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1 Introduction and preliminaries
In this paper, we concentrate on the study of the existence and uniqueness of solutions for
a coupled system of nonlinear impulsive quantum difference equations,

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

Dqk x(t) = f (t, x(t), y(t)), t ∈ J := [, T], t �= tk ,
Dpk y(t) = g(t, x(t), y(t)), t ∈ J , t �= tk ,
�x(tk) = Ik(x(tk)), �y(tk) = I∗

k (y(tk)), k = , , . . . , m,
ax() + by(T) = λ, ay() + bx(T) = λ,

(.)

where  = t < t < t < · · · < tk < · · · < tm < tm+ = T , f , g : J × R
 → R are continuous

functions, Ik , I∗
k ∈ C(R,R), �u(tk) = u(t+

k ) – u(tk), u(t+
k ) = limh→+ u(tk + h), u ∈ {x, y}, for

k = , , . . . , m, and  < pk , qk <  for k = , , , . . . , m are given quantum numbers, ai, bi, λi,
i = ,  are real constants with aa �= bb.

The notions of quantum calculus on finite intervals, qk-derivatives, and qk-integrals
were introduced in []. For a fixed k ∈ N ∪ {} let Jk := [tk , tk+] ⊂ R be an interval and
 < qk < , k = , , . . . , m be a constant. We define the qk-derivative of a function f : Jk →R

at a point t ∈ Jk as follows.

Definition . Assume f : Jk → R is a continuous function and let t ∈ Jk . Then the ex-
pression

Dqk f (t) =
f (t) – f (qkt + ( – qk)tk)

( – qk)(t – tk)
, t �= tk , Dqk f (tk) = lim

t→tk
Dqk f (t), (.)

is called the qk-derivative of function f at t.
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We say that f is qk-differentiable on Jk provided Dqk f (t) exists for all t ∈ Jk . Note that if
tk =  and qk = q in (.), then Dqk f = Dqf , where Dq is the well-known q-derivative of the
function f (t), defined by

Dqf (t) =
f (t) – f (qt)

( – q)t
. (.)

The qk-integral is defined as follows.

Definition . Assume f : Jk → R is a continuous function. Then the qk-integral is de-
fined by

∫ t

tk

f (s) dqk s = ( – qk)(t – tk)
∞∑

n=

qn
k f

(
qn

k t +
(
 – qn

k
)
tk

)
, (.)

for t ∈ Jk . Moreover, if a ∈ (tk , t), then the definite qk-integral is defined by

∫ t

a
f (s) dqk s =

∫ t

tk

f (s) dqk s –
∫ a

tk

f (s) dqk s = ( – qk)(t – tk)
∞∑

n=

qn
k f

(
qn

k t +
(
 – qn

k
)
tk

)

– ( – qk)(a – tk)
∞∑

n=

qn
k f

(
qn

k a +
(
 – qn

k
)
tk

)
.

Note that if tk =  and qk = q, then (.) reduces to q-integral of a function f (t), defined
by

∫ t
 f (s) dqs = ( – q)t

∑∞
n= qnf (qnt) for t ∈ [,∞).

For the basic properties of the qk-derivative and the qk-integral we refer to [].
The book by Kac and Cheung [] covers many of the fundamental aspects of the quan-

tum calculus. In recent years, the topic of q-calculus has attracted the attention of several
researchers and a variety of new results can be found in [–] and the references cited
therein.

Impulsive differential equations serve as basic models to study the dynamics of processes
that are subject to sudden changes in their states. The recent development in this field has
been motivated by many applied problems, such as control theory, population dynamics,
and medicine. For some recent works on the theory of impulsive differential equations,
we refer the interested reader to the monographs [–]. Moreover, the interested reader
is referred to [–] for some recent results on impulsive qk-difference equations.

In this paper we prove existence and uniqueness results for the impulsive boundary value
problem (.) by using Banach’s contraction mapping principle and Leray-Schauder’s non-
linear alternative. The rest of this paper is organized as follows: In Section  we present
an auxiliary lemma which is used to convert the impulsive boundary value problem (.)
into an equivalent integral equation. In Section , we establish an existence and unique-
ness result via Banach’s contraction principle, and an existence result by applying Leray-
Schauder’s alternative. Results on uncoupled integral boundary conditions case are in Sec-
tion . Examples illustrating our results are also presented.

2 An auxiliary lemma
Let J = [, T], J = [t, t], Jk = (tk , tk+] for k = , , . . . , m. To define the solutions of problem
(.) we need the following lemma, which deals with a linear variant of problem (.) and
gives a representation of the solutions.



Tariboon et al. Advances in Difference Equations  (2015) 2015:163 Page 3 of 19

Lemma . Given φ,ψ ∈ C(J ,R), the unique solution of the problem

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

Dqk x(t) = φ(t), t ∈ J , t �= tk ,
Dpk y(t) = ψ(t), t ∈ J , t �= tk ,
�x(tk) = Ik(x(tk)), �y(tk) = I∗

k (y(tk)), k = , , . . . , m,
ax() + by(T) = λ, ay() + bx(T) = λ,

(.)

is

x(t) =

�

[

aλ – ab

m∑

k=

(∫ tk

tk–

ψ(s) dpk– s + I∗
k
(
y(tk)

)
)

– ab

∫ T

tm

ψ(s) dpm s

– bλ + bb

m∑

k=

(∫ tk

tk–

φ(s) dqk– s + Ik
(
x(tk)

