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Abstract
A discrete tuberculosis model with direct progression and treatment of latently
infected individuals is presented. The model does not consider the drug-resistant TB,
and it assumes that latently infected individuals develop the active disease only
because of being endogenous reactive, and a small fraction of infected individuals is
assumed to develop the active disease soon after infection. The global stability of a
disease-free equilibrium, the persistence of system, and the local stability of endemic
equilibrium are discussed. The basic reproductive numbers with different control
measures are determined and analyzed, and we give the critical value of probability of
successful detection and treatment of infectious individuals. If a treatment only of
infectious individuals cannot control TB transmission, the treatment of latent TB
individuals should be carried out, and we give the critical value of the probability of
treatment of infectious individuals. Numerical simulations are done to demonstrate
the complex dynamics of the model.
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1 Introduction
Differential equations and difference equations are widely applied in epidemiological
modeling. They are two typical mathematical approaches for modeling infectious diseases.
Since the theory and method for dynamical studies of differential equations have devel-
oped much more completely than those for difference equations, there are relatively few
difference equations in epidemiological modeling compared with differential equations. In
recent years, there were increasing interest and research results on discrete epidemic mod-
els [–]. The fact that the epidemiological data are usually collected in discrete time units,
such as days, weeks or months, makes the discrete model a natural choice to describe a dis-
ease transmission. The straightforward recurrence relationship of the difference equation
models is easier to understand, which is also a prominent advantage over the differential
equation models. The direct comparison of the model results with the actual data pro-
vides us a fast and simple way to validate the model structure and parameter estimation.
The fact that the discrete models exhibit a richer dynamical behavior than the continu-
ous models brings about more challenging problems for researches, and more interesting
results can be obtained. For example, the simple logistic model, xn+ = rxn( – xn/K), the
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Ricker model xn+ = xner–xn/K [–], and the Hassell model, xn+ = λxn( + axn)–b [] ex-
hibit a rich dynamical behavior.

There have been increasing interest and more studies on the discrete time epidemic
models recently. Various discrete epidemic models have been successfully applied to de-
scribe the infectious disease transmission, such as SARS, tuberculosis, HIV/AIDS [–].
The theoretical study of discrete epidemic models focuses on the computation of the ba-
sic reproduction number [–], the existence and the global stability of the disease-free
equilibrium [, , –], the existence and the local stability of the endemic equilibrium
[, ], and the persistence of the disease [, ]. Attention has also be paid to various
bifurcations of the discrete epidemic models, the equilibrium bifurcation [, , –],
the transcritical bifurcation, the flip bifurcation, the saddle-node bifurcation, the Hopf
bifurcation, and the bifurcation to chaos [–].

There also have been many researches studying mathematical models of the trans-
mission dynamics of TB in human populations. Those researches include slow and fast
progression, a variable latent period, MDR TB, multiple strains, exogenous reinfection,
generalized households, co-infection with HIV, and the control strategy for TB [–].
However, there are a few papers using discrete mathematical models to study the treat-
ment of latent TB as a TB control strategy [, , ]. The treatment of latent tuberculosis
infection is essential to controlling and eliminating TB, because it substantially reduces
the risk from latent TB to active TB cases. In this paper, we use the discrete models with
direct progression and treatment of latently infected individuals to analyze the impact of
the treatment of latently infected individuals on TB transmission.

Our discrete model with treatment of latent TB individuals is presented in the next sec-
tion. The positivity of solutions is also discussed. The global stability of the disease-free
equilibrium and the persistence of the system is discussed in Section . The stability of
endemic equilibrium is proved in Section . The effect of two treatment strategies is stud-
ied in Section . Numerical simulations are done on the basis of the TB infection data
in China to show the effect of treatment strategies. The last section includes concluding
remarks and discussions.

2 The discrete TB model
TB is an airborne infectious disease transmitting from person to person via droplets with
TB bacilli. After being infected, most people become latently infectious, with the bacteria
being alive in the body but inactive. Latently infectious individuals do not have symptoms
and cannot spread the infection to others. Most people are able to fight the infection with
their immune system, but those people with latent infection are at risk of developing the
active disease. Based on these characteristics, there have been many continuous models
to be used to describe TB transmission. Here, we will build the discrete mathematical
model for TB transmission which considers the direct progression, chemoprophylaxis for
the latent individuals, and treatment of the infectious individuals.

