ) and the right-hand parentheses of (.) and (.) as non-
homogeneous terms and write them into the equivalent integral equations. Let us denote
the Green’s matrix of (.)-(.) by γ (t, s,μ). Under the boundary condition ζ (,μ) =
ζ (σ ,μ) = , γ is satisfied with the estimate γ (t, s,μ) = O(exp( –σ|t–s|

μ
)). By the conditions

ζ (,μ) = O(μn+) and ζ (σ ,μ) = O(μn+), the corresponding homogeneous equation has a
solution which has the same order of smallness as the boundary value. Therefore, replac-
ing (.)-(.) by the integral equation, we have

(
ζ (t,μ)
η(t,μ)

)

= O
(
μn+) +

∫ σ


μ–γ (t, s,μ)

(
ωȲ(s,μ)λ(s,μ) + G

G

)

ds

=

(
S(λ,η, ζ , t,μ)
S(λ,η, ζ , t,μ)

)

. (.)

Denote the fundamental solution matrix of the homogeneous equations of (.) by
H(t, s,μ). From (.), one can claim that H(t, s,μ) is bounded. Clearly, the initial value
condition for λ(t,μ) is of the same type as that for w(t,μ), that is, λ(,μ) = O(μn+). There-
fore, (.) can be rewritten as the integral equation

λ(t,μ) = O
(
μn+) + μ–

∫ t


H(t, s,μ)

(
G(λ,η, ζ , s,μ) + q(λ, ζ , s,μ)Ȳ(t,μ)

+ Q(λ,η, ζ , t,μ)
)

ds. (.)

By virtue of the properties of Q, R(λ,η, ζ , t,μ) ≡ μ– ∫ t
 H(t, s,μ)Q ds is a contraction

with contraction coefficient of order O(μ) for λ, η, and ζ of order O(μ); moreover,
R(, , , t,μ) = O(μ). Since

Ȳ(t,μ) = O
(

exp

(
–σt
μ

)
+ exp

(
–σ(σ – t)

μ

))
,

and then
∫ t


H(t, s,μ)Ȳ(t,μ) =

∫ t


O

(
exp

(
–σt
μ

)
+ exp

(
–σ(σ – t)

μ

))
= O(μ),

the operator

R(λ,η, ζ , t,μ) ≡ μ–
∫ t


H(t, s,μ)q(λ, ζ , s,μ)Ȳ(s,μ) ds
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has the same properties as R(λ,η, ζ , t,μ). Let R(λ,η, ζ , t,μ) = R + R + O(μn+). Replacing
ζ and η in G by (.), (.) can be rewritten as

λ(t,μ) =
∫ t


H(t, s,μ)

(
ωS + ωS +

ω

μ
λS +

ω

μ
SS

)
ds + R(λ,η, ζ , t,μ). (.)

Taking into account the estimate of the Green’s function, namely,

γ (t, s,μ) = O
(

exp

(
–σ|t – s|

μ

))
,

the estimate of Ȳ(t,μ), and

∫ t



∫ σ


μ– exp

(
–σ|s – p|

μ

)(
exp

(
–σp

μ

)
+ exp

(
–σ(σ – p)

μ

))
dp ds = O(μ),

it is not difficult to prove that the first term in the right-hand of (.) is a contraction
operator of the same type as the second term R(λ,η, ζ , t,μ). Then we obtain the following
expression for λ(t,μ):

λ(t,μ) = T(λ,η, ζ , t,μ), (.)

where T(λ,η, ζ , t,μ) is a contraction operator with contraction coefficient of order O(μ)
for λ, η, and ζ of order O(μ), and T(, , , t,μ) = O(μn+).

Using (.) in (.), we get

ζ (t,μ) = S(λ,η, ζ , t,μ) ≡ T(λ,η, ζ , t,μ), (.)

η(t,μ) = S(λ,η, ζ , t,μ) ≡ T(λ,η, ζ , t,μ), (.)

where the operators T and T are analogous to T.
By applying the method of successive approximation in the system (.)-(.), we can

prove that for sufficiently small μ >  a unique solution exists in a certain cμ-tube of the
curve λ = η = ζ = , and it satisfies estimates λ = O(μn+), η = O(μn+), ζ = O(μn+), and
w = O(μn+). Thus ζ = z – Zn+, η = y – Yn+, and w = u – Un+ are all of order O(μn+).

