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1 Introduction
Throughout this paper, let n be a fixed positive integer. The nth order linear homogeneous
difference equation with constant coefficients is of the form

ai = αai– + αai– + · · · + αnai–n, ()

where α,α, . . . ,αn are constants. For example, the second-order difference equation with
constant coefficients has the form

ai = αai– + βai–. ()

The solution of () is called the Fibonacci numbers when α = β = , a = , and a = ,
Lucas numbers when α = β = , a = , and a = , Pell numbers when α = , β = , a = ,
and a = , Pell-Lucas numbers when α = , β = , and a = a = , and Jacobsthal numbers
if α = , β = , a = , and a = .

The polynomial

p(x) = xn – αxn– – αxn– – · · · – αn–x – αn

is called the characteristic polynomial of the difference equation ().
If the roots r, r, . . . , rn of the characteristic polynomial are distinct, then the solution of

the difference equation () is given by

ai = kri
 + kri

 + · · · + knri
n,

where the coefficients k, k, . . . , kn are uniquely determined under the initial conditions of
the difference equation.
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If the characteristic polynomial has roots r, r, . . . , rd with multiplicity m, m, . . . , md ,
respectively, then the solution of the difference equation () is given by

ai =
d∑

j=

mj∑

k=

cjkik–ri
j ,

where the cjk are constants and m + m + · · · + md = n (see [, ]). For the Hyers-Ulam
stability of the linear difference equations, we may refer to [–].

Let (Cn,‖ · ‖n) be a complex normed space, each of whose elements is a column vector,
and let Cn×n be a vector space consisting of all (n × n) complex matrices. We choose a
norm ‖ · ‖n×n on Cn×n which is compatible with ‖ · ‖n, i.e., both norms obey

‖AB‖n×n ≤ ‖A‖n×n‖B‖n×n and ‖A�x‖n ≤ ‖A‖n×n‖�x‖n ()

for all A, B ∈ Cn×n and �x ∈ Cn.
A matrix difference equation is a difference equation with matrix coefficients in which

the value of vector of variables at one point is dependent on the values of preceding (suc-
ceeding) points.

In this paper, we prove the Hyers-Ulam stability of the first-order linear homogeneous
matrix difference equations �xi = A�xi– and �xi– = A�xi for all integers i ∈ Z, where the tran-
sition matrix A is nonsingular. More precisely, we prove that if a sequence {�yi}i∈Z satisfies
the inequality ‖�yi – A�yi–‖n ≤ ε for all i ∈ Z resp. ‖�yi– – A�yi‖n ≤ ε for all i ∈ Z, then there
exist a solution {�xi}i∈Z ⊂ Cn of the first-order matrix difference equation () resp. () and
a constant K >  such that ‖�yi – �xi‖n ≤ Kε for all integers i ≥ . (We refer the reader to
[–] for the exact definition of Hyers-Ulam stability.)

It should be remarked that many interesting theorems have been proved in [, ] con-
cerning the linear (or nonlinear) recurrences. Especially in , the Hyers-Ulam stability
of the first-order matrix difference equations has been proved in [] in a general setting.
The substantial difference of this paper from [] lies in the fact that the stability problems
for the ‘backward’ difference equations have been treated in Section  of this paper.

2 Hyers-Ulam stability of �xi = A�xi–1

In this section, we investigate the Hyers-Ulam stability of the first-order linear homoge-
neous matrix difference equation

�xi = A�xi– ()

for all integers i ∈ Z, where

�xi =

⎛

⎜⎜⎜⎜⎝

xi

xi
...

xin

⎞

⎟⎟⎟⎟⎠
∈ Cn and A =

⎛

⎜⎜⎜⎜⎝

a a · · · an

a a · · · an
...

...
. . .

...
an an · · · ann

⎞

⎟⎟⎟⎟⎠
∈ Cn×n.

Theorem . Given a fixed positive integer n, let (Cn,‖·‖n) and (Cn×n,‖·‖n×n) be complex
normed spaces, whose elements are column vectors resp. (n×n) complex matrices, with the
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property (). Assume that the transition matrix A ∈ Cn×n is nonsingular and {εi}i∈Z is a
sequence of nonnegative real numbers. If a sequence {�yi}i∈Z ⊂ Cn satisfies the inequality

‖�yi – A�yi–‖n ≤ εi ()

for all i ∈ Z, then there exists a solution {�xi}i∈Z ⊂ Cn of the first-order matrix difference
equation () such that

‖�yi – �xi‖n ≤
{∑i

k= εk‖A‖i–k
n×n + ‖A‖i

n×n‖�y – �x‖n (for i ≥ ),∑–i
k= εk+i‖A–‖k

n×n + ‖A–‖–i
n×n‖�y – �x‖n (for i < ).