The total population is epidemiologically divided into susceptible, latent, and infectious
classes. Let S(t) be the number of susceptible individuals at time t, L(t) be the number of
latent individuals, and I(t) be the number of infectious individuals. N(t) = S(t) + L(t) + I(t)
is the total population size. We assume that individuals recovered by successful treatment
do not acquire immunity, and they will become member of the susceptible compartment.
Hence our model is of SLIS type.
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Susceptible individuals may get infected and enter the latent compartment. The surviv-
ing latent individuals will experience one of the two mutually exclusive events to leave
the latent compartment, naturally progressing into infectious class, or receiving the treat-
ment. These two events happen randomly. The probabilities for receiving the treatment is
m, and  – m is the probabilities for natural progression. Our model framework takes the
following form:

S(t + ) = � + p
(

 –
βI(t)
N(t)

)
S(t) + pkmL(t) + pγ I(t),

L(t + ) = q
pβS(t)I(t)

N(t)
+ p( – α)( – m)L(t) + p( – k)mL(t), ()

I(t + ) = ( – q)
pβS(t)I(t)

N(t)
+ pα( – m)L(t) + p( – γ )I(t),

where � is the recruitment rate into the population, p the survival probability; k is the con-
ditional probability that a latent individual is treated successfully given that the individual
receives the treatment, and it should rely on the capability of finding latent individuals
and budgetary issues. α is the probability that a latent individual becomes an infectious
individual that the natural progression happens; γ the probability that an infectious indi-
vidual recovers successfully;  – βI(t)

N(t) is for the probability of not becoming infected, where
β characterizes the disease transmission probability, satisfying  < β < ; q is the probabil-
ity that the infected ones enter the latent compartment, accordingly,  –q is the probability
that the infected ones enter the infectious compartment by the fast development; all pa-
rameters are positive and less than one.

Based on biological considerations, system () will be studied in the following region:

� =
{

(S, L, I) ∈ R
+

∣∣∣ S ≥ , L ≥ , I ≥ , S + L + I ≤ �

 – p

}
.

In the following, we first discuss the positivity and boundedness of solutions for sys-
tem (). The following theorem holds.

Theorem . The solutions S(t), L(t), and I(t) of system () with initial value S() = S ≥ ,
L() = L ≥ , and I() = I ≥ , respectively, are non-negative for all t ≥ , t ∈ N . For the
system (), the region � is positively invariant and all solutions starting in the � approach,
enter, or stay in �.

Proof Let S() = S ≥ , L() = L ≥ , and I() = I ≥ , by using (), we have

S() = � + p
(

 –
βI

N

)
S + pkmL + pγ I,

L() = q
pβSI

N
+ p( – α)( – m)L + p( – k)mL,

I() = ( – q)
pβSI

N
+ pα( – m)L + p( – γ )I.

Because of  ≤ I(t) ≤ N(t) for any t ≥ , t ∈ N ,  ≤ β ≤ , we know that  – βI
N

≥ . It
implies that S() > . In addition,  < α < ,  < k < , and  < m <  illustrate L() ≥ .
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Furthermore,  < γ <  implies that I() ≥  holds. The recurrent procedure implies that
S(t) > , L(t) ≥ , I(t) ≥  for all t ≥ , t ∈ N . The solutions of () are non-negative.

By using N(t) = S(t) + L(t) + I(t), we know N(t) satisfies

N(t + ) = � + pN(t) or N(t) =
�( – pt)

 – p
+ ptN(). ()

The fact  < p <  and the last equation in () implies that N∗ = �
–p is the unique equilib-

rium of (), and N∗ is globally asymptotically stable, i.e., for any solution N(t) of () with
positive initial value N(), limt→∞ N(t) = N∗ holds. It implies that N(t) is bounded and all
solutions starting in the region � approach, enter or stay in �. �

Using the limiting equations and S(t) = N∗ – L(t) – I(t), we reduce the three dimensional
system () into two dimensional ones:

L(t + ) = q
pβ(N∗ – L(t) – I(t))I(t)

N∗ + p( – α)( – m)L(t) + p( – k)mL(t),

I(t + ) = ( – q)
pβ(N∗ – L(t) – I(t))I(t)

N∗ + pα( – m)L(t) + p( – γ )I(t).
()

In the following, we will study the dynamical behavior of model () since model () exhibits
the same qualitative dynamics as those of system () []. It is clear that the positively
invariant of system () is

� =
{

(L, I) ∈ R
+

∣∣∣ L ≥ , I ≥ , L + I <
�

 – p

}
.

Applying the approach in [] to our model, we can obtain the basic reproductive num-
ber of model ():

R =
( – m)pα × qpβ

( – p( – km) + pα( – m))( – p( – γ ))
+

( – q)pβ

 – p( – γ )
.