The proof of the interval [σ , T] is analogous to that of the interval [,σ ]. Thus, we obtain
the inequality (.) because of Xn+(t,μ) – Xn(t,μ) = O(μn+). This finishes the proof. �

4 Example
Consider the following system:

μ
dz
dt

= y(t), μ
dy
dt

= z(t) + z
(

t –



)
,  ≤ t ≤ , (.)

μ
du
dt

= ( )u
(

t –



)
u(t)y(t), (.)

with the initial and boundary conditions

z(t,μ) = –, u(t,μ) =

(




)

, –



≤ t ≤ , (.)
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z(,μ) = . (.)

According to (.)-(.), we have A = , B = D = , f = z(t) + z(t – 
 ), C = ( )u(t –


 )u(t)y(t), ρ(t) = –, θ (t) =

( 



)
and ZT = . It is easy to see that Afz =  > . Then the

condition (H′
) is satisfied.

By calculating, we have

Fx =

⎛

⎜
⎝

  
fz  
 C 

⎞

⎟
⎠ .

Therefore Fx has λ =  as an eigenvalue of multiplicity  as well as two eigenvalues of
opposite signs, namely, λ, = ±. Thus, it is a critical conditionally stable case.

By taking μ = , we obtain the solution of the degenerated problem on the interval [, 
 ],

that is,

ȳ(t) = , z̄(t) = , ū(t) = γ̄ (t),

where γ̄ (t) =
( γ̄ (t)

γ̄ (t)
)

is an arbitrary two-dimensional vector. For Lx(τ) and x̄(t), we have

d
dτ

Lz = Ly(τ),
d

dτ
Ly = Lz(τ), (.)

d
dτ

Lu = 

(
γ̄ () + Lu(τ)
γ̄ () + Lu(τ)

)

Ly(τ), (.)

Lu() =

(




)

–

(
γ̄ ()
γ̄ ()

)

, Lx(+∞) =  (.)

and ȳ(t) = , z̄(t) = , γ̄ ′(t) = . After calculating, we get

Lz(τ) = –Ly(τ) = –e–τ ,

Lu(τ) = –γ̄ () + γ̄ ()eLz(τ),

γ̄ (t) =

(
γ̄ (t)
γ̄ (t)

)

=

(

 e

e

)

.

It is easy to see that Lu(+∞) = . Therefore, Lx(τ) satisfies an exponential decay esti-
mation ‖Lx(τ)‖ ≤ Ce–ετ , for C and ε are positive constants. Then the conditions (H)
and (H) are satisfied.

The system for Q(–)
 x(τc) is

d
dτc

Q(–)
 z = Q(–)

 y(τc),
d

dτc
Q(–)

 y = Q(–)
 z(τc), (.)

d
dτc

Q(–)
 u = 

(
¯̄γ
(




)
+ Q(–)

 u(τc)
)

Q(–)
 y(τc), (.)

Q(–)
 z() = p – , Q(–)

 x(–∞) = . (.)
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Similar to Lx(τ), we obtain

Q(–)
 u(τc) = –γ̄

(



)
+ γ̄

(



)
eLz(τ), Q(–)

 y(τc) =
(


∫ Q(–)

 z(τc)


ξ dξ

) 


.

Considering the problem on the interval [ 
 , ], by the zero approximation equation of the

regular part, we have

¯̄z(t) = –, ¯̄y(t) = , ¯̄u(t) = ¯̄γ (t),

where ¯̄γ (t) =
( ¯̄γ (t)

¯̄γ (t)

)
is an arbitrary two-dimensional vector. For Q(+)

 x(τc), we get

d
dτc

Q(+)
 z = Q(+)

 y(τc),
d

dτc
Q(+)

 y = Q(+)
 z(τc) – e–τc , (.)

d
dτc

Q(+)
 u = ( )

(
γ̄ ( 

 ) + Lu
γ̄ ( 

 ) + Lu

)(
¯̄γ
(




)
+ Q(+)

 u(τc)
)

Q(+)
 y(τc), (.)

Q(+)
 z() = p + , Q(+)

 x(+∞) = . (.)