Proof Assume that a sequence {�yi}i∈Z ⊂ Cn satisfies the inequality () for all i ∈ Z. First,
we assume that i is a nonnegative integer. It then follows from () and () that

∥∥�yi – Ai�y
∥∥

n ≤ ‖�yi – A�yi–‖n +
∥∥A�yi– – A�yi–

∥∥
n

+
∥∥A�yi– – A�yi–

∥∥
n + · · · +

∥∥Ai–�y – Ai�y
∥∥

n

≤ ‖�yi – A�yi–‖n + ‖A‖n×n‖�yi– – A�yi–‖n

+ ‖A‖
n×n‖�yi– – A�yi–‖n + · · · + ‖A‖i–

n×n‖�y – A�y‖n

≤ εi + ‖A‖n×nεi– + ‖A‖
n×nεi– + · · · + ‖A‖i–

n×nε

= ‖A‖i
n×n

i∑

k=

εk‖A‖–k
n×n. ()

It is obvious that a sequence {�xi}i∈Z ⊂ Cn satisfies the first-order matrix difference equa-
tion () if and only if

�xi = Ai�x ()

for each i ∈ Z, where we set Ai = (A–)–i for all negative integers i. Hence, by () and (),
we have

‖�yi – �xi‖n ≤ ∥∥�yi – Ai�y
∥∥

n +
∥∥Ai�y – Ai�x

∥∥
n +

∥∥Ai�x – �xi
∥∥

n

≤
i∑

k=

εk‖A‖i–k
n×n + ‖A‖i

n×n‖�y – �x‖n

for any integer i ≥ .
On the other hand, we suppose i is a negative integer. For this case, it follows from ()

and () that

∥∥�yi – Ai�y
∥∥

n

=
∥∥�yi –

(
A–)–i�y

∥∥
n

≤ ∥∥�yi – A–�yi+
∥∥

n +
∥∥A–�yi+ –

(
A–)�yi+

∥∥
n

+
∥∥(

A–)�yi+ –
(
A–)�yi+

∥∥
n + · · · +

∥∥(
A–)–i–�y– –

(
A–)–i�y

∥∥
n
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≤ ∥∥A–∥∥
n×n‖A�yi – �yi+‖n +

∥∥A–∥∥
n×n‖A�yi+ – �yi+‖n

+
∥∥A–∥∥

n×n‖A�yi+ – �yi+‖n + · · · +
∥∥A–∥∥–i

n×n‖A�y– – �y‖n

≤ ∥∥A–∥∥
n×nεi+ +

∥∥A–∥∥
n×nεi+ +

∥∥A–∥∥
n×nεi+ + · · · +

∥∥A–∥∥–i
n×nε

=
–i∑

k=

εk+i
∥∥A–∥∥k

n×n. ()

Moreover, by () and (), we have

‖�yi – �xi‖n ≤ ∥∥�yi –
(
A–)–i�y

∥∥
n +

∥∥(
A–)–i�y –

(
A–)–i�x

∥∥
n

+
∥∥(

A–)–i�x – �xi
∥∥

n

≤
–i∑

k=

εk+i
∥∥A–∥∥k

n×n +
∥∥A–∥∥–i

n×n‖�y – �x‖n

for all integers i < . �

In view of (), if we assume the initial condition in the previous theorem, we can easily
prove the uniqueness of the sequence {�xi}i∈Z as we see in the following corollary.

Corollary . Given a fixed positive integer n, let (Cn,‖·‖n) and (Cn×n,‖·‖n×n) be complex
normed spaces, whose elements are column vectors resp. (n × n) complex matrices, with
the property (). Assume that the transition matrix A ∈ Cn×n is nonsingular and {εi}i∈Z is
a sequence of nonnegative real numbers. If a sequence {�yi}i∈Z ⊂ Cn satisfies the inequality
() for all i ∈ Z, then there exists a unique solution {�xi}i∈Z ⊂ Cn of the first-order matrix
difference equation () with the initial condition �x = �y such that

‖�yi – �xi‖n ≤
{∑i

k= εk‖A‖i–k
n×n (for i ≥ ),∑–i

k= εk+i‖A–‖k
n×n (for i < ).