The basic reproductive number R is defined mathematically as the spectral radius of the
next generation matrix in []; in fact, each term in R has a clear epidemiological interpre-
tation. /( – p( – γ )) is the average infection period. ( – m)pα/( – p( – km) + pα( – m))
is the proportion of latent individuals that become infectious by natural progression.
pβ/( – p( – γ )) is the average of new cases generated by a typical infectious member
in the entire infection period, where qpβ/( – p( – γ )) is the average of new cases gen-
erated by a typical infectious member who enters the infectious compartment by natural
progression in the entire infection period, ( – q)pβ/( – p( – γ )) is the average of new
cases generated by a typical infectious member who enters the infectious compartment
by direct progression in the entire infection period.

3 The extinction and persistence for the disease
By directly calculating model (), we know there exists the disease-free equilibrium P∗

 =
(L∗

, I∗
) = (, ) when R < , and there is an endemic equilibrium P∗

 = (L∗
 , I∗

 ) when R > ,
where

L∗
 =

qpβI∗


R( – p( – km) + pα( – m))
, I∗

 =
N∗(R – )

R + qpβ

–p(–km)+pα(–m)

.



Cao and Tan Advances in Difference Equations  (2015) 2015:165 Page 5 of 18

In the following, we will use the linearization matrix to discuss the local stability of equi-
librium. The Jacobian matrix of model () at equilibrium P∗ is

J
(
P∗) =

(
– qpβ

N∗ I∗ + p( – α)( – m) + p( – k)m qpβ

N∗ (N∗ – L∗ – I∗)
– (–q)pβ

N∗ I∗ + pα( – m) (–q)pβ

N∗ (N∗ – L∗ – I∗) + p( – γ )

)
.

3.1 The extinction for the disease
Theorem . If R < , then the disease-free equilibrium P∗

 of model () is globally asymp-
totically stable; if R > , then P∗

 is unstable.

Proof When R < , we have P∗ = P∗
, and

J
(
P∗


)

=

(
p( – α)( – m) + p( – k)m qpβ

pα( – m) ( – q)pβ + p( – γ )

)
.

We denote

f (λ) = λ –
(
p( – α)( – m) + p( – k)m + p( – γ ) + ( – q)pβ

)
λ

+
(
p( – α)( – m) + p( – k)m

)(
( – q)pβ + p( – γ )

)
– qpβpα( – m).

It is clear that

f () =
(
 – p( – km) + pα( – m)

)(
 – p( – γ )

)
( – R) > ,

f (–) =  + p( – α)( – m) + p( – k)m + p( – γ ) + ( – q)pβ

+
(
p( – α)( – m) + p( – k)m

)(
( – q)pβ + p( – γ )

)
– qpβpα( – m),

f () =
(
p( – α)( – m) + p( – k)m

)(
( – q)pβ + p( – γ )

)
– qpβpα( – m).

Since R < , we have (–m)pα×qpβ

(–p(–km)+pα(–m))(–p(–γ )) < . Furthermore, we obtain ( – m)pα ×
qpβ < ( – p( – km) + pα( – m))( – p( – γ )). Therefore,

f (–) >  + p( – α)( – m) + p( – k)m + p( – γ ) + ( – q)pβ

+
(
p( – α)( – m) + p( – k)m

)(
( – q)pβ + p( – γ )

)
–

(
 – p( – km) + pα( – m)

)(
 – p( – γ )

)
= ( – q)pβ +

(
p( – α)( – m) + p( – k)m

)
( – q)pβ

+ 
(
p( – α)( – m) + p( – k)m

)
+ p( – γ ) > .

Similarly, R <  implies that (–q)pβ

–p(–γ ) < . We obtain ( – q)pβ <  – p( – γ ). So, we have

 – f () =  –
(
p( – α)( – m) + p( – k)m

)(
( – q)pβ + p( – γ )

)
+ qpβpα( – m)

>  – p( – km)
(
 – p( – γ )

)
+ pα( – m)

(
 – p( – γ )

)
+ pα( – m)( – m)p( – γ ) – p( – km)p( – γ ) + qpβpα( – m)

=  – p( – km) + pα( – m) + qpβpα( – m) > ,
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which illustrates that f () <  as R < . By using of the Jury criterion, we know the disease-
free equilibrium P∗

 is of local stability. If R > , we have f () < . The Jury criterion implies
that the disease-free equilibrium P∗

 is unstable. �

In the following, we use the Lyapunov function to prove the globally asymptotically sta-
bility of P∗

. We define F : [, N∗] × [, N∗] → [, N∗] × [, N∗] by

F(L, I) = p
(

q
β(N∗ – L – I)I

N∗ + ( – α)( – m)L + ( – k)mL,

( – q)
β(N∗ – L – I)I

N∗ + α( – m)L(t) + ( – γ )I
)

.