)
)

+ bb

∫ T

tm

φ(s) dqm s

]

+
∑

<tk <t

(∫ tk

tk–

φ(s) dqk– s + Ik
(
x(tk)

)
)

+
∫ t

tk

φ(s) dqk s (.)

and

y(t) =

�

[

aλ – ab

m∑

k=

(∫ tk

tk–

φ(s) dqk– s + Ik
(
x(tk)

)
)

– ab

∫ T

tm

φ(s) dqm s

– bλ + bb

m∑

k=

(∫ tk

tk–

ψ(s) dpk– s + I∗
k
(
y(tk)

)
)

+ bb

∫ T

tm

ψ(s) dpm s

]

+
∑

<tk <t

(∫ tk

tk–

ψ(s) dpk– s + I∗
k
(
y(tk)

)
)

+
∫ t

tk

ψ(s) dpk s, (.)

where

� = aa – bb �= . (.)

Proof For t ∈ J, q-integrating (.), it follows that

x(t) = x() +
∫ t


φ(s) dq s,

which leads to

x(t) = x() +
∫ t


φ(s) dq s.

For t ∈ J, taking the q-integral for (.), we get

x(t) = x
(
t+

)

+
∫ t

t

φ(s) dq s.

Since x(t+
 ) = x(t) + I(x(t)), we have

x(t) = x() +
∫ t


φ(s) dq s +

∫ t

t

φ(s) dq s + I
(
x(t)

)
.
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Again q-integrating (.) from t to t, where t ∈ J, then

x(t) = x
(
t+

)

+
∫ t

t

φ(s) dq s

= x() +
∫ t


φ(s) dq s +

∫ t

t

φ(s) dq s +
∫ t

t

φ(s) dq s + I
(
x(t)

)
+ I

(
x(t)

)
.

Repeating the above process, for t ∈ J , we obtain

x(t) = x() +
∑

<tk <t

(∫ tk

tk–

φ(s) dqk– s + Ik
(
x(tk)

)
)

+
∫ t

tk

φ(s) dqk s. (.)

In the same way, we can obtain

y(t) = y() +
∑

<tk <t

(∫ tk

tk–

ψ(s) dpk– s + I∗
k
(
y(tk)

)
)

+
∫ t

tk

ψ(s) dpk s. (.)

In particular, for t = T , we have

x(T) = x() +
m∑

k=

(∫ tk

tk–

φ(s) dqk– s + Ik
(
x(tk)

)
)

+
∫ T

tm

φ(s) dqm s,

y(T) = y() +
m∑

k=

(∫ tk

tk–

ψ(s) dpk– s + I∗
k
(
y(tk)

)
)

+
∫ T

tm

ψ(s) dpm s.

Applying the boundary conditions of (.), we get the system

ax() + by() + b

m∑

k=

(∫ tk

tk–

ψ(s) dpk– s + I∗
k
(
y(tk)

)
)

+ b

∫ T

tm

ψ(s) dpm s = λ,

ay() + bx() + b

m∑

k=

(∫ tk

tk–

φ(s) dqk– s + Ik
(
x(tk)

)
)

+ b

∫ T

tm

φ(s) dqm s = λ,

from which we have

x() =

�

[

aλ – ab

m∑

k=

(∫ tk

tk–

ψ(s) dpk– s + I∗
k
(
y(tk)

)
)

– ab

∫ T

tm

ψ(s) dpm s

– bλ + bb

m∑

k=

(∫ tk

tk–

φ(s) dqk– s + Ik
(
x(tk)

)
)

+ bb

∫ T

tm

φ(s) dqm s

]

and

y() =

�

[

aλ – ab

m∑

k=

(∫ tk

tk–

φ(s) dqk– s + Ik
(
x(tk)

)
)

– ab

∫ T

tm

φ(s) dqm s

– bλ + bb

m∑

k=

(∫ tk

tk–

ψ(s) dpk– s + I∗
k
(
y(tk)

)
)

+ bb

∫ T

tm

ψ(s) dpm s

]

.
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Substituting the values of x() and y() in (.) and (.), we obtain the solutions (.) and
(.). �

3 Main results
Let PC(J ,R) = {x : J →R; x(t) is continuous everywhere except for some tk at which x(t+

k )
and x(t–

k ) exist and x(t–
k ) = x(tk), k = , , . . . , m}. PC(J ,R) is a Banach space with the norm

‖x‖PC = sup{|x(t)|, t ∈ J}. Let us introduce the space X = {x(t); x(t) ∈ PC([, T])} endowed
with the norm ‖x‖ = sup{|x(t)|, t ∈ [, T]}. Obviously (X,‖ · ‖) is a Banach space. Also let
Y = {y(t); y(t) ∈ PC([, T])} be endowed with the norm ‖y‖ = sup{|y(t)|, t ∈ [, T]}. Obvi-
ously the product space (X × Y ,‖(x, y)‖) is a Banach space with norm ‖(x, y)‖ = ‖x‖ + ‖y‖.