Some of the most important matrix norms are induced by p-norms. For  ≤ p ≤ ∞, the
matrix norm induced by the p-norm,

‖A‖p := sup
�x 	=�

‖A�x‖p

‖�x‖p
,

is called the matrix p-norm. For example, we get

‖A‖ = max
≤j≤n

n∑

i=

|aij| and ‖A‖∞ = max
≤i≤n

n∑

j=

|aij|.

It is well known that the matrix p-norm, together with the p-norm, satisfies the conditions
in (), where

‖�x‖ =
n∑

j=

|xj| and ‖�x‖∞ = max
≤j≤n

|xj|

for any �x ∈ Cn.
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In the following corollary, we prove the Hyers-Ulam stability of the second-order linear
homogeneous difference equation with constant coefficients.

Corollary . Let (C,‖ · ‖∞) and (C×,‖ · ‖∞) be complex normed spaces and let α, β ,
γ be complex numbers satisfying the conditions

α + β 	= , β 	= , γ 	= . ()

Assume that ε >  is an arbitrary constant. If a sequence {ai}i∈Z of complex numbers satis-
fies the inequality

|ai – αai– – βai–| ≤ ε ()

for all i ∈ Z, then there exists a sequence {ci}i∈Z of complex numbers such that c– = a–,
c = a, ci = αci– + βci–, and

|ai – ci| ≤
{∑i

k= ε‖A‖i–k∞ (for i ≥ ),∑–i
k= ε‖A–‖k∞ (for i < ),

where ‖A‖∞ = max{|α| + |β/γ |, |γ |} and ‖A–‖∞ = max{|/γ |, |α/β| + |γ /β|}.

Proof If we define a sequence {bi}i∈Z of complex numbers by bi = γ ai–, it then follows
from () that

{
|ai – αai– – β

γ
bi–| ≤ ε,

|bi – γ ai–| = 

for any i ∈ Z. If we set

�yi :=

(
ai

bi

)
and A :=

(
α

β

γ

γ 

)
,

then we get

‖�yi – A�yi–‖∞ ≤ ε

for each i ∈ Z.
According to Corollary ., there exists a unique solution {�xi}i∈Z ⊂ C of the first-order

matrix difference equation () with the initial condition �x =
( a

γ a–

)
such that

‖�yi – �xi‖∞ ≤
{∑i

k= ε‖A‖i–k∞ (for i ≥ ),∑–i
k= ε‖A–‖k∞ (for i < ).

In view of (), this last inequality implies that

∥∥∥∥∥

(
ai

γ ai–

)
– Ai

(
a

γ a–

)∥∥∥∥∥∞
≤

{∑i
k= ε‖A‖i–k∞ (for i ≥ ),∑–i
k= ε‖A–‖k∞ (for i < ).

()
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Since the transition matrix A has two distinct eigenvalues λ = α–
√

α+β

 and λ =
α+

√
α+β

 , which are the roots of the characteristic equation λ – αλ – β = , the matrix A
can be expressed as

A = CDC– ()

with

C =

(
λ λ

γ γ

)
, D =

(
λ 
 λ

)
, C– =


γ (λ – λ)

(
γ –λ

–γ λ

)
.

By (), we obtain

Ai = CDiC–

=


γ (λ – λ)

(
λ λ

γ γ

)(
λi

 
 λi



)(
γ –λ

–γ λ

)

=


γ (λ – λ)

(
γ (λi+

 – λi+
 ) –λλ(λi

 – λi
)

γ (λi
 – λi

) –γ λλ(λi–
 – λi–

 )

)

for every integer i ≥ . Using this equality, it follows from () that
∥∥∥∥∥

(
ai – a–a–λ

λ–λ
λi+

 + a–a–λ
λ–λ

λi+


γ ai– – γ
a–a–λ

λ–λ
λi

 + γ
a–a–λ

λ–λ
λi



)∥∥∥∥∥∞
≤

i∑

k=

ε‖A‖i–k
∞ ()

for all integers i ≥ .