Obviously, F is the mapping derived by system (), and (, ) is a fixed point of F . The
linear function

V (L, I) =
( – m)pα

( – p( – km) + pα( – m))( – p( – γ ))
L +


 – p( – γ )

I

on [, N∗] × [, N∗] is continuous and positive definite with respect to (, ). Therefore, V
is a Lyapunov function on the domain of F . For any (L, I) ∈ [, N∗] × [, N∗],

�V (L, I) =
( – m)pαqpβ(N∗ – L – I)I

( – p( – km) + pα( – m))( – p( – γ ))N∗

+
( – m)pαp( – α)( – m)L

( – p( – km) + pα( – m))( – p( – γ ))

+
( – m)pαp( – k)mL

( – p( – km) + pα( – m))( – p( – γ ))

+
( – q)pβ(N∗ – L – I)I

( – p( – γ ))N∗ +
pα( – m)L
 – p( – γ )

+
p( – γ )I

 – p( – γ )

–
pα( – m)L

( – p( – km) + pα( – m))( – p( – γ ))
–

I
 – p( – γ )

≤ ( – m)pαqpβI
( – p( – km) + pα( – m))( – p( – γ ))

+
( – m)pα(p( – km) – pα( – m))L

( – p( – km) + pα( – m))( – p( – γ ))
– I +

( – q)pβI
( – p( – γ ))

+
pα( – m)L
 – p( – γ )

–
pα( – m)L

( – p( – km) + pα( – m))( – p( – γ ))

=
( – m)pαqpβI

( – p( – km) + pα( – m))( – p( – γ ))
–

pα( – m)L
 – p( – γ )

– I +
( – q)pβI

( – p( – γ ))
+

pα( – m)L
 – p( – γ )

=
( – m)pαqpβI

( – p( – km) + pα( – m))( – p( – γ ))
+

( – q)pβI
( – p( – γ ))

– I

= (R – )I.

Hence, if R < , then �V (L, I) <  holds for (L, I) ∈ [, N∗] × [, N∗]. It follows from The-
orem . in [] that P∗

 is globally asymptotically stable.
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Figure 1 The global stability of disease-free equilibrium P∗
0 of model (3) as R0 < 1.

We illustrate our theoretical results on disease extinction by numerical simulation. Tak-
ing � = , p = ., q = ., β = ., α = ., m = ., k = ., and γ = ., we
obtain R = . < , and the disease-free equilibrium P∗

 = (, ) is globally asymptoti-
cally stable. The solution curves of the latently infected individuals L(t) and the infectious
individuals I(t) are given in Figure (a) and (b), respectively. The initial values at t =  are
(, ), (, .), and (, ), respectively. We observe that solutions with positive initial
values will converge to the disease-free equilibrium P∗

.

3.2 The persistence for the disease
Theorem . If R > , then the disease will have persistence in the population, i.e., there
exists a positive ε, such that the solution of model () with the initial value L() >  and
I() >  satisfies

lim inf
t→∞

{
L(t), I(t)

}
> ε.

Proof We denote X = �, X = {(L, I) ∈X | L > , I > }, and ∂X = X \X. Let � : X →X ,
�t(x) = φ(t, x) be the solution map of model () with φ(, x) = x, and x = (L(), I()).

Define M = {P∗
}, and

M∂ =
{

(L, I) ∈ ∂X : φ
(
t, (L, I)

) ∈ ∂X,∀t ≥ 
}

.

It is clear that M∂ = {(, )}. Furthermore, there is exactly one fixed point P∗
 = (, )

in M∂ . Because N∗ is globally attractive in ∂X and due to Lemma . in [], we know that
no subset ofM forms a cycle in ∂X. The definition of M∂ implies that M∂ is the maximum
positive invariant set in ∂X, that is, �t(M∂ ) ⊂ M∂ . Therefore,

⋃
(L(),I())∈M∂

= P∗
.

For any solutions (L(t), I(t)) of model () with initial value (L(), I()) ∈ X, we further
claim that

lim sup
t→∞

d
(
�t

(
L(), I()

)
, P∗


)

> ε. ()
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If it is not true, there exists t > , t ∈ N , such that L(t) ≤ ε, I(t) ≤ ε for all t ≥ t, t ∈ N .
Let H(t) = L(t) + I(t), then H(t) ≤ ε, t ≥ t, t ∈ N , and we have

H(t + ) =
pβ(N∗ – H(t))

N∗ I(t) + pH(t) – pkmL(t) – pγ I(t).

