Positive solutions and convergence of Mann iterative schemes for a fourth order neutral delay difference equation

Zeqing Liu ${ }^{1}$, Feifei Hou' ${ }^{1}$, Jeong Sheok Ume ${ }^{2 *}$ and Shin Min Kang ${ }^{3}$

Correspondence:
jsume@changwon.ac.kr
${ }^{2}$ Department of Mathematics, Changwon National University, Changwon, 641-773, Korea Full list of author information is available at the end of the article

Abstract

The existence of uncountably many positive solutions and convergence of Mann iterative schemes for a fourth order neutral delay difference equation are proved. Seven examples are included.

MSC: 39A10 Keywords: fourth order neutral delay difference equation; positive solutions; Mann iterative methods; Banach fixed point theorem

1 Introduction and preliminaries

This paper is concerned with the following fourth order neutral delay difference equation

$$
\begin{align*}
& \Delta\left(a_{n} \Delta^{3}\left(x_{n}+b_{n} x_{n-\tau}\right)\right)+\Delta h\left(n, x_{h_{1 n}}, x_{h_{2 n}}, \ldots, x_{h_{k n}}\right) \\
& \quad+f\left(n, x_{f_{1 n}}, x_{f_{2 n}}, \ldots, x_{f_{k n}}\right)=c_{n}, \quad \forall n \geq n_{0}, \tag{1.1}
\end{align*}
$$

where $\tau, k, n_{0} \in \mathbb{N},\left\{a_{n}\right\}_{n \in \mathbb{N}_{n_{0}}} \subset \mathbb{R} \backslash\{0\},\left\{b_{n}\right\}_{n \in \mathbb{N}_{n_{0}}},\left\{c_{n}\right\}_{n \in \mathbb{N}_{n_{0}}} \subset \mathbb{R}, h, f \in C\left(\mathbb{N}_{n_{0}} \times \mathbb{R}^{k}, \mathbb{R}\right)$, $\left\{h_{l n}\right\}_{n \in \mathbb{N}_{n_{0}}},\left\{f_{l n}\right\}_{n \in \mathbb{N}_{n_{0}}} \subseteq \mathbb{N}$ and

$$
\lim _{n \rightarrow \infty} h_{l n}=\lim _{n \rightarrow \infty} f_{l n}=+\infty, \quad l \in\{1,2, \ldots, k\} .
$$

Over the past several decades, a lot of researchers paid much attention to the problems of oscillation, nonoscillation, asymptotic behavior and existence of solutions for some second and third order difference equations, see, for example, [1-14] and the references cited therein. In particular, the researchers [5-8, 12] used fixed point theorems to study the existence of bounded nonoscillatory solutions and positive solutions for the following second and third order nonlinear neutral delay difference equations

$$
\begin{aligned}
& \Delta^{3} x_{n}+f\left(n, x_{n}, x_{n-\tau}\right)=0, \quad \forall n \geq n_{0}, \\
& \Delta^{2}\left(x_{n}+b_{n} x_{n-\tau}\right)+\Delta h\left(n, x_{h_{1 n}}, x_{h_{2 n}}, \ldots, x_{h_{k n}}\right)+f\left(n, x_{f_{1 n}}, x_{f_{2 n}}, \ldots, x_{f_{k n}}\right)=c_{n}, \quad \forall n \geq n_{0}, \\
& \Delta\left(a_{n} \Delta\left(x_{n}+b_{n} x_{n-\tau}\right)\right)+\Delta h\left(n, x_{h_{1 n}}, x_{h_{2 n}}, \ldots, x_{h_{k n}}\right) \\
& \quad+f\left(n, x_{f_{1 n}}, x_{f_{2 n}}, \ldots, x_{f_{k n}}\right)=c_{n}, \quad \forall n \geq n_{0},
\end{aligned}
$$

$$
\Delta\left(a_{n} \Delta^{2}\left(x_{n}+p_{n} x_{n-\tau}\right)\right)+f\left(n, x_{n-d_{1 n}}, x_{n-d_{2 n}}, \ldots, x_{n-d_{l n}}\right)=g_{n}, \quad \forall n \geq n_{0}
$$

and

$$
\Delta^{3}\left(x_{n}+b_{n} x_{n-\tau}\right)+\Delta h\left(n, x_{h_{1 n}}, x_{h_{2 n}}, \ldots, x_{h_{k n}}\right)+f\left(n, x_{f_{1 n}}, x_{f_{2 n}}, \ldots, x_{f_{k n}}\right)=c_{n}, \quad \forall n \geq n_{0}
$$