On the other hand, the inverse matrix A– has two distinct eigenvalues ω = –α–
√

α+β

β
=

– 
β
λ and ω = –α+

√
α+β

β
= – 

β
λ, which are roots of the characteristic equation ω + α

β
ω–


β

= . Hence, the matrix A– may be expressed as

A– =

(
 

γ
γ

β
– α

β

)
=

(
 

γω γω

)(
ω 
 ω

)(
 

γω γω

)–

. ()

Using (), we have

Ai =
(
A–)–i

=

(
 

γω γω

)(
ω–i

 
 ω–i



)(
 

γω γω

)–

=
–

γ (ω – ω)

(
γωω(ω–i–

 – ω–i–
 ) ω–i

 – ω–i


γ ωω(ω–i
 – ω–i

 ) γ (ω–i
 – ω–i

 )

)

for all integers i < . Thus, the inequality () yields

∥∥∥∥∥

(
ai – a––aω

ω–ω
ω–i

 + a––aω
ω–ω

ω–i


γ ai– – γ
a––aω

ω–ω
ω–i

 + γ
a––aω

ω–ω
ω–i



)∥∥∥∥∥∞
≤

–i∑

k=

ε
∥∥A–∥∥k

∞ ()

for any integer i < .
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Finally, considering (), (), and [], Theorem ., if we set

ci :=

{
a–a–λ

λ–λ
λi+

 – a–a–λ
λ–λ

λi+
 (for i ≥ ),

a––aω
ω–ω

ω–i
 – a––aω

ω–ω
ω–i

 (for i < ),

then we get c– = a–, c = a, and it follows from () and () that

|ai – ci| ≤
{∑i

k= ε‖A‖i–k∞ (for i ≥ ),∑–i
k= ε‖A–‖k∞ (for i < ).

Furthermore, it is not difficult to show that the sequence {ci}i∈Z satisfies the second-order
linear difference equation

ci = αci– + βci–

for any integer i. �

If we set γ = ±α±
√

α+β

 in Corollary ., then we get

lim
β→∞‖A‖∞ · ∥∥A–∥∥∞ = .

For example, if we set γ = α+
√

α+β

 and β > , then we have

⎧
⎨

⎩
‖A‖∞ = max

{ α+
√

α+β

 , –α+
√

α+β


}

,

‖A–‖∞ = max
{ α+

√
α+β

β
, –α+

√
α+β

β

}
,

()

and hence

lim
β→∞‖A‖∞ · ∥∥A–∥∥∞ = lim

β→∞
√

β · √
β

= .

For the case when γ = α–
√

α+β

 , γ = –α+
√

α+β

 , or γ = –α–
√

α+β

 , we analogously obtain
limβ→∞ ‖A‖∞ · ‖A–‖∞ = .

If α and β are simultaneously small in absolute value, then the second-order difference
equation () has the Hyers-Ulam stability as we see in the following example.

Example . Given an ε > , assume that a sequence {ai}i∈Z of complex numbers satisfies
the inequality

∣∣∣∣ai –



ai– –



ai–

∣∣∣∣ ≤ ε

for all i ∈ Z. With α = 
 and β = 

 , it follows from () that ‖A‖∞ = +
√


 and ‖A–‖∞ =

+
√


 . Using these values, Corollary . implies that there exists a sequence {ci}i∈Z of

complex numbers such that c– = a–, c = a, ci = 
 ci– + 

 ci–, and

|ai – ci| ≤
{


√

+


(
 –

(√
+


)i)
ε (for i ≥ ),


√

+


(( 
√

+


)–i – 
)
ε (for i < ).
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3 Hyers-Ulam stability of �xi–1 = A�xi

In practical applications, we sometimes consider the first-order linear homogeneous ma-
trix difference equation

�xi– = A�xi ()

instead of (), where the transition matrix A is a nonsingular matrix of Cn×n.
We now investigate the Hyers-Ulam stability of the matrix difference equation ().