Furthermore, we have

H(t + ) = pβI(t) –
pβH(t)I(t)

N∗ + pH(t) – pkmL(t) – pγ I(t)

= pβ
(
H(t) – L(t)

)
–

pβH(t)I(t)
N∗ + pH(t) – pkmL(t) – pγ I(t)

≥ pβH(t) – pβL(t) –
pβH(t)

N∗ + p( – γ )H(t) – pkmL(t)

=
(

pβ + p( – γ ) –
pβH(t)

N∗

)
H(t) – p(β + km)ε

≥
(

pβ + p( – γ ) –
pβε

N∗

)
H(t) – p(β + km)ε, t ≥ t.

It is clear that the perturbed equation

H(t + ) =
(

pβ + p( – γ ) –
pβε

N∗

)
H(t) – p(β + km)ε, t ≥ t, t ∈ N ,

or

H(t) =
(
–p(β + km)ε

) – (pβ + p( – γ ) – pβε

N∗ )t–t

 – (pβ + p( – γ ) – pβε

N∗ )

+
(

pβ + p( – γ ) –
pβε

N∗

)t–t

H(t), t ≥ t, t ∈ N .

R >  implies that pβ + p( – γ ) > , namely, pβ + p( – γ ) – pβε

N∗ >  holds for a small
ε > . Therefore, H(t) → ∞ as t → ∞ and ε → . The comparison principle implies that
H(t) → ∞ as t → ∞ and ε → . In fact, H(t) ≤ ε for all t ≥ t, t ∈ N , a contradiction.
It implies that L(t) + I(t) → ∞, for all t ≥ t, t ∈ N . On the other hand,  ≤ L(t) ≤ ε,
 ≤ I(t) ≤ ε for all t ≥ t, t ∈ N . It implies that L(t) → ∞ and I(t) → ∞ at least established
for all t ≥ t, t ∈ N . There is a contradiction, that is, the conclusion in () holds.

Equation () implies that P∗
 is isolated in X, and W s(P∗

) ∩ X = ∅. In fact, P∗
 is also

isolated in ∂X because N∗ is globally attractive in ∂X. Thus, P∗
 is isolated in X . From

Theorem .. and Remark .. in [], it follows that � is uniformly persistent with re-
spect to (X, ∂X). Furthermore, Theorem .. in [] implies that the solutions of model
() are uniformly persistent with respect to (X, ∂X) when R > . That is, there exists an
ε > , such that

lim inf
t→∞ L(t) > ε > , lim inf

t→∞ I(t) > ε > . �

4 The stability of the endemic equilibrium
Theorem . If R > , then the endemic equilibrium P∗

 of model () is locally asymptoti-
cally stable.
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Proof In the case where P∗ = P∗
 , we have

J
(
P∗


)

=

(
– qpβ

N∗ I∗
 + p( – α)( – m) + p( – k)m qpβ

N∗ (N∗ – L∗
 – I∗

 )
– (–q)pβ

N∗ I∗
 + pα( – m) (–q)pβ

N∗ (N∗ – L∗
 – I∗

 ) + p( – γ )

)
.

We denote

g(λ) = λ –
(

p( – α)( – m) + p( – k)m + p( – γ ) –
qpβ

N∗ I∗


+
( – q)pβ

N∗
(
N∗ – L∗

 – I∗

))

λ +
(
p( – α)( – m) + p( – k)m

)
p( – γ )

+
(
p( – α)( – m) + p( – k)m

) ( – q)pβ

N∗
(
N∗ – L∗

 – I∗

)

– p( – γ )
qpβ

N∗ I∗
 – pα

qpβ

N∗
(
N∗ – L∗

 – I∗

)
.

By directly calculating, we obtain

g() = R
L∗

 + I∗


N∗
(
 – p( – α – k)

)(
 – p( – γ )

)
> ,

g(–) =  + 
(
p( – α)( – m) + p( – k)m

)
– ( – m)pα

L∗


I∗


–
(
 +

(
p( – α)( – m) + p( – k)m

)
( – q) + p( – γ )q

– ( – m)pαq
) pβ

N∗ I∗
 ,

g() = p( – km) – pα( – m) –
(
p( – km) – pα( – m)

) ( – q)pβI∗


N∗

– p( – γ )
qpβI∗


N∗ – ( – m)pα

L∗


I∗


+ ( – m)pα
qpβI∗


N∗ .