The main purpose of this paper is to utilize the Banach fixed point theorem and some new techniques to establish the existence of uncountably many positive solutions of Eq. (1.1). Not only do we construct a few Mann iterative algorithms for approximating these positive solutions, but we also prove convergence and the error estimates of the Mann iterative algorithms relative to these positive solutions. Moreover, seven nontrivial examples are given to illustrate our results.
Throughout this paper, we assume that Δ is the forward difference operator defined by $\Delta x_{n}=x_{n+1}-x_{n}, \mathbb{R}=(-\infty,+\infty), \mathbb{R}^{+}=[0,+\infty), \mathbb{N}_{0}$ and \mathbb{N} denote the sets of all nonnegative integers and positive integers, respectively,

$$
\begin{aligned}
& \mathbb{N}_{t}=\{n: n \in \mathbb{N} \text { with } n \geq t\}, \quad \forall t \in \mathbb{N}, \\
& \beta=\min \left\{n_{0}-\tau, \inf \left\{h_{l n}, f_{l n}: 1 \leq l \leq k, n \in \mathbb{N}_{n_{0}}\right\}\right\} \in \mathbb{N}, \\
& H_{n}=\max \left\{h_{l n}^{2}: l \in\{1,2, \ldots, k\}\right\}, \quad F_{n}=\max \left\{f_{l n}^{2}: l \in\{1,2, \ldots, k\}\right\}, \quad \forall n \in \mathbb{N}_{n_{0}},
\end{aligned}
$$

l_{β}^{∞} represents the Banach space of all real sequences $x=\left\{x_{n}\right\}_{n \in \mathbb{N}_{\beta}}$ in \mathbb{N}_{β} with norm

$$
\|x\|=\sup _{n \in \mathbb{N}_{\beta}}\left|\frac{x_{n}}{n^{2}}\right|<+\infty \quad \text { for each } x=\left\{x_{n}\right\}_{n \in \mathbb{N}_{\beta}} \in l_{\beta}^{\infty}
$$

and

$$
A(N, M)=\left\{x=\left\{x_{n}\right\}_{n \in \mathbb{N}_{\beta}} \in l_{\beta}^{\infty}: N \leq \frac{x_{n}}{n^{2}} \leq M, n \in \mathbb{N}_{\beta}\right\} \quad \text { for any } M>N>0
$$

It is clear that $A(N, M)$ is a closed and convex subset of l_{β}^{∞}. By a solution of Eq. (1.1), we mean a sequence $\left\{x_{n}\right\}_{n \in \mathbb{N}_{\beta}}$ with a positive integer $T \geq n_{0}+\tau+\beta$ such that Eq. (1.1) holds for all $n \geq T$.

Lemma 1.1 Let $\left\{p_{t}\right\}_{t \in \mathbb{N}}$ be a nonnegative sequence and $n, \tau \in \mathbb{N}$. Then

$$
\begin{align*}
& \sum_{v=n}^{\infty} \sum_{u=v}^{\infty} \sum_{t=u}^{\infty} p_{t} \leq \sum_{t=n}^{\infty} t^{2} p_{t} ; \tag{1.2}\\
& \sum_{v=n}^{\infty} \sum_{u=v}^{\infty} \sum_{s=u}^{\infty} \sum_{t=s}^{\infty} p_{t} \leq \sum_{t=n}^{\infty} t^{3} p_{t} ; \tag{1.3}\\
& \sum_{i=1}^{\infty} \sum_{u=n+i \tau}^{\infty} \sum_{s=u}^{\infty} \sum_{t=s}^{\infty} p_{t} \leq \frac{1}{\tau} \sum_{t=n+\tau}^{\infty} t^{3} p_{t} ; \tag{1.4}\\
& \sum_{i=1}^{\infty} \sum_{v=n+i \tau}^{\infty} \sum_{u=v}^{\infty} \sum_{s=u}^{\infty} \sum_{t=s}^{\infty} p_{t} \leq \frac{1}{\tau} \sum_{t=n+\tau}^{\infty} t^{4} p_{t} . \tag{1.5}
\end{align*}
$$

Proof Note that

$$
\begin{aligned}
\sum_{v=n}^{\infty} \sum_{u=v}^{\infty} \sum_{t=u}^{\infty} p_{t} & =\sum_{v=n}^{\infty}\left(\sum_{u=v}^{\infty} \sum_{t=u}^{\infty} p_{t}\right) \\
& =\sum_{v=n}^{\infty}\left(\sum_{t=v}^{\infty} p_{t}+\sum_{t=v+1}^{\infty} p_{t}+\sum_{t=v+2}^{\infty} p_{t}+\cdots\right) \\
& =\sum_{v=n}^{\infty} \sum_{t=v}^{\infty}(t-v+1) p_{t} \leq \sum_{v=n}^{\infty} \sum_{t=v}^{\infty} t p_{t}=\sum_{t=n}^{\infty}(t-n+1) t p_{t} \\
& \leq \sum_{t=n}^{\infty} t^{2} p_{t}
\end{aligned}
$$