In view of Lemma ., we define an operator T : X × Y → X × Y by

T (x, y)(t) =

(
T(x, y)(t)
T(x, y)(t)

)

,

where

T(x, y)(t) =

�

[

aλ – ab

m∑

k=

(∫ tk

tk–

g
(
s, x(s), y(s)

)
dpk– s + I∗

k
(
y(tk)

)
)

– ab

∫ T

tm

g
(
s, x(s), y(s)

)
dpm s – bλ

+ bb

m∑

k=

(∫ tk

tk–

f
(
s, x(s), y(s)

)
dqk– s + Ik

(
x(tk)

)
)

+ bb

∫ T

tm

f
(
s, x(s), y(s)

)
dqm s

]

+
∑

<tk <t

(∫ tk

tk–

f
(
s, x(s), y(s)

)
dqk– s + Ik

(
x(tk)

)
)

+
∫ t

tk

f
(
s, x(s), y(s)

)
dqk s

and

T(x, y)(t) =

�

[

aλ – ab

m∑

k=

(∫ tk

tk–

f
(
s, x(s), y(s)

)
dqk– s + Ik

(
x(tk)

)
)

– ab

∫ T

tm

f
(
s, x(s), y(s)

)
dqm s – bλ

+ bb

m∑

k=

(∫ tk

tk–

g
(
s, x(s), y(s)

)
dpk– s + I∗

k
(
y(tk)

)
)

+ bb

∫ T

tm

g
(
s, x(s), y(s)

)
dpm s

]

+
∑

<tk <t

(∫ tk

tk–

g
(
s, x(s), y(s)

)
dpk– s + I∗

k
(
y(tk)

)
)

+
∫ t

tk

g
(
s, x(s), y(s)

)
dpk s.

For the sake of convenience, we set

M =


|�|
[
T

(
L|a||b| + K|b||b| + K|�|) + mK

(|b||b| + |�|)], (.)
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M =


|�|
[
T

(
L|a||b| + K|b||b| + K|�|) + mL|a||b|

]
, (.)

M =


|�|
[
T

(
N|a||b| + N|b||b| + N|�|)

+ m
(
N|a||b| + N|b||b| + N|�|) + |a||λ| + |b||λ|

]
, (.)

M =


|�|
[
T

(
K|a||b| + L|b||b| + L|�|) + mK|a||b|

]
, (.)

M =


|�|
[
T

(
K|a||b| + L|b||b| + L|�|) + mL

(|b||b| + |�|)], (.)

M =


|�|
[
T

(
N|a||b| + N|b||b| + N|�|)

+ m
(
N|a||b| + N|b||b| + N|�|) + |a||λ| + |b||λ|

]
. (.)

The first result is concerned with the existence and uniqueness of solutions for the prob-
lem (.) and is based on Banach’s contraction mapping principle.

Theorem . Assume that:

(H) The functions f , g : [, T]×R
 →R are continuous and there exist constants Ki, Li > ,

i = ,  such that for all t ∈ [, T] and ui, vi ∈R, i = , ,
∣
∣f (t, u, u) – f (t, v, v)

∣
∣ ≤ K|u – v| + K|u – v|

and
∣
∣g(t, u, u) – g(t, v, v)

∣
∣ ≤ L|u – v| + L|u – v|.

(H) The functions Ik , I∗
k : R → R are continuous and there exist constants K, L >  such

that for all t ∈ [, T] and u, v ∈ R, k = , , . . . , m,
∣
∣Ik(u) – Ik(v)

∣
∣ ≤ K|u – v|

and
∣
∣I∗

k (u) – I∗
k (v)

∣
∣ ≤ L|u – v|.

In addition, assume that

M + M + M + M < ,

where Mi, i = , , , , are given by (.)-(.) and (.)-(.). Then the boundary value
problem (.) has a unique solution.

Proof Define supt∈[,T] f (t, , ) = N < ∞, supt∈[,T] g(t, , ) = N < ∞, sup{|Ik()| : k =
, , . . . , m} = N < ∞ and sup{|I∗

k ()| : k = , , . . . , m} = N < ∞ such that

r ≥ max

{
M

 – (M + M)
,

M

 – (M + M)

}

,

where M and M are defined by (.) and (.), respectively.
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We show that T Br ⊂ Br , where Br = {(x, y) ∈ X × Y : ‖(x, y)‖ ≤ r}.
For (x, y) ∈ Br , we have

∣
∣T(x, y)(t)

∣
∣

= sup
t∈[,T]

{

�

[

aλ – ab

m∑

k=

(∫ tk

tk–

g
(
s, x(s), y(s)

)
dpk– s + I∗

k
(
y(tk)

)
)

– ab

∫ T

tm

g
(
s, x(s), y(s)

)
dpm s – bλ

+ bb

m∑

k=

(∫ tk

tk–

f
(
s, x(s), y(s)

)
dqk– s + Ik

(
x(tk)

)
)

+ bb

∫ T

tm

f
(
s, x(s), y(s)

)
dqm s

]

+
∑

<tk <t

(∫ tk

tk–

f
(
s, x(s), y(s)

)
dqk– s + Ik

(
x(tk)

)
)

+
∫ t

tk

f
(
s, x(s), y(s)

)
dqk s

}

≤ 
|�|

[

|a||λ| + |a||b|
m∑

k=

(∫ tk

tk–

∣
∣g

(
s, x(s), y(s)

)
– g(s, , )

∣
∣ +

∣
∣g(s, , )

∣
∣dpk– s

+
∣
∣I∗

k
(
y(tk)

)
– I∗

k ()
∣
∣ +

∣
∣I∗

k ()
∣
∣

)

+ |a||b|
∫ T

tm

∣
∣g

(
s, x(s), y(s)

)
– g(s, , )

∣
∣ +

∣
∣g(s, , )