Rearranging the expression of g(–), we have

g(–) =
aR

 + aR + a

R( – p( – km) + pα( – m))(qpβ + R( – p( – km) + pα( – m)))
,

where

a = 
(
 + p( – km) – pα( – m)

)(
 – p( – km) + pα( – m)

)

–
(
 – p( – km) + pα( – m)

)pβ
(
 + p

(
 – km – α( – m)

)
( – q)

+ p( – γ )q – ( – m)pαq
)

=
(
 – p( – km) + pα( – m)

){ – pβ +  – p( – γ )qpβ

+ p
(
( – α)( – m) + ( – k)m

)(
 – ( – q)pβ

)
+ ( – m)pαqpβ

}
> ,

a = 
(
 + p( – km) – pα( – m)

)(
 – p( – km) + pα( – m)

)
qpβ

– ( – m)pαqpβ
(
 – p( – km) + pα( – m)

)
+

(
 – p( – km) + pα( – m)

)pβ
(
 + p

(
 – km – α( – m)

)
( – q)
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+ p( – γ )q – ( – m)pαq
)
,

a = –( – m)pαqpβ × qpβ < .

a >  implies that the quadratic function curve opens upward. a <  implies that the
quadratic function equation has two real roots, which are positive and negative, respec-
tively. Because of a + a > , we obtain – a

a
< 

 , which implies that the axis of symmetry
of the quadratic function curve is on the left of R = . In addition,

aR
 + aR + a = 

(
 – p( – km) + pα( – m) + qpβ

){(
 + p( – km)

– pα( – m)
)(

 – p( – km) + pα( – m)
)

– ( – m)pαqpβ
}

with R = . Because of  – p( – km) + pα( – m) > ( – m)pαqpβ , and  + p( – km) – pα( –
m) =  + p( – α)( – m) + p( – k)m > , we obtain aR

 + aR + a >  as R = . Therefore,
aR

 + aR + a >  as R > , that is, g(–) > .
Similarly, we have

 – g() =
bR

 + bR + b

R( – p( – km) + pα( – m))(qpβ + R( – p( – km) + pα( – m)))
,

where

b =
(
 – p( – km) + pα( – m)

) +
(
 – p( – km) + pα( – m)

)

× (
p
(
 – km – α( – m)

)
( – q) + p( – γ )q – ( – m)pαq

)
pβ

=
(
 – p( – km) + pα( – m)

){ – p( – km)
(
 – pβ( – q)

)
+ pα( – m)( – pβ) + p( – γ )qpβ

}
> ,

b =
(
 – p( – km) + pα( – m)

)qpβ +
(
 – p( – km) + pα( – m)

)
( – m)pαqpβ

–
(
 – p( – km) + pα( – m)

)(p
(
 – km – α( – m)

)
( – q) + p( – γ )q

– ( – m)pαq
)
pβ ,

b = ( – m)pαqpβ × qpβ > .

b >  implies that the quadratic function curve opens upward. b >  implies that the
quadratic function equation has roots which are of the same sign. Because of b + b > ,
we obtain – b

b
< 

 , which implies that the axis of symmetry of the quadratic function
curve is on the left of R = . In addition, bR

 + bR + b >  as R = . Therefore, we
obtain bR

 + bR + b >  as R > , that is, g() < . The Jury criterion implies that the
endemic equilibrium P∗

 is locally stable as R > . �

The global stability of the endemic equilibrium of () is very difficult, though Theo-
rems . and . established the persistence and local stability as R > . We investigate
the global stability of the endemic equilibrium by numerical simulations. Taking � = ,
p = ., q = ., β = ., α = ., m = ., k = ., and γ = ., we obtain
R = . > . In this case, the numerical simulation shows that the endemic equilibrium
P∗

 = (., .) may be globally asymptotically stable. The solution curves of the
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Figure 2 The global stability of the endemic equilibrium P∗
1 of (3) as R0 > 1.

Figure 3 The chaos when endemic equilibrium P∗
1 loses the global stability.

latently infected individuals L(t) and the infectious individuals I(t) are given in Figure (a)
and (b), respectively. The initial values at t =  are (, ), (, .), and (, .), respec-
tively. We observe that solutions with positive initial values will converge to the endemic
equilibrium P∗

 .
We always assume that the parameter obeys  < β <  in theoretical discussions so as to

guarantee the positivity of the solution of (). In fact, if β > , and β is not large enough,
the numerical simulation shows that solutions of () are still positive, and the endemic
equilibrium P∗

 may lose the global stability and there exists chaos as β increases, which
can lead to increasing R (see Figure ). In Figure , we fix � = , p = ., q = .,
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α = ., m = ., k = ., γ = ., and β ∈ [., .), furthermore,  < R < ..
Figure  illustrates that one only has a disease-free equilibrium as R < , and an endemic
equilibrium exists as  < R < . In addition, the endemic equilibrium loses the global sta-
bility as R > , and exhibits chaotic behavior.