and

$$
\begin{aligned}
\sum_{i=1}^{\infty} \sum_{u=n+i \tau}^{\infty} \sum_{s=u}^{\infty} \sum_{t=s}^{\infty} p_{t} & =\sum_{i=1}^{\infty} \sum_{u=n+i \tau}^{\infty}\left(\sum_{s=u}^{\infty} \sum_{t=s}^{\infty} p_{t}\right) \\
& =\sum_{i=1}^{\infty} \sum_{u=n+i \tau}^{\infty} \sum_{t=u}^{\infty}(t-u+1) p_{t} \leq \sum_{i=1}^{\infty} \sum_{u=n+i \tau}^{\infty} \sum_{t=u}^{\infty} t p_{t} \\
& =\sum_{i=1}^{\infty}\left(\sum_{t=n+i \tau}^{\infty} t p_{t}+\sum_{t=n+1+i \tau}^{\infty} t p_{t}+\sum_{t=n+2+i \tau}^{\infty} t p_{t}+\cdots\right) \\
& =\sum_{i=1}^{\infty} \sum_{t=n+i \tau}^{\infty}(t-n-i \tau+1) t p_{t} \leq \sum_{i=1}^{\infty} \sum_{t=n+i \tau}^{\infty} t^{2} p_{t} \\
& =\sum_{t=n+\tau}^{\infty} t^{2} p_{t}+\sum_{t=n+2 \tau}^{\infty} t^{2} p_{t}+\sum_{t=n+3 \tau}^{\infty} t^{2} p_{t}+\cdots \\
& \leq \sum_{t=n+\tau}^{\infty}\left(\frac{t-n-\tau}{\tau}+1\right) t^{2} p_{t}=\sum_{t=n+\tau}^{\infty} \frac{t-n}{\tau} t^{2} p_{t} \\
& \leq \frac{1}{\tau} \sum_{t=n+\tau}^{\infty} t^{3} p_{t}
\end{aligned}
$$

which imply (1.2) and (1.4), respectively. It follows from (1.2) and (1.4) that

$$
\begin{aligned}
\sum_{v=n}^{\infty} \sum_{u=v}^{\infty} \sum_{s=u}^{\infty} \sum_{t=s}^{\infty} p_{t} & =\sum_{v=n}^{\infty}\left(\sum_{u=v}^{\infty} \sum_{s=u}^{\infty} \sum_{t=s}^{\infty} p_{t}\right) \leq \sum_{v=n}^{\infty} \sum_{t=v}^{\infty} t^{2} p_{t}=\sum_{t=n}^{\infty}(t-n+1) t^{2} p_{t} \\
& \leq \sum_{t=n}^{\infty} t^{3} p_{t}
\end{aligned}
$$

and

$$
\begin{aligned}
\sum_{i=1}^{\infty} \sum_{v=n+i \tau}^{\infty} \sum_{u=v}^{\infty} \sum_{s=u}^{\infty} \sum_{t=s}^{\infty} p_{t} & =\sum_{i=1}^{\infty} \sum_{v=n+i \tau}^{\infty} \sum_{u=v}^{\infty}\left(\sum_{s=u}^{\infty} \sum_{t=s}^{\infty} p_{t}\right) \\
& =\sum_{i=1}^{\infty} \sum_{v=n+i \tau}^{\infty} \sum_{u=v}^{\infty} \sum_{t=u}^{\infty}(t-u-1) p_{t}
\end{aligned}
$$

$$
\begin{aligned}
& \leq \sum_{i=1}^{\infty} \sum_{v=n+i \tau}^{\infty} \sum_{u=v}^{\infty} \sum_{t=u}^{\infty} t p_{t} \\
& \leq \frac{1}{\tau} \sum_{t=n+\tau}^{\infty} t^{4} p_{t}
\end{aligned}
$$

which yields (1.3) and (1.5), respectively. This completes the proof.

2 Uncountably many positive solutions and Mann iterative sequences

In this section, we discuss the existence of uncountably many positive solutions of Eq. (1.1) and prove convergence and the error estimates of the Mann iterative algorithms with respect to these positive solutions by using the Banach fixed point theorem.

Theorem 2.1 Assume that there exist two constants M and N with $M>N>0$ and four nonnegative sequences $\left\{P_{n}\right\}_{n \in \mathbb{N}_{n_{0}}},\left\{Q_{n}\right\}_{n \in \mathbb{N}_{n_{0}}},\left\{R_{n}\right\}_{n \in \mathbb{N}_{n_{0}}}$ and $\left\{W_{n}\right\}_{n \in \mathbb{N}_{n_{0}}}$ satisfying