∣
∣dpm s + |b||λ|

+ |b||b|
m∑

k=

(∫ tk

tk–

∣
∣f

(
s, x(s), y(s)

)
– f (s, , )

∣
∣ +

∣
∣f (s, , )

∣
∣dqk– s

+
∣
∣Ik

(
x(tk)

)
– Ik()

∣
∣ +

∣
∣Ik()

∣
∣

)

+ |b||b|
∫ T

tm

∣
∣f

(
s, x(s), y(s)

)
– f (s, , )

∣
∣ +

∣
∣f (s, , )

∣
∣dqm s

]

+
m∑

k=

(∫ tk

tk–

∣
∣f

(
s, x(s), y(s)

)
– f (s, , )

∣
∣ +

∣
∣f (s, , )

∣
∣dqk– s

+
∣
∣Ik

(
x(tk)

)
– Ik()

∣
∣ +

∣
∣Ik()

∣
∣

)

+
∫ t

tm

∣
∣f

(
s, x(s), y(s)

)
– f (s, , )

∣
∣ +

∣
∣f (s, , )

∣
∣dqm s

≤ 
|�|

[

|a||λ| + |a||b|
m∑

k=

((
L‖x‖ + L‖y‖ + N

)
(tk – tk–) + L‖y‖ + N

)

+ |a||b|
(
L‖x‖ + L‖y‖ + N

)
(T – tm) + |b||λ|

+ |b||b|
m∑

k=

((
K‖x‖ + K‖y‖ + N

)
(tk – tk–) + K‖x‖ + N

)

+ |b||b|
(
K‖x‖ + K‖y‖ + N

)
(T – tm)

]

+
m∑

k=

((
K‖x‖ + K‖y‖ + N

)
(tk – tk–) + K‖x‖ + N

)
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+
(
K‖x‖ + K‖y‖ + N

)
(T – tm)

=


|�|

[

|a||λ| + |a||b|
m+∑

k=

((
L‖x‖ + L‖y‖ + N

)
(tk – tk–)

)
+ |a||b|mL‖y‖

+ |a||b|mN + |b||λ| + |b||b|
m+∑

k=

((
K‖x‖ + K‖y‖ + N

)
(tk – tk–)

)

+ |b||b|mK‖x‖ + |b||b|mN

]

+
m+∑

k=

((
K‖x‖ + K‖y‖ + N

)
(tk – tk–)

)

+ mK‖x‖ + mN

= ‖x‖
{


|�|

[m+∑

k=

(tk – tk–)
(
L|a||b| + K|b||b| + K|�|) + mK

(|b||b| + |�|)
]}

+ ‖y‖
{


|�|

[m+∑

k=

(tk – tk–)
(
L|a||b| + K|b||b| + K|�|) + mL|a||b|

]}

+


|�|

[m+∑

k=

(tk – tk–)
(
N|a||b| + N|b||b| + N|�|)

+ m
(
N|a||b| + N|b||b| + N|�|) + |a||λ| + |b||λ|

]

= M‖x‖ + M‖y‖ + M

≤ (M + M)r + M ≤ r.

In the same way, we can obtain

∣
∣T(x, y)(t)

∣
∣

≤ ‖x‖
{


|�|

[m+∑

k=

(tk – tk–)
(
K|a||b| + L|b||b| + L|�|) + mK|a||b|

]}

+ ‖y‖
{


|�|

[m+∑

k=

(tk – tk–)
(
K|a||b| + L|b||b| + L|�|)

+ mL
(|b||b| + |�|)

]}

+


|�|

[m+∑

k=

(tk – tk–)
(
N|a||b| + N|b||b| + N|�|)

+ m
(
N|a||b| + N|b||b| + N|�|) + |a||λ| + |b||λ|

]

= M‖x‖ + M‖y‖ + M

≤ (M + M)r + M ≤ r.

Consequently, ‖T (x, y)(t)‖ ≤ r.
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Now for (x, y), (x, y) ∈ X × Y and for any t ∈ [, T], we get

∣
∣T(x, y)(t) – T(x, y)(t)

∣
∣

≤ 
|�|

[

|a||b|
(m+∑

k=

∫ tk

tk–

∣
∣g

(
s, x(s), y(s)

)
– g

(
s, x(s), y(s)

)∣
∣dpk– s

+
m∑

k=

∣
∣I∗

k
(
y(tk)

)
– I∗

k
(
y(tk)

)∣
∣

)

+ |b||b|
(m+∑

k=

∫ tk

tk–

∣
∣f

(
s, x(s), y(s)

)
– f

(
s, x(s), y(s)

)∣
∣dqk– s

+
m∑

k=

∣
∣Ik

(
x(tk)

)
– Ik

(
x(tk)

)∣
∣

)]

+
m+∑

k=

∫ tk

tk–

∣
∣f

(
s, x(s), y(s)

)
– f

(
s, x(s), y(s)

)∣
∣dqk– s +

m∑

k=

∣
∣Ik

(
x(tk)

)
– Ik

(
x(tk)

)∣
∣

≤ 
|�|

[

|a||b|
(m+∑

k=

(tk – tk–)
(
L‖x – x‖ + L‖y – y‖

)
+ mL‖y – y‖

)

+ |b||b|
(m+∑

k=

(tk – tk–)
(
K‖x – x‖ + K‖y – y‖

)
+ mK‖x – x‖

)]

+
m+∑

k=

(tk – tk–)
(
K‖x – x‖ + K‖y – y‖

)
+ mK‖x – x‖

= ‖x – x‖
{


|�|

[m+∑

k=

(tk – tk–)
(
L|a||b| + K|b||b| + K|�|)

+ mK
(|b||b| + |�|)

]}

+ ‖y – y‖
{


|�|

[m+∑

k=

(tk – tk–)
(
L|a||b| + K|b||b| + K|�|) + mL|a||b|

]}

= M‖x – x‖ + M‖y – y‖,

and consequently we obtain

∥
∥T(x, y)(t) – T(x, y)

∥
∥ ≤ (M + M)

[‖x – x‖ + ‖y – y‖
]
. (.)