Theorem . Given a fixed positive integer n, let (Cn,‖·‖n) and (Cn×n,‖·‖n×n) be complex
normed spaces, whose elements are column vectors resp. (n×n) complex matrices, with the
property (). Assume that the transition matrix A ∈ Cn×n is nonsingular and {εi}i∈Z is a
sequence of nonnegative real numbers. If a sequence {�yi}i∈Z ⊂ Cn satisfies the inequality

‖�yi– – A�yi‖n ≤ εi ()

for all i ∈ Z, then there exists a solution {�xi}i∈Z ⊂ Cn of the first-order matrix difference
equation () such that

‖�yi – �xi‖n ≤
{∑i

k= εk‖A–‖i+–k
n×n + ‖A–‖i

n×n‖�y – �x‖n (for i ≥ ),∑–i
k= εk+i‖A‖k–

n×n + ‖A‖–i
n×n‖�y – �x‖n (for i < ).

()

Proof Assume that a sequence {�yi}i∈Z ⊂ Cn satisfies the inequality () for all i ∈ Z. First,
we assume that i is a nonnegative integer. Then, by () and (), we have

∥∥�yi – A–i�y
∥∥

n ≤ ∥∥�yi – A–�yi–
∥∥

n +
∥∥A–�yi– – A–�yi–

∥∥
n

+
∥∥A–�yi– – A–�yi–

∥∥
n + · · · +

∥∥A–i+�y – A–i�y
∥∥

n

≤ εi
∥∥A–∥∥

n×n + εi–
∥∥A–∥∥

n×n + εi–
∥∥A–∥∥

n×n + · · · + ε
∥∥A–∥∥i

n×n

=
i∑

k=

εk
∥∥A–∥∥i+–k

n×n .

Obviously, a sequence {�xi}i∈Z ⊂ Cn satisfies the first-order matrix difference equation
() if and only if

�xi = A–i�x ()

for all i ∈ Z, where we set A–i = (A–)i for each integer i ≥ . Hence, we get

‖�yi – �xi‖n ≤ ∥∥�yi – A–i�y
∥∥

n +
∥∥A–i�y – A–i�x

∥∥
n +

∥∥A–i�x – �xi
∥∥

n

≤
i∑

k=

εk
∥∥A–∥∥i+–k

n×n +
∥∥A–∥∥i

n×n‖�y – �x‖n

for all integers i ≥ .
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On the other hand, if i is a negative integer, then it follows from () and () that

∥∥�yi – A–i�y
∥∥

n = ‖�yi – A�yi+‖n +
∥∥A�yi+ – A�yi+

∥∥
n

+
∥∥A�yi+ – A�yi+

∥∥
n + · · · +

∥∥A–i–�y– – A–i�y
∥∥

n

≤ εi+ + εi+‖A‖n×n + εi+‖A‖
n×n + · · · + ε‖A‖–i–

n×n

=
–i∑

k=

εk+i‖A‖k–
n×n.

Thus, by () and the last inequality, we obtain

‖�yi – �xi‖n ≤ ∥∥�yi – A–i�y
∥∥

n +
∥∥A–i�y – A–i�x

∥∥
n +

∥∥A–i�x – �xi
∥∥

n

≤
–i∑

k=

εk+i‖A‖k–
n×n + ‖A‖–i

n×n‖�y – �x‖n

for any integer i < . �

We now remark that if we apply Theorem . in place of the proof of Theorem ., then
we would obtain an inequality () below, which seems not to be better than the inequality
() given in Theorem ., as we see in the following remark, whose proof we omit.

Remark . Given a fixed positive integer n, let (Cn,‖ ·‖n) and (Cn×n,‖ ·‖n×n) be complex
normed spaces, whose elements are column vectors resp. (n × n) complex matrices, with
the property (). Assume that the transition matrix A ∈ Cn×n is nonsingular and {εi}i∈Z is
a sequence of nonnegative real numbers. If a sequence {�yi}i∈Z ⊂ Cn satisfies the inequality
() for all i ∈ Z, then there exists a solution {�xi}i∈Z ⊂ Cn of the first-order matrix difference
equation () such that

‖�yi – �xi‖n

≤
{

εi+ +
∑i+

k= εk‖A–‖i+–k
n×n + ‖A–‖i+

n×n‖A�y – �x–‖n (for i ≥ ),
εi+ +

∑–i–
k= εk+i+‖A‖k

n×n + ‖A‖–i–
n×n‖A�y – �x–‖n (for i < ).

()

In view of (), assuming the initial condition in the previous theorem leads to the
uniqueness of the sequence {�xi}i∈Z, as we see in the following corollary.