$$
\begin{align*}
& \left|f\left(n, u_{1}, u_{2}, \ldots, u_{k}\right)-f\left(n, \bar{u}_{1}, \bar{u}_{2}, \ldots, \bar{u}_{k}\right)\right| \leq P_{n} \max \left\{\left|u_{l}-\bar{u}_{l}\right|: 1 \leq l \leq k\right\} \\
& \left|h\left(n, u_{1}, u_{2}, \ldots, u_{k}\right)-h\left(n, \bar{u}_{1}, \bar{u}_{2}, \ldots, \bar{u}_{k}\right)\right| \leq R_{n} \max \left\{\left|u_{l}-\bar{u}_{l}\right|: 1 \leq l \leq k\right\} \\
& \quad \forall\left(n, u_{l}, \bar{u}_{l}\right) \in \mathbb{N}_{n_{0}} \times\left(\mathbb{R}^{+} \backslash\{0\}\right)^{2}, 1 \leq l \leq k ; \tag{2.1}\\
& \left|f\left(n, u_{1}, u_{2}, \ldots, u_{k}\right)\right| \leq Q_{n} \text { and }\left|h\left(n, u_{1}, u_{2}, \ldots, u_{k}\right)\right| \leq W_{n}, \\
& \quad \forall\left(n, u_{l}\right) \in \mathbb{N}_{n_{0}} \times\left(\mathbb{R}^{+} \backslash\{0\}\right), 1 \leq l \leq k ; \tag{2.2}\\
& \lim _{n \rightarrow \infty} \frac{1}{n^{2}} \sum_{i=1}^{\infty} \sum_{v=n+i \tau}^{\infty} \sum_{u=v}^{\infty} \sum_{s=u}^{\infty} \frac{1}{\left|a_{s}\right|} \max \left\{R_{s} H_{s}, W_{s}\right\}=0 ; \tag{2.3}\\
& \lim _{n \rightarrow \infty} \frac{1}{n^{2}} \sum_{i=1}^{\infty} \sum_{v=n+i \tau}^{\infty} \sum_{u=v}^{\infty} \sum_{s=u}^{\infty} \sum_{t=s}^{\infty} \frac{1}{\left|a_{s}\right|} \max \left\{P_{t} F_{t}, Q_{t},\left|c_{t}\right|\right\}=0 ; \tag{2.4}\\
& b_{n}=-1 \text { eventually. } \tag{2.5}
\end{align*}
$$

Then
(a) for any $L \in(N, M)$, there exist $\theta \in(0,1)$ and $T \geq n_{0}+\tau+\beta$ such that for each $x_{0}=\left\{x_{0 n}\right\}_{n \in \mathbb{N}_{\beta}} \in A(N, M)$, the Mann iterative sequence $\left\{x_{m}\right\}_{m \in \mathbb{N}_{0}}=\left\{\left\{x_{m n}\right\}_{n \in \mathbb{N}_{\beta}}\right\}_{m \in \mathbb{N}_{0}}$ generated by the scheme:

$$
x_{m+1 n}=\left\{\begin{array}{l}
\left(1-\alpha_{m}\right) x_{m n}+\alpha_{m}\left\{n^{2} L\right. \tag{2.6}\\
\quad-\sum_{i=1}^{\infty} \sum_{v=n+i \tau}^{\infty} \sum_{u=v}^{\infty} \sum_{s=u}^{\infty} \frac{1}{a_{s}}\left[h\left(s, x_{m h_{1 s}}, x_{m h_{2 s}}, \ldots, x_{m h_{k s}}\right)\right. \\
\left.\left.\quad-\sum_{t=s}^{\infty}\left(f\left(t, x_{m f_{1 t}}, x_{m f_{22}}, \ldots, x_{m f_{k t}}\right)-c_{t}\right)\right]\right\}, \quad m \geq 0, n \geq T, \\
\left(1-\alpha_{m}\right) \frac{n^{2}}{T^{2}} x_{m T}+\alpha_{m} \frac{n^{2}}{T^{2}}\left\{T^{2} L\right. \\
\quad-\sum_{i=1}^{\infty} \sum_{v=T+i \tau}^{\infty} \sum_{u=v}^{\infty} \sum_{s=u}^{\infty} \frac{1}{a_{s}}\left[h\left(s, x_{m h_{1 s}}, x_{m h_{2 s}}, \ldots, x_{m h_{k s}}\right)\right. \\
\left.\left.\quad-\sum_{t=s}^{\infty}\left(f\left(t, x_{m f_{1} t}, x_{m f_{2 t}}, \ldots, x_{m f_{k t}}\right)-c_{t}\right)\right]\right\}, \quad m \geq 0, \beta \leq n<T
\end{array}\right.
$$

converges to a positive solution $w=\left\{w_{n}\right\}_{n \in \mathbb{N}_{\beta}} \in A(N, M)$ of Eq. (1.1) with

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \frac{w_{n}}{n^{2}}=L \in(N, M) \tag{2.7}
\end{equation*}
$$

and has the following error estimate:

$$
\begin{equation*}
\left\|x_{m+1}-w\right\| \leq e^{-(1-\theta) \sum_{i=0}^{m} \alpha_{i}}\left\|x_{0}-w\right\|, \quad \forall m \in \mathbb{N}_{0} \tag{2.8}
\end{equation*}
$$

where $\left\{\alpha_{m}\right\}_{m \in \mathbb{N}_{0}}$ is an arbitrary sequence in $[0,1]$ with

$$
\begin{equation*}
\sum_{m=0}^{\infty} \alpha_{m}=+\infty ; \tag{2.9}
\end{equation*}
$$

(b) Equation (1.1) possesses uncountably many positive solutions in $A(N, M)$.