Similarly,

∥
∥T(x, y)(t) – T(x, y)

∥
∥ ≤ (M + M)

[‖x – x‖ + ‖y – y‖
]
. (.)

It follows from (.) and (.) that

∥
∥T (x, y)(t) – T (x, y)(t)

∥
∥ ≤ (M + M + M + M)

[‖x – x‖ + ‖y – y‖
]
.
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Since M + M + M + M < , therefore, T is a contraction operator. So, by Banach’s fixed
point theorem, the operator T has a unique fixed point, which is the unique solution of
problem (.). This completes the proof. �

In the next result, we prove the existence of solutions for problem (.) by applying the
Leray-Schauder alternative.

For the sake of convenience, we set

M =


|�|
[
T

(
B|a||b| + A|b||b| + A|�|) + mA

(|b||b| + |�|)], (.)

M =


|�|
[
T

(
B|a||b| + A|b||b| + A|�|) + mB|a||b|

]
, (.)

M =


|�|
[
T

(
B|a||b| + A|b||b| + A|�|)

+ m
(
B|a||b| + A|b||b| + A|�|) + |a||λ| + |b||λ|

]
, (.)

M =


|�|
[
T

(
A|a||b| + B|b||b| + B|�|) + mA|a||b|

]
, (.)

M =


|�|
[
T

(
A|a||b| + B|b||b| + B|�|) + mB

(|b||b| + |�|)], (.)

M =


|�|
[
T

(
A|a||b| + B|b||b| + B|�|)

+ m
(
A|a||b| + B|b||b| + B|�|) + |a||λ| + |b||λ|

]
, (.)

and

M = min
{

 – (M + M),  – (M + M)
}

. (.)

Lemma . (Leray-Schauder alternative) ([], p.) Let F : E → E be a completely contin-
uous operator (i.e., a map that is restricted to any bounded set in E is compact). Let

E(F) =
{

x ∈ E : x = λF(x) for some  < λ < 
}

.

Then either the set E(F) is unbounded, or F has at least one fixed point.

Theorem . Assume that:

(H) The functions f , g : [, T]×R
 →R are continuous and there exist constants Ai, Bi ≥ 

(i = , ) and A, B >  such that ∀xi ∈R (i = , )

∣
∣f (t, x, x)

∣
∣ ≤ A + A|x| + A|x|

and

∣
∣g(t, x, x)

∣
∣ ≤ B + B|x| + B|x|.
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(H) The functions Ik , I∗
k : R → R are continuous and there exist constants A, B ≥  and

A, B >  such that ∀x ∈ R, k = , , . . . , m

∣
∣Ik(x)

∣
∣ ≤ A + A|x|

and

∣
∣I∗

k (x)
∣
∣ ≤ B + B|x|.

In addition it is assumed that

M + M <  and M + M < ,

where M, M, M, M are given by (.)-(.) and (.)-(.). Then there exists at
least one solution for the boundary value problem (.).

To prove the theorem we use the following lemma.

Lemma . Assume that (H) and (H) hold. Then the operator T : X × Y → X × Y is
completely continuous.

Proof By continuity of functions f and g , the operator T is continuous.
Let � ⊂ X × Y be bounded. Then there exist positive constants P, P, P, and P such

that

∣
∣f

(
t, x(t), y(t)

)∣
∣ ≤ P,

∣
∣g

(
t, x(t), y(t)

)∣
∣ ≤ P, ∀(x, y) ∈ �,

∣
∣Ik

(
x(t)

)∣
∣ ≤ P,

∣
∣I∗

k
(
y(t)

)∣
∣ ≤ P, k = , , . . . , m.

Then for any (x, y) ∈ �, we have

∥
∥T(x, y)

∥
∥

≤ 
|�|

[

|a||λ| + |a||b|
(m+∑

k=

∫ tk

tk–

∣
∣g

(
s, x(s), y(s)

)∣
∣dpk– s +

m∑

k=

∣
∣I∗

k
(
y(tk)

)∣
∣

)

+ |b||λ| + |b||b|
(m+∑

k=

∫ tk

tk–

∣
∣f

(
s, x(s), y(s)

)∣
∣dqk– s +

m∑

k=

∣
∣Ik

(
x(tk)

)∣
∣

)]

+
m+∑

k=

∫ tk

tk–

∣
∣f

(
s, x(s), y(s)

)∣
∣dqk– s +

m∑

k=

∣
∣Ik

(
x(tk)

)∣
∣

≤ 
|�|

[|a||λ| + |a||b|(PT + mP) + |b||λ| + |b||b|(PT + mP)
]

+ PT + mP

:= D.
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Similarly, we get

∥
∥T(x, y)

∥
∥ ≤ 

|�|
[|a||λ| + |a||b|(PT + mP) + |b||λ| + |b||b|(PT + mP)

]

+ PT + mP

:= D.