Corollary . Given a fixed positive integer n, let (Cn,‖·‖n) and (Cn×n,‖·‖n×n) be complex
normed spaces, whose elements are column vectors resp. (n × n) complex matrices, with
the property (). Assume that the transition matrix A ∈ Cn×n is nonsingular and {εi}i∈Z is
a sequence of nonnegative real numbers. If a sequence {�yi}i∈Z ⊂ Cn satisfies the inequality
() for all i ∈ Z, then there exists a solution {�xi}i∈Z ⊂ Cn of the first-order matrix difference
equation () with the initial condition �x = �y such that

‖�yi – �xi‖n ≤
{∑i

k= εk‖A–‖i+–k
n×n (for i ≥ ),∑–i

k= εk+i‖A‖k–
n×n (for i < ).
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In the next corollary, we investigate the Hyers-Ulam stability of the second-order linear
homogeneous difference equation with constant coefficients

ai = αai+ + βai+. ()

Corollary . Let (C,‖ · ‖∞) and (C×,‖ · ‖∞) be complex normed spaces and let α, β ,
γ be complex numbers satisfying the conditions

α + β 	= , β 	= , γ 	= . ()

Assume that ε >  is an arbitrary constant. If a sequence {ai}i∈Z of complex numbers satis-
fies the inequality

|ai – αai+ – βai+| ≤ ε ()

for all i ∈ Z, then there exists a sequence {ci}i∈Z of complex numbers such that c = a,
c = a, ci = αci+ + βci+, and

|ai – ci| ≤
{∑i

k= ε‖A–‖i+–k∞ (for i ≥ ),∑–i
k= ε‖A‖k–∞ (for i < ),

where ‖A‖∞ = max{|α| + |β/γ |, |γ |} and ‖A–‖∞ = max{|/γ |, |α/β| + |γ /β|}.

Proof If we define a sequence {bi}i∈Z of complex numbers by bi = γ ai+, it then follows
from () that

{
|ai – αai+ – β

γ
bi+| ≤ ε,

|bi – γ ai+| = 

for every i ∈ Z. Hence, if we set

�yi :=

(
ai

bi

)
and A :=

(
α

β

γ

γ 

)
,

then we get

‖�yi – A�yi+‖∞ ≤ ε

for all i ∈ Z.
According to Corollary ., there exists a unique solution {�xi}i∈Z of the first-order matrix

difference equation () with the initial condition �x =
( a

γ a

)
such that

‖�yi – �xi‖∞ ≤
{∑i

k= ε‖A–‖i+–k∞ (for i ≥ ),
∑–i

k= ε‖A‖k–∞ (for i < ).

In view of () and the last inequality, we have
∥∥∥∥∥

(
ai

γ ai+

)
– A–i

(
a

γ a

)∥∥∥∥∥∞
≤

{∑i
k= ε‖A–‖i+–k∞ (for i ≥ ),∑–i
k= ε‖A‖k–∞ (for i < ).

()
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Since the matrix A has two distinct eigenvalues λ = α–
√

α+β

 and λ = α+
√

α+β

 , as we
did in the proof of Corollary ., if i is a negative integer, then we get

A–i =


γ (λ – λ)

(
γ (λ–i

 – λ–i
 ) –λλ(λ–i

 – λ–i
 )

γ (λ–i
 – λ–i

 ) –γ λλ(λ–i–
 – λ–i–

 )

)

for all integers i < . By using () and this equality, we have

∥∥∥∥∥

(
ai – a–aλ

λ–λ
λ–i

 + a–aλ
λ–λ

λ–i


γ ai+ – γ
a–aλ
λ–λ

λ–i
 + γ

a–aλ
λ–λ

λ–i


)∥∥∥∥∥∞
≤

–i∑

k=

ε‖A‖k–
∞ ()

for any integer i < .