Proof In the first place we show that (a) holds. Set $L \in(N, M)$. It follows from (2.3)-(2.5) that there exist $\theta \in(0,1)$ and $T \geq n_{0}+\tau+\beta$ satisfying

$$
\begin{align*}
& \theta=\frac{1}{T^{2}} \sum_{i=1}^{\infty} \sum_{v=T+i \tau}^{\infty} \sum_{u=v}^{\infty} \sum_{s=u}^{\infty} \frac{1}{\left|a_{s}\right|}\left(R_{s} H_{s}+\sum_{t=s}^{\infty} P_{t} F_{t}\right) ; \tag{2.10}\\
& \frac{1}{T^{2}} \sum_{i=1}^{\infty} \sum_{v=T+i \tau}^{\infty} \sum_{u=v}^{\infty} \sum_{s=u}^{\infty} \frac{1}{\left|a_{s}\right|}\left(W_{s}+\sum_{t=s}^{\infty}\left(Q_{t}+\left|c_{t}\right|\right)\right)<\min \{M-L, L-N\} ; \tag{2.11}\\
& b_{n}=-1, \quad \forall n \geq T . \tag{2.12}
\end{align*}
$$

Define a mapping $S_{L}: A(N, M) \rightarrow l_{\beta}^{\infty}$ by

$$
S_{L} x_{n}=\left\{\begin{array}{l}
n^{2} L-\sum_{i=1}^{\infty} \sum_{v=n+i \tau}^{\infty} \sum_{u=v}^{\infty} \sum_{s=u}^{\infty} \frac{1}{a_{s}}\left\{h\left(s, x_{h_{1 s}}, x_{h_{2 s}}, \ldots, x_{h_{k s}}\right)\right. \tag{2.13}\\
\left.\quad-\sum_{t=s}^{\infty}\left[f\left(t, x_{f_{t} t}, x_{f_{2 t}}, \ldots, x_{f_{k t}}\right)-c_{t}\right]\right\}, \quad n \geq T, \\
\frac{n^{2}}{T^{2}} S_{L} x_{T}, \quad \beta \leq n<T
\end{array}\right.
$$

for each $x=\left\{x_{n}\right\}_{n \in \mathbb{N}_{\beta}} \in A(N, M)$. By virtue of (2.1), (2.2), (2.10), (2.11) and (2.13), we gain that for each $x=\left\{x_{n}\right\}_{n \in \mathbb{N}_{\beta}}, y=\left\{y_{n}\right\}_{n \in \mathbb{N}_{\beta}} \in A(N, M)$

$$
\begin{aligned}
& \left|\frac{S_{L} x_{n}}{n^{2}}-\frac{S_{L} y_{n}}{n^{2}}\right| \\
& \leq \frac{1}{n^{2}} \sum_{i=1}^{\infty} \sum_{v=n+i \tau}^{\infty} \sum_{u=v}^{\infty} \sum_{s=u}^{\infty} \frac{1}{\left|a_{s}\right|}\left(\left|h\left(s, x_{h_{1 s}}, x_{h_{2 s}}, \ldots, x_{h_{k s}}\right)-h\left(s, y_{h_{1 s}}, y_{h_{2 s}}, \ldots, y_{h_{k s}}\right)\right|\right. \\
& \left.+\sum_{t=s}^{\infty}\left|f\left(t, x_{f_{1 t}}, x_{f_{2} t}, \ldots, x_{f_{k t}}\right)-f\left(t, y_{f_{1 t}}, y_{f_{2 t}}, \ldots, y_{f_{k t}}\right)\right|\right) \\
& \leq \frac{1}{n^{2}} \sum_{i=1}^{\infty} \sum_{v=n+i \tau}^{\infty} \sum_{u=v}^{\infty} \sum_{s=u}^{\infty} \frac{1}{\left|a_{s}\right|}\left(R_{s} \max \left\{\left|x_{h_{l s}}-y_{h_{l s}}\right|: 1 \leq l \leq k\right\}\right. \\
& \left.+\sum_{t=s}^{\infty} P_{t} \max \left\{\left|x_{f_{l t}}-y_{f_{t l}}\right|: 1 \leq l \leq k\right\}\right) \\
& \leq \frac{\|x-y\|}{n^{2}} \sum_{i=1}^{\infty} \sum_{v=n+i \tau}^{\infty} \sum_{u=v}^{\infty} \sum_{s=u}^{\infty} \frac{1}{\left|a_{s}\right|}\left(R_{s} \max \left\{h_{l s}^{2}: 1 \leq l \leq k\right\}\right.
\end{aligned}
$$