Thus, it follows from the above inequalities that the operator T is uniformly bounded.
Next, we show that T is equicontinuous. Let ν,ν ∈ (tl, tl+) for some l = , , . . . , m with

ν < ν. Then we have
∣
∣T

(
x(ν), y(ν)

)
– T

(
x(ν), y(ν)

)∣
∣

=
∣
∣
∣
∣

∫ ν

tl

f
(
s, x(s), y(s)

)
dql s –

∫ ν

tl

f
(
s, x(s), y(s)

)
dql s

∣
∣
∣
∣

≤ P|ν – ν|.

Analogously, we can obtain

∣
∣T

(
x(ν), y(ν)

)
– T

(
x(ν), y(ν)

)∣
∣

=
∣
∣
∣
∣

∫ ν

tl

g
(
s, x(s), y(s)

)
dpl s –

∫ ν

tl

g
(
s, x(s), y(s)

)
dpl s

∣
∣
∣
∣

≤ P|ν – ν|.

Therefore, the operator T (x, y) is equicontinuous, and thus the operator T (x, y) is com-
pletely continuous. �

Proof of Theorem . By Lemma . the operator T (x, y) is completely continuous.
Now, it will be verified that the set E = {(x, y) ∈ X × Y |(x, y) = λT (x, y),  ≤ λ ≤ } is

bounded. Let (x, y) ∈ E , then (x, y) = λT (x, y). For any t ∈ [, T], we have

x(t) = λT(x, y)(t), y(t) = λT(x, y)(t).

Then

∣
∣x(t)

∣
∣ ≤ ‖x‖

{


|�|

[m+∑

k=

(tk – tk–)
(
B|a||b| + A|b||b| + A|�|)

+ mA
(|b||b| + |�|)

]}

+ ‖y‖
{


|�|

[m+∑

k=

(tk – tk–)
(
B|a||b| + A|b||b| + A|�|) + mB|a||b|

]}

+


|�|

[m+∑

k=

(tk – tk–)
(
B|a||b| + A|b||b| + A|�|)

+ m
(
B|a||b| + A|b||b| + A|�|) + |a||λ| + |b||λ|

]
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and

∣
∣y(t)

∣
∣ ≤ ‖x‖

{


|�|

[m+∑

k=

(tk – tk–)
(
A|a||b| + B|b||b| + B|�|) + mA|a||b|

]}

+ ‖y‖
{


|�|

[m+∑

k=

(tk – tk–)
(
A|a||b| + B|b||b| + B|�|)

+ mB
(|b||b| + |�|)

]}

+


|�|

[m+∑

k=

(tk – tk–)
(
A|a||b| + B|b||b| + B|�|)

+ m
(
A|a||b| + B|b||b| + B|�|) + |a||λ| + |b||λ|

]

.

Hence we have

‖x‖ ≤ M‖x‖ + M‖y‖ + M

and

‖y‖ ≤ M‖x‖ + M‖y‖ + M,

which imply that

‖x‖ + ‖y‖ ≤ (M + M)‖x‖ + (M + M)‖y‖ + M + M.

Consequently,

∥
∥(x, y)

∥
∥ ≤ M + M

M
,

for any t ∈ [, T], where M is defined by (.), which proves that E is bounded. Thus, by
Lemma ., the operator T has at least one fixed point. Hence the boundary value problem
(.) has at least one solution. The proof is complete. �

3.1 Examples
Example . Consider the following coupled system of impulsive quantum difference
equations with coupled boundary conditions

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

D k+
k+k+

x(t) = t cos(π t)
(et+)

|x(t)|
|x(t)|+ + t+

(t+)
|y(t)|

|y(t)|+ + 
 , t ∈ [, ], t �= tk ,

D √
k+

ek +
y(t) = 

(t++) sin x(t) + e–(t+)

 cos y(t) + t+
 , t ∈ [, ], t �= tk ,

�x(tk) = |x(tk )|
(k+)+|x(tk )| , �y(tk) = |y(tk )|

(k+)+|y(tk )| , tk = k
 , k = , , ,

x() + y() = , y() – x() = –.

(.)
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Here qk = (k + )/(k + k + ), pk = (
√

k + )/(ek + ), k = , , , , m = , T = , a = ,
a = , b = , b = –, λ = , λ = –, f (t, x, y) = (t cos(π t)|x|)/(((et + ))(|x| + )) + ((t +
)|y|)/(((t + ))(|y| + )) + /, g(t, x, y) = (sin x)/(t+ + ) + (e–(t+) cos y)/ + (t + )/,
Ik(x) = |x|/((k + ) + |x|), and I∗

k (y) = |y|/((k + ) + |y|). We have |f (t, x, y) – f (t, x, y)| ≤
((/)|x – x| + (/)|y – y|), |g(t, x, y) – g(t, x, y)| ≤ ((/)|x – x| + (/(e))|y –
y|), |Ik(x) – Ik(y)| ≤ (/)|x – y|, and |I∗

k (x) – I∗
k (y)| ≤ (/)|x – y|. We can find

� = aa – bb =  �= .

With the given values, it is found that K = /, K = /, K = /, L = /, L =
/(e), L = /, M � ., M � ., M � ., M � .„ and

M + M + M + M � . < .

Thus all the conditions of Theorem . are satisfied. Therefore, by the conclusion of The-
orem ., problem (.) has a unique solution on [, ].