5 Effect of control strategies
In our model, we consider the direct progression to active TB once one is infected, and
both treatment of latently infected individuals and infectious individuals. By directly cal-
culating, we obtain

∂R

∂k
= –

pm × ( – m)pα × qpβ

( – p( – km) + pα( – m))( – p( – γ ))
< ,

∂R

∂m
= –

pα × qpβ( – p( – k))
( – p( – km) + pα( – m))( – p( – γ ))

< .
()

The two equations of () illustrate that the basic reproductive number R decreases as
the proportion of m and the probability k of successful detection and effective treatment of
latently infected individuals. The treatment of latent tuberculosis infection contributes to
slowing down TB transmission because it substantially reduces the risk that TB infection
will progress to TB disease. Therefore, we consider both treatment of the latently infected
individuals and for the infectious individuals. We assume that the word ‘control’ would
mean bringing down the number of infectious TB cases.

To see the effect of these interventions, we need to consider the basic reproduction num-
ber of the model without treatment of the latent and infectious individuals. This is given
by

R =
pα × qpβ

( – p( – α))( – p)
+

( – q)pβ

 – p
.

R <  implies that TB will die out without any treatment. In fact, R >  is the usual case
for the current TB epidemic in many countries. Taking China as an example, large scale
national sampling surveys of TB epidemiology were carried out in , /, ,
and , respectively. The  and  national surveys were more comprehensive
and more information was obtained. The tuberculin skin test was done in those two sam-
pling surveys. The result of those two surveys show that PPD (purified protein derivative)
positive rates in  and  are .% and .%, respectively []. The  national
TB epidemiological survey shows that the prevalence of active TB cases in the population
 years of age and older is  cases per ,, a little lower than the  cases per
, in . The estimated active TB prevalence in the Chinese population in  is
 cases per ,, a little higher than the  cases per , found in  [].
This information indicates that TB infection remains a serious public health challenge in
China.

In China, the population recruitment mainly depends on births. Therefore, we use the
average natural death from - as the natural death rate, namely, p = .. It is
estimated that about %-% of latent TB infection will progress to TB disease []. We
assume that the lifespan of the population is , then the age of the infected individual
may be from  year old to  years old. The individuals may survive  year,  years, . . . ,
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Figure 4 The basic reproductive number R1.

or  years after becoming TB latent. We choose the average survival time to be 
 ≈ .

The estimate of the annual progression rate from latent to infectious is α ∈ [ .
 , .

 ] =
[., .]. We take q = ., and β ∈ [., .] []. The numerical calculation
shows that R >  (see Figure ). In short, we always assume that R >  in this section.

In addition, as m → , the system () reduces to a model in which there is no treat-
ment of latent TB individuals. In this case, every TB infected individual leaves the latent
compartment only by the natural progression and the reproductive number becomes

lim
m→

R =
pα × qpβ

( – p( – α))( – p( – γ ))
+

( – q)pβ

 – p( – γ )
:= R.

We first consider the effect of both treatment of latently infected individuals and for
infectious individuals on control TB transmission. The difference between R and R is

� = R – R

=
m( – p( – k))pαqpβ + pγ ( – p( – km) + pα( – m))pαqpβ

( – p( – α))( – p)( – p( – km) + pα( – m))( – p( – γ ))

+
pγ ( – q)pβ

( – p)( – p( – γ ))
.

It easy to see that � > . It implies that both the treatment of latently infected individuals
and for infectious individuals can lead to a decrease of the basic reproductive number.
That is, treatment is effective at the population level so as to slow down the spread of TB,
while having treatment of the individuals in the latent and the infectious compartment.

5.1 Effect of treatment of the infectious individuals
Because the latently TB infected individuals cannot infect others, one does not take to
treatment of latently infected individuals in developing and undeveloped countries so as to
save expense. Therefore, we only consider treatment of the TB infectious individuals. We
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will give the critical value γ ∗ of the probability γ of successful detection and treatment of
infectious individuals so that the basic reproductive number of the model is less than one.

When m =  and γ >  (with only treatment for the infectious individuals), the basic
reproductive number is R. With the application of only treatment of the population in
the infectious compartment, we can obtain the difference between R and R:

� = R – R =
pγ

( – p)( – p( – γ ))

(
pα × qpβ

 – p( – α)
+ ( – q)pβ

)
> . ()

� >  implies that the treatment is effective at the population level so as to slow down the
spread of TB, while having treatment of the individuals in the infectious compartment.

Using (), we can calculate the critical values γ ∗ of the disease control parameters γ to
have R < . Namely,

R –
pγ

( – p)( – p( – γ ))

(
pα × qpβ

 – p( – α)
+ ( – q)pβ

)
< . ()

Rearranging (), we can obtain

γ > γ ∗ :=
( – p( – α))( – p)(R – )

p( – p)( – p( – α))
=

(

p

– 
)

(R – ). ()

Equation () shows that the basic reproductive number R < , while the successful de-
tection and effective treatment probability γ of infectious individuals is more than γ ∗.
However, γ < γ ∗ will lead to R > , which implies that successful detection and effective
treatment of infectious individuals is not enough, TB transmission will be in persistence.
Therefore, we should strengthen the successful detection and effective treatment of infec-
tious individuals so as to eradicate TB transmission in the population. Taking the same
parameter values in Figure , the function of the basic reproductive number, R, is shown
in Figure  with m =  and for γ = ., γ = ., and γ = ., respectively.