$$
\begin{aligned}
& \left.+\sum_{t=s}^{\infty} P_{t} \max \left\{f_{l t}^{2}: 1 \leq l \leq k\right\}\right) \\
& \leq \frac{\|x-y\|}{T^{2}} \sum_{i=1}^{\infty} \sum_{v=T+i \tau}^{\infty} \sum_{u=v}^{\infty} \sum_{s=u}^{\infty} \frac{1}{\left|a_{s}\right|}\left(R_{s} H_{s}+\sum_{t=s}^{\infty} P_{t} F_{t}\right) \\
& =\theta\|x-y\|, \quad \forall n \geq T, \\
& \left|\frac{S_{L} x_{n}}{n^{2}}-\frac{S_{L} y_{n}}{n^{2}}\right|=\left|\frac{S_{L} x_{T}}{T^{2}}-\frac{S_{L} y_{T}}{T^{2}}\right| \leq \theta\|x-y\|, \quad \beta \leq n<T, \\
& \left|\frac{S_{L} x_{n}}{n^{2}}-L\right| \\
& =\left\lvert\, \frac{1}{n^{2}} \sum_{i=1}^{\infty} \sum_{v=n+i \tau}^{\infty} \sum_{u=v}^{\infty} \sum_{s=u}^{\infty} \frac{1}{a_{s}}\left(h\left(s, x_{h_{1 s}}, x_{h_{2 s}}, \ldots, x_{h_{k s}}\right)\right.\right. \\
& \left.-\sum_{t=s}^{\infty}\left[f\left(t, x_{f_{1 t}}, x_{f_{2 t}}, \ldots, x_{f_{k t}}\right)-c_{t}\right]\right) \mid \\
& \leq \frac{1}{n^{2}} \sum_{i=1}^{\infty} \sum_{v=n+i \tau}^{\infty} \sum_{u=v}^{\infty} \sum_{s=u}^{\infty} \frac{1}{\left|a_{s}\right|}\left(\left|h\left(s, x_{h_{1 s}}, x_{h_{2 s}}, \ldots, x_{h_{k s}}\right)\right|\right. \\
& \left.+\sum_{t=s}^{\infty}\left[\left|f\left(t, x_{f_{1 t}}, x_{f_{2 t}}, \ldots, x_{f_{k t}}\right)\right|+\left|c_{t}\right|\right]\right) \\
& \leq \frac{1}{T^{2}} \sum_{i=1}^{\infty} \sum_{v=T+i \tau}^{\infty} \sum_{u=v}^{\infty} \sum_{s=u}^{\infty} \frac{1}{\left|a_{s}\right|}\left(W_{s}+\sum_{t=s}^{\infty}\left(Q_{t}+\left|c_{t}\right|\right)\right) \\
& <\min \{M-L, L-N\}, \quad \forall n \geq T, \\
& \left|\frac{S_{L} x_{n}}{n^{2}}-L\right|=\left|\frac{S_{L} x_{T}}{T^{2}}-L\right|<\min \{M-L, L-N\}, \quad \beta \leq n<T,
\end{aligned}
$$

which yield that

$$
\begin{equation*}
S_{L}(A(N, M)) \subseteq A(N, M), \quad\left\|S_{L} x-S_{L} y\right\| \leq \theta\|x-y\|, \quad \forall x, y \in A(N, M) \tag{2.14}
\end{equation*}
$$

which means that S_{L} is a contraction in $A(N, M)$. Utilizing the Banach fixed point theorem, we conclude that S_{L} has a unique fixed point $w=\left\{w_{n}\right\}_{n \in \mathbb{N}_{\beta}} \in A(N, M)$, that is,

$$
\begin{align*}
w_{n}=S_{L} w_{n}= & n^{2} L-\sum_{i=1}^{\infty} \sum_{v=n+i \tau}^{\infty} \sum_{u=v}^{\infty} \sum_{s=u}^{\infty} \frac{1}{a_{s}}\left\{h\left(s, w_{h_{1 s}}, w_{h_{2 s}}, \ldots, w_{h_{k s}}\right)\right. \\
& \left.-\sum_{t=s}^{\infty}\left[f\left(t, w_{f_{1 t}}, w_{f_{2 t}}, \ldots, w_{f_{k t}}\right)-c_{t}\right]\right\}, \quad \forall n \geq T \tag{2.15}
\end{align*}
$$

and

$$
\begin{equation*}
w_{n}=S_{L} w_{n}=\frac{n^{2}}{T^{2}} S_{L} w_{T}=\frac{n^{2}}{T^{2}} w_{T}, \quad \beta \leq n<T \tag{2.16}
\end{equation*}
$$

It is obvious that (2.15) yields that

$$
\begin{gathered}
w_{n-\tau}=(n-\tau)^{2} L-\sum_{i=1}^{\infty} \sum_{v=n+(i-1) \tau}^{\infty} \sum_{u=v}^{\infty} \sum_{s=u}^{\infty} \frac{1}{a_{s}}\left\{h\left(s, w_{h_{1 s}}, w_{h_{2 s}}, \ldots, w_{h_{k s}}\right)\right. \\
\left.-\sum_{t=s}^{\infty}\left[f\left(t, w_{f_{1 t}}, w_{f_{2 t}}, \ldots, w_{f_{k t}}\right)-c_{t}\right]\right\}, \quad \forall n \geq T+\tau \\
w_{n}-w_{n-\tau}=\left(2 n \tau-\tau^{2}\right) L+\sum_{v=n}^{\infty} \sum_{u=v}^{\infty} \sum_{s=u}^{\infty} \frac{1}{a_{s}}\left\{h\left(s, w_{h_{1 s}}, w_{h_{2 s}}, \ldots, w_{h_{k s}}\right)\right. \\
\left.-\sum_{t=s}^{\infty}\left[f\left(t, w_{f_{1 t}}, w_{f_{2 t}}, \ldots, w_{f_{k t}}\right)-c_{t}\right]\right\}, \quad \forall n \geq T+\tau
\end{gathered}
$$