Example . Consider the following coupled system of impulsive quantum difference
equations with coupled boundary conditions:

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

D k+√
k+ek +

x(t) = 
 + 

(t+) sin x(t) + 
π tan– y(t), t ∈ [, ], t �= tk ,

D 
 sin( k+

 π )y(t) = t+
e + 

 x(t) cos y(t) + 
t+ y(t), t ∈ [, ], t �= tk ,

�x(tk) = 
 tan–( x(tk )

 ) + , tk = k
 , k = , , . . . , ,

�y(tk) = 
 sin( y(tk )

 ) + , tk = k
 , k = , , . . . , ,

–x() + y() = –, y() + x() = .

(.)

Here qk = (k + )/(
√

k + ek + ), pk = (sin(((k + )π )/))/, k = , , , . . . , , m = , T = ,
a = –, a = , b = , b = , λ = –, λ = , f (t, x, y) = (/) + (sin x)/((t + )) +
(tan– y)/(π), g(t, x, y) = ((t + )/e) + (x cos y)/ + (y)/(t + ), Ik(x) = (tan–(x/))/ + ,
and I∗

k (y) = (sin(y/))/ + . We get

� = aa – bb = – �= .

Since |f (t, x, y)| ≤ A + A|x| + A|y|, |g(t, x, y)| ≤ B + B|x| + B|y|, where A = /, A =
/, A = /(π), B = /e, B = /, B = /, it is found that M � ., M �
., M � ., M � .. Furthermore,

M + M ≈ . < 

and

M + M ≈ . < .

Thus all the conditions of Theorem . holds true and consequently the conclusion of
Theorem .; problem (.) has at least one solution on [, ].
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4 Uncoupled boundary conditions case
In this section, we consider again the system

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

Dqk x(t) = f (t, x(t), y(t)), t ∈ J , t �= tk ,
Dpk y(t) = g(t, x(t), y(t)), t ∈ J , t �= tk ,
�x(tk) = Ik(x(tk)), �y(tk) = I∗

k (y(tk)), k = , , . . . , m,
ax() + bx(T) = λ, ay() + by(T) = λ.

(.)

Lemma . (Auxiliary lemma) For h ∈ C([, T],R), the unique solution of the problem

⎧
⎪⎨

⎪⎩

Dqk x(t) = h(t), t ∈ J , t �= tk ,
�x(tk) = Ik(x(tk)), k = , , . . . , m,
ax() + bx(T) = λ,

(.)

is given by

x(t) =
λ



–

b




(m+∑

k=

∫ tk

tk–

h(s) dqk– s +
m∑

k=

Ik
(
x(tk)

)
)

+
∑

<tk <t

(∫ tk

tk–

h(s) dqk– s + Ik
(
x(tk)

)
)

+
∫ t

tk

h(s) dqk s, (.)

where


 := a + b �= . (.)

In view of Lemma ., we define an operator T : X × Y → X × Y by

T(u, v)(t) =

(
T(u, v)(t)
T(u, v)(t)

)

,

where

T(u, v)(t) =
λ



–

b




(m+∑

k=

∫ tk

tk–

f
(
s, u(s), v(s)

)
dqk– s +

m∑

k=

Ik
(
u(tk)

)
)

+
∑

<tk <t

(∫ tk

tk–

f
(
s, u(s), v(s)

)
dqk– s + Ik

(
u(tk)

)
)

+
∫ t

tk

f
(
s, u(s), v(s)

)
dqk s

and

T(u, v)(t) =
λ

�
–

b

�

(m+∑

k=

∫ tk

tk–

g
(
s, u(s), v(s)

)
dpk– s +

m∑

k=

I∗
k
(
v(tk)

)
)

+
∑

<tk <t

(∫ tk

tk–

g
(
s, u(s), v(s)

)
dpk– s + I∗

k
(
v(tk)

)
)

+
∫ t

tk

g
(
s, u(s), v(s)

)
dpk s,
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where

� := a + b �= .

We remark that T depends only on f and T only on g . We call the above system, for
convenience, a ‘coupled system with uncoupled boundary conditions’.

In the sequel, we set the constants

M =


|
| (TK  + mK)
(|b| + |
|), (.)

M =


|
|TK
(|b| + |
|), (.)

M =


|
|
[
(TN  + mN)

(|b| + |
|) + |λ|
]
, (.)

M =


|�|TL
(|b| + |�|), (.)

M =


|�| (TL + mL)
(|b| + |�|), (.)

M =


|�|
[
(TN + mN)

(|b| + |�|) + |λ|
]
. (.)

Now we present the existence and uniqueness result for problem (.). We do not pro-
vide the proof of this result as it is similar to the one for Theorem ..

Theorem . Assume that:

(H) The functions f , g : [, T]×R
 →R are continuous and there exist constants Ki, Li > ,

i = ,  such that for all t ∈ [, T] and ui, vi ∈ R, i = , ,

∣
∣f (t, u, u) – f (t, v, v)

∣
∣ ≤ K |u – v| + K|u – v|

and

∣
∣g(t, u, u) – g(t, v, v)

∣
∣ ≤ L|u – v| + L|u – v|.

(H) The functions Ik , I∗
k : R → R are continuous and there exist constants K, L >  such

that for all t ∈ [, T] and u, v ∈R, k = , , . . . , m

∣
∣Ik(u) – Ik(v)

∣
∣ ≤ K|u – v|

and

∣
∣I∗

k (u) – I∗
k (v)

∣
∣ ≤ L|u – v|.