By calculating, we obtain

Q(+)
 y(τc) = –

(

∫ Q(+)

 z(τc)



(
ξ – e–τc

)
dξ

) 


, (.)

( ¯̄γ ( 
 )

¯̄γ ( 
 )

)

=

(
Q(+)

 u(){e[γ̄ ( 
 )+γ̄ ( 

 )]eLzQ(+)
 z() – }–

Q(+)
 u(){e[γ̄ ( 

 )+γ̄ ( 
 )]eLzQ(+)

 z() – }–

)

. (.)

The equation for ¯̄x(t) is of the form ¯̄y(t) = , ¯̄z(t) = , ¯̄γ ′(t) = , which combined with
the initial condition (.) yields ¯̄γ (t). Then the condition (H) is satisfied.

By the continuous condition of the zero times approximation, ȳ(σ ) + Q(–)
 y() = ¯̄y(σ ) +

Q(+)
 y(), i.e.,

(

∫ p–


ξ dξ

) 


= –
(


∫ p+


(ξ – ) dξ

) 


,

we obtain p = . Let M(p) = (
∫ p–

 ξ dξ ) 
 = –(

∫ p+
 (ξ – ) dξ ) 

 ; we have dM
dp

|p= =
 + [(p + ) – ]– 

 (p + )|p= �= . Then the condition (H) is satisfied.
Bringing p =  into (.) and considering (.)-(.), we have

Q(–)
 y(τc) = Q(–)

 z(τc) = , Q(–)
 u(τc) = . (.)

It is easy to check that Q(–)
 x(τ) satisfies an exponential decay estimation. Then the con-

dition (H) is satisfied.
Next, substituting (.) into the first equation of (.) and in view of the initial value,

we get

Q(+)
 z(τc) = –




·  –  LambertW(–e–τc–) + Lambert W (–e–τc–)

eτc LambertW(–e–τc–)
,
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where the LambertW function satisfies LambertW(x)eLambertW(x) = x, x is a algebraic expres-
sion. Taking account of (.)-(.), Q(+)

 y(τc) and Q(+)
 u(τc) are both determined and obey

an exponential decay estimation. Then the condition (H) is satisfied.
For Rx(τ), we have

d
dτ

Rz = Ry(τ),
d

dτ
Ry = Rz(τ), (.)

d
dτ

Ru = ( )

(
γ̄ () + Q(–)

 u
γ̄ () + Q(–)

 u

)
( ¯̄γ () + Ru(τ)

)
Ry(τ), (.)

Rz() = , Rx(–∞) = , (.)

whose solution is

Rz(τ) = Ry(τ) = eτ ,
(

Ru
Ru

)

=

( ¯̄γ (){e[(γ̄ ()+Q(–)
 u)+γ̄ ()+Q(–)

 u]Rz – }
¯̄γ (){e[(γ̄ ()+Q(–)

 u)+γ̄ ()+Q(–)
 u]Rz – }

)

.

It is not difficult to check that Ru(–∞) = . Therefore, Rx(τ) satisfies an exponential
decay estimation. Hence we construct a zeroth asymptotic solution x = (z y u)T :

x(t,μ) =

⎧
⎨

⎩
x̄(t) + Lx(τ) + Q(–)

 x(τc),  ≤ t ≤ 
 ,

¯̄x(t) + Q(+)
 x(τc) + Rx(τ), 

 ≤ t ≤ ,
(.)

where τ = t
μ

, τc = t– 


μ
, τ = t–

μ
.

5 Summary
Semiconductor device simulation heavily depends on the two-dimensional model of the
space. However, with the complicated design of the electronic devices, the simulation of
the three-dimensional space and the higher dimensional space becomes increasingly im-
portant. Then the question arises: how do we get the results of the n-dimensional case
and extend these results to the three-dimensional case and the lower-dimensional case?
In this paper, by using the boundary layer function method we consider a class of general-
ized high-dimensional delayed semiconductor equations. Under the critical conditionally
stable situation, we obtain the approximate solution expression. In comparison with [–
], the system which we study is more general. We not only increase the dimension of the
system but also add the effect of a lag. The approximate analytic solution that we obtain
can carry out differential and integral operations. Therefore, we can continue to find other
related results. Thus the result is more simple, practical, and reliable.
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