which implies that

$$
\begin{aligned}
& \Delta\left(w_{n}-w_{n-\tau}\right)= 2 \tau L-\sum_{u=n}^{\infty} \sum_{s=u}^{\infty} \frac{1}{a_{s}}\left\{h\left(s, w_{h_{1 s}}, w_{h_{2 s}}, \ldots, w_{h_{k s}}\right)\right. \\
&\left.-\sum_{t=s}^{\infty}\left[f\left(t, w_{f_{11},}, w_{f_{2 t}}, \ldots, w_{f_{k t}}\right)-c_{t}\right]\right\}, \quad \forall n \geq T+\tau, \\
& \begin{aligned}
\Delta^{2}\left(w_{n}-w_{n-\tau}\right)= & \sum_{s=n}^{\infty} \frac{1}{a_{s}}\left\{h\left(s, w_{h_{1 s}}, w_{h_{2 s}}, \ldots, w_{h_{k s}}\right)\right. \\
& \left.-\sum_{t=s}^{\infty}\left[f\left(t, w_{f_{11}}, w_{f_{2 t}}, \ldots, w_{f_{k t}}\right)-c_{t}\right]\right\}, \quad \forall n \geq T+\tau, \\
a_{n} \Delta^{3}\left(w_{n}-w_{n-\tau}\right)= & -h\left(n, w_{h_{1 n}}, w_{h_{2 n}}, \ldots, w_{h_{k n}}\right) \\
& +\sum_{t=n}^{\infty}\left[f\left(t, w_{f_{11}}, w_{f_{22}}, \ldots, w_{f_{k t}}\right)-c_{t}\right], \quad \forall n \geq T+\tau
\end{aligned}
\end{aligned}
$$

and

$$
\begin{aligned}
\Delta\left(a_{n} \Delta^{3}\left(w_{n}-w_{n-\tau}\right)\right)= & -\Delta h\left(n, w_{h_{1 n}}, w_{h_{2 n}}, \ldots, w_{h_{k n}}\right) \\
& -f\left(n, w_{f_{1 n}}, w_{f_{2 n}}, \ldots, w_{f_{k n}}\right)+c_{n}, \quad \forall n \geq T+\tau
\end{aligned}
$$

which together with (2.12) means that $w=\left\{w_{n}\right\}_{n \in \mathbb{N}_{\beta}}$ is a positive solution of Eq. (1.1) in $A(N, M)$. It follows from (2.2)-(2.4) and (2.15) that

$$
\begin{aligned}
& \left|\frac{w_{n}}{n^{2}}-L\right| \\
& \quad=\left\lvert\, \frac{1}{n^{2}} \sum_{i=1}^{\infty} \sum_{v=n+i \tau}^{\infty} \sum_{u=v}^{\infty} \sum_{s=u}^{\infty} \frac{1}{a_{s}}\left(h\left(s, w_{h_{1 s}}, w_{h_{2 s}}, \ldots, w_{h_{k s}}\right)\right.\right. \\
& \left.\quad-\sum_{t=s}^{\infty}\left[f\left(t, w_{f_{11}}, w_{f_{2 t}}, \ldots, w_{f_{k t}}\right)-c_{t}\right]\right) \mid \\
& \quad \leq \frac{1}{n^{2}} \sum_{i=1}^{\infty} \sum_{v=n+i \tau}^{\infty} \sum_{u=v}^{\infty} \sum_{s=u}^{\infty} \frac{1}{\left|a_{s}\right|}\left(\left|h\left(s, w_{h_{1 s}}, w_{h_{2 s}}, \ldots, w_{h_{k s}}\right)\right|\right.
\end{aligned}
$$

$$
\begin{aligned}
& \left.+\sum_{t=s}^{\infty}\left[\left|f\left(t, w_{f_{1 t}}, w_{f_{2 t}}, \ldots, w_{f_{k t}}\right)\right|+\left|c_{t}\right|\right]\right) \\
\leq & \frac{1}{n^{2}} \sum_{i=1}^{\infty} \sum_{v=n+i \tau}^{\infty} \sum_{u=v}^{\infty} \sum_{s=u}^{\infty} \frac{1}{\left|a_{s}\right|}\left(W_{s}+\sum_{t=s}^{\infty}\left(Q_{t}+\left|c_{t}\right|\right)\right) \\
\rightarrow & 0 \text { as } n \rightarrow \infty
\end{aligned}
$$

that is, (2.7) holds. It follows from (2.6), (2.10), (2.12) and (2.14)-(2.16) that