On the other hand, the inverse matrix A– has two distinct eigenvalues ω = –α–
√

α+β

β
=

– 
β
λ and ω = –α+

√
α+β

β
= – 

β
λ. In a similar way to the proof of Corollary ., if i is a

nonnegative integer, then we obtain

A–i =
(
A–)i =

–
γ (ω – ω)

(
γωω(ωi–

 – ωi–
 ) ωi

 – ωi


γ ωω(ωi
 – ωi

) γ (ωi+
 – ωi+

 )

)

for all integers i ≥ . Thus, it follows from () and the last equality that

∥∥∥∥∥

(
ai – a–aω

ω–ω
ωi

 + a–aω
ω–ω

ωi


γ ai+ – γ
a–aω
ω–ω

ωi+
 + γ

a–aω
ω–ω

ωi+


)∥∥∥∥∥∞
≤

i∑

k=

ε
∥∥A–∥∥i+–k

∞ ()

for any integer i ≥ .
Finally, considering () and (), we define

ci :=

{
a–aω
ω–ω

ωi
 – a–aω

ω–ω
ωi

 (for i ≥ ),
a–aλ
λ–λ

λ–i
 – a–aλ

λ–λ
λ–i

 (for i < ).

We then have c = a, c = a, and it follows from () and () that

|ai – ci| ≤
{∑i

k= ε‖A–‖i+–k∞ (for i ≥ ),
∑–i

k= ε‖A‖k–∞ (for i < ).

Furthermore, it is easy to verify that the sequence {ci}i∈Z satisfies

ci = αci+ + βci+

for any integer i. �

If we set γ = α+
√

α+β

 and β >  in Corollary ., then we obtain the equalities in ():

⎧
⎨

⎩
‖A‖∞ = max

{ α+
√

α+β

 , –α+
√

α+β


}

,

‖A–‖∞ = max
{ α+

√
α+β

β
, –α+

√
α+β

β

}
.
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Thus, we get

lim
β→∞‖A‖∞ · ∥∥A–∥∥∞ = lim

β→∞
√

β · √
β

= .

If β is large in absolute value, then the second-order difference equation () has the
Hyers-Ulam stability as we see in the next example.

Example . Given an ε > , assume that a sequence {ai}i∈Z of complex numbers satisfies
the inequality

|ai – ai+ – ai+| ≤ ε ()

for all i ∈ Z. With α = , β = , and γ = +
√


 , it follows from () that ‖A‖∞ = +

√


 and
‖A–‖∞ = +

√


 . Using these values, Corollary . implies that there exists a sequence
{ci}i∈Z of complex numbers such that c = a, c = a, ci = ci+ + ci+, and

|ai – ci| ≤
{

(
√

 + )
(
 –

(√
+


)i)
ε (for i ≥ ),√

+


((√
+


)–i – 
)
ε (for i < ).

If we apply Corollary . with the inequality

∣∣∣∣ai +



ai– –



ai–

∣∣∣∣ ≤ 


ε, ()

where we set α = – 
 , β = 

 , and γ =
√

–
 , then there exists a sequence {ci}i∈Z of complex

numbers such that c– = a–, c = a, ci = ci+ + ci+, and

|ai – ci| ≤
{√

+


(
 –

(√
+


)i)
ε (for i ≥ ),√

+


((√
+


)–i – 
)
ε (for i < ).

The inequalities () and () are equivalent. In this case with inequality () or (),
there is more efficiency with Corollary . than Corollary . for any integer i.
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6. Brzdȩk, J, Popa, D, Xu, B: The Hyers-Ulam stability of linear equations of higher orders. Acta Math. Hung. 120, 1-8
(2008)

7. Popa, D: Hyers-Ulam-Rassias stability of a linear recurrence. J. Math. Anal. Appl. 309, 591-597 (2005)
8. Popa, D: Hyers-Ulam stability of the linear recurrence with constant coefficients. Adv. Differ. Equ. 2005, 101-107

(2005)
9. Trif, T: Hyers-Ulam-Rassias stability of a linear functional equation with constant coefficients. Nonlinear Funct. Anal.

Appl. 11, 881-889 (2006)
10. Czerwik, S: Functional Equations and Inequalities in Several Variables. World Scientific, Singapore (2002)
11. Hyers, DH: On the stability of the linear functional equation. Proc. Natl. Acad. Sci. USA 27, 222-224 (1941)
12. Hyers, DH, Isac, G, Rassias, TM: Stability of Functional Equations in Several Variables. Birkhäuser, Boston (1998)
13. Jung, S-M: Hyers-Ulam-Rassias Stability of Functional Equations in Nonlinear Analysis. Springer Optimization and Its

Applications, vol. 48. Springer, New York (2011)
14. Ulam, SM: A Collection of Mathematical Problems. Interscience, New York (1960)
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