Figure 5 The basic reproductive number R2.
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5.2 Effect of treatment of the latent individuals
When the probability γ of successful detection and treatment of infectious individuals
does not reach the critical value γ ∗, we also take the treatment of latently TB individuals,
and give the critical value m∗ of the probability m of the treatment of latently individuals,
so that R < .

In this case, we assume that γ < γ ∗, or R > . Similarly, we can obtain the difference
between R and R:

� = R – R =
m( – p( – k))pαqpβ

( – p( – α))( – p( – km) + pα( – m))( – p( – γ ))
> . ()

� >  implies that the treatment is effective at the population level so as to slow down
the spread of the disease, while having treatment of the individuals in the latent and the
infectious compartment.

Using (), we can calculate the critical values m∗ of the disease control parameters m to
have R < . Namely,

R –
m( – p( – k))pαqpβ

( – p( – α))( – p( – km) + pα( – m))( – p( – γ ))
< . ()

Rearranging (), we can obtain

m > m∗ :=
pαqpβ + ( – p( – α))(( – q)pβ – ( – p( – γ )))

pαqpβ + (p( – k) – p( – α))(( – q)pβ – ( – p( – γ )))
. ()

Because of R > , we obtain pαqpβ > ( – p( – α))( – p( – γ ) – ( – q)pβ). It is clear
that ( – p( – α))( – p( – γ ) – ( – q)pβ) > (p( – k) – p( – α))(( – q)pβ – ( – p( – γ ))),
which implies m∗ > . By (), we know that if the effective treatment of the individuals in
the infectious compartment satisfies  < γ < γ ∗, we should strengthen control measures
so as to have R < . Therefore, we also take the treatment of latent TB individuals, and
the probability for receiving the treatment m satisfies m > m∗.

Taking the same parameter values in Figure , by calculating, we can obtain γ ∗ =
( 

p – )(R – ) ∈ [., .], furthermore, we fix γ = ., satisfying  < γ < γ ∗. In
addition, taking k = ., we use the same parameter values to obtain m∗ ∈ [., .].
The numerical method shows that R with γ = . and k = . for m = ., m = .,
m = ., and m = ., respectively (see Figure ). Figure  shows that, in the case where
γ < γ ∗, we can control the probability m > m∗ of the treatment of latent individuals, so
that R < .

6 Conclusion and discussion
In this paper, we analyze a class of discrete SLIS models with direct progression and
chemoprophylaxis for latent TB individuals. The basic reproductive numbers R with both
treatment of latently infected individuals and infectious individuals are determined. Fur-
thermore, we study the global stability of the disease-free equilibrium as R < , the per-
sistence of the system, and the local stability of the endemic equilibrium as R > . The
numerical simulation shows that when β > , and β is not large enough, the solutions of
the model are still positive, and the endemic equilibrium may lose the stability and there
exists chaos as β increases, which can lead to R increasing. By analyzing R, we learn that
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Figure 6 The basic reproductive number R0 with different m.

the treatment of latent TB individuals contributes to a decrease of the basic reproductive
number, namely, a reduction of the speed of TB transmission.

In addition, the basic reproductive number R without treatment, and the basic repro-
ductive number R with treatment of infectious individuals are determined, respectively.
We also discuss the effect of the treatment of the infectious individuals on TB transmis-
sion, and give the critical value γ ∗ of the probability γ of successful detection and treat-
ment of infectious individuals so that the basic reproductive number of the model is R < .
Once R > , that is, γ < γ ∗, we need to strengthen control measures so as to slow down
the TB transmission. In this situation, we take both the treatment of latently infected in-
dividuals and infectious individuals, and give the critical value m∗ of probability m of the
treatment of latently infected individuals so that the basic reproductive number of the
model obeys R < .

By using the TB data in China, we compare the effect of these different treatment strate-
gies for the control of TB. The numerical simulations totally support our theoretical re-
sults. Moreover, our conclusions show that, if the probability γ of successful detection and
treatment of infectious individuals cannot reach the critical value γ ∗, only treatment of in-
fectious individuals cannot effectively control the TB transmission, which implies that we
should strengthen control measures so as to slow down the TB transmission. That is, we
should take both the treatment of latently infected individuals and of infectious individu-
als.
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