In addition, assume that

M + M + M + M < ,

where M, M, M, M are given by (.)-(.) and (.)-(.), respectively. Then the
boundary value problem (.) has a unique solution.
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Example . Consider the following coupled system of impulsive quantum difference
equations with uncoupled boundary conditions

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

D( 
 )k x(t) = sin(π t)

(et+)
|x(t)|

|x(t)|+ + π t

(t+)
|y(t)|

|y(t)|+ + , t ∈ [, ], t �= tk ,
D( +k

+k )k y(t) = 
(t+) cos x(t) + 

π (t+) |y(t)| + , t ∈ [, ], t �= tk ,
�x(tk) = |x(tk )|

(k+)+|x(tk )| , �y(tk) = |y(tk )|
(k+)+|y(tk )| , tk = k

 , k = , , , ,
x() – x() = , y() + y() = .

(.)

Here qk = (/)k , pk = (( + k)/( + k))k , k = , , , , , m = , T = , a = , a = , b =
–, b = , λ = , λ = , f (t, x, y) = (sin(π t)|x|)/(((et + ))(|x| + )) + (π t|y|)/(((t + ))(|y| +
)) + , g(t, x, y) = (cos x)/((t + )) + (|y|)/(π (t + )) + , Ik(x) = |x|/((k + ) + |x|), and
I∗

k (y) = |y|/((k + ) + |y|). Since |f (t, x, y) – f (t, x, y)| ≤ ((/)|x – x| + (π/)|y – y|),
|g(t, x, y) – g(t, x, y)| ≤ ((/)|x – x| + (/(π ))|y – y|), |Ik(x) – Ik(y)| ≤ (/)|x – y|,
and |I∗

k (x) – I∗
k (y)| ≤ (/)|x – y|. We can find


 = a + b = – �=  and � = a + b =  �= .

With the given values, it is found that K  = /, K = π/, K = /, L = /, L =
/(π ), L = /, M � ., M � ., M � ., M � ., and

M + M + M + M � . < .

Thus all the conditions of Theorem . are satisfied. Therefore, by the conclusion of The-
orem ., problem (.) has a unique solution on [, ].

The second result dealing with the existence of solutions for the problem (.) is analo-
gous to Theorem . and is given below.

In the sequel, we set constants

M =


|
| (TA + mA)
(|b| + |
|), (.)

M =


|
|TA
(|b| + |
|), (.)

M =


|
|
[
(TA + mA)

(|b| + |
|) + |λ|
]
, (.)

M =


|�|TB
(|b| + |�|), (.)

M =


|�| (TB + mB)
(|b| + |�|), (.)

M =


|�|
[
(TB + mB)

(|b| + |�|) + |λ|
]
. (.)

Theorem . Assume that:

(H) The functions f , g : [, T]×R
 →R are continuous and there exist constants Ai, Bi ≥ 

(i = , ) and A, B >  such that ∀xi ∈R (i = , )

∣
∣f (t, x, x)

∣
∣ ≤ A + A|x| + A|x|
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and

∣
∣g(t, x, x)

∣
∣ ≤ B + B|x| + B|x|.

(H) The functions Ik , I∗
k : R → R are continuous and there exist constants A, B ≥  and

A, B >  such that ∀x ∈ R, k = , , . . . , m,

∣
∣Ik(x)

∣
∣ ≤ A + A|x|

and

∣
∣I∗

k (x)
∣
∣ ≤ B + B|x|.

In addition it is assumed that

M + M <  and M + M < ,

where M, M, M, M are given by (.)-(.) and (.)-(.), respectively. Then the
boundary value problem (.) has at least one solution.

Proof Setting

M = min
{

 – (M + M),  – (M + M)
}

,

the proof is similar to that of Theorem .. So we omit it. �

Example . Consider the following coupled system of impulsive quantum difference
equations with uncoupled boundary conditions:

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

D 
+k

x(t) =  + 
 sin( x(t)

 ) + 
(t+) tan–( y(t)

 ), t ∈ [, ], t �= tk ,
D +k

+k+k
y(t) =  + t

(t+) x(t) + sin(π t)
(t+) y(t), t ∈ [, ], t �= tk ,

�x(tk) = 
π sin( πx(tk )

 ) + 
 , tk = k

 , k = , , . . . , ,
�y(tk) = 

 sin( y(tk )
 ) + , tk = k

 , k = , , . . . , ,
x() – x() = –, y() – y() = –.

(.)

Here qk = /( + k), pk = ( + k)/( + k + k), k = , , , . . . , , m = , T = , a = ,
a = , b = –, b = –, λ = –, λ = –, f (t, x, y) =  + (sin(x/))/ + (tan–(y/))/(t + ),
g(t, x, y) =  + (tx)/((t + )) + (sin(π t)y)/((t + )), Ik(x) = (sin(πx/))/(π) + /, and
I∗

k (y) = y/(e + y) + π/. We get


 = a + b = – �=  and � = a + b = – �= .

Since |f (t, x, y)| ≤ A + A|x|+ A|y|, |g(t, x, y)| ≤ B + B|x|+ B|y|, where A = , A = /,
A = /, B = , B = /, B = /, it is found that M � ., M � .,
M � ., M � .. Furthermore,

M + M ≈ . < 
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and

M + M ≈ . < .

Thus all the conditions of Theorem . holds true and consequently the conclusion of
Theorem .; problem (.) has at least one solution on [, ].
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