$$
\begin{aligned}
& \frac{\left|x_{m+1 n}-w_{n}\right|}{n^{2}} \\
& \quad=\frac{1}{n^{2}} \left\lvert\,\left(1-\alpha_{m}\right) x_{m n}+\alpha_{m}\left\{n^{2} L-\sum_{i=1}^{\infty} \sum_{v=n+i \tau}^{\infty} \sum_{u=v}^{\infty} \sum_{s=u}^{\infty} \frac{1}{a_{s}}\left[h\left(s, x_{m h_{1 s}}, x_{m h_{2 s}}, \ldots, x_{m h_{k s}}\right)\right.\right.\right. \\
& \left.\left.\quad-\sum_{t=s}^{\infty}\left[f\left(t, x_{m f_{1}}, x_{m f_{2} t}, \ldots, x_{m f_{k t}}\right)-c_{t}\right]\right]\right\}-w_{n} \mid \\
& \quad \leq\left(1-\alpha_{m}\right) \frac{\left|x_{m n}-w_{n}\right|}{n^{2}}+\alpha_{m} \frac{\left|S_{L} x_{m n}-S_{L} w_{n}\right|}{n^{2}} \\
& \quad \leq\left(1-\alpha_{m}\right)\left\|x_{m}-w\right\|+\theta \alpha_{m}\left\|x_{m}-w\right\| \\
& =\left[1-(1-\theta) \alpha_{m}\right]\left\|x_{m}-w\right\| \\
& \leq e^{-(1-\theta) \alpha_{m}}\left\|x_{m}-w\right\|, \quad \forall m \in \mathbb{N}_{0}, n \geq T
\end{aligned}
$$

and

$$
\begin{aligned}
& \frac{\left|x_{m+1 n}-w_{n}\right|}{n^{2}} \\
& =\frac{1}{n^{2}} \left\lvert\,\left(1-\alpha_{m}\right) \frac{n^{2}}{T^{2}} x_{m T}\right. \\
& +\alpha_{m} \frac{n^{2}}{T^{2}}\left\{T^{2} L-\sum_{i=1}^{\infty} \sum_{v=T+i \tau}^{\infty} \sum_{u=v}^{\infty} \sum_{s=u}^{\infty} \frac{1}{a_{s}}\left[h\left(s, x_{m h_{1 s}}, x_{m h_{2 s}}, \ldots, x_{m h_{k s}}\right)\right.\right. \\
& \left.\left.-\sum_{t=s}^{\infty}\left[f\left(t, x_{m f_{1}}, x_{m f_{2} t}, \ldots, x_{m f_{k t}}\right)-c_{t}\right]\right]\right\}-w_{n} \mid \\
& \leq\left(1-\alpha_{m}\right) \frac{\left|x_{m T}-w_{T}\right|}{T^{2}}+\alpha_{m} \frac{\left|S_{L} x_{m T}-S_{L} w_{T}\right|}{T^{2}} \\
& \leq\left[1-(1-\theta) \alpha_{m}\right]\left\|x_{m}-w\right\| \\
& \leq e^{-(1-\theta) \alpha_{m}}\left\|x_{m}-w\right\|, \quad \forall m \in \mathbb{N}_{0}, \beta \leq n<T,
\end{aligned}
$$

which imply that

$$
\left\|x_{m+1}-w\right\| \leq e^{-(1-\theta) \alpha_{m}}\left\|x_{m}-w\right\| \leq e^{-(1-\theta) \sum_{i=0}^{m} \alpha_{i}}\left\|x_{0}-w\right\|, \quad \forall m \in \mathbb{N}_{0}
$$

that is, (2.8) holds. Thus (2.8) and (2.9) guarantee that $\lim _{m \rightarrow \infty} x_{m}=w$.
In the next place we show that (b) holds. Let $L_{1}, L_{2} \in(N, M)$ and $L_{1} \neq L_{2}$. As in the proof of (a), we deduce similarly that for each $c \in\{1,2\}$, there exist constants $\theta_{c} \in(0,1), T_{c} \geq$
$n_{0}+\tau+\beta$ and a mapping $S_{L_{c}}$ satisfying (2.10)-(2.14), where θ, L and T are replaced by θ_{c}, L_{c} and T_{c}, respectively, and the mapping $S_{L_{c}}$ has a fixed point $z^{c}=\left\{z_{n}^{c}\right\}_{n \in \mathbb{N}_{\beta}} \in A(N, M)$, which is a positive solution of Eq. (1.1) in $A(N, M)$, that is,

$$
\begin{aligned}
z_{n}^{c}= & n^{2} L_{c}-\sum_{i=1}^{\infty} \sum_{v=n+i \tau}^{\infty} \sum_{u=v}^{\infty} \sum_{s=u}^{\infty} \frac{1}{a_{s}}\left\{h\left(s, z_{h_{1 s}}^{c}, z_{h_{2 s}}^{c}, \ldots, z_{h_{k s}}^{c}\right)\right. \\
& \left.-\sum_{t=s}^{\infty}\left[f\left(t, z_{f_{1 t}}^{c}, z_{f_{2 t}}^{c}, \ldots, z_{f_{k t}}^{c}\right)-c_{t}\right]\right\}, \quad \forall n \geq T_{c},
\end{aligned}
$$

which together with (2.1), (2.10) and (2.12) implies that

$$
\begin{aligned}
& \left|\frac{z_{n}^{1}}{n^{2}}-\frac{z_{n}^{2}}{n^{2}}\right| \\
& \geq\left|L_{1}-L_{2}\right|-\frac{1}{n^{2}} \sum_{i=1}^{\infty} \sum_{v=n+i \tau}^{\infty} \sum_{u=v}^{\infty} \sum_{s=u}^{\infty} \frac{1}{\left|a_{s}\right|}\left(\mid h\left(s, z_{h_{1 s}}^{1}, z_{h_{2 s}}^{1}, \ldots, z_{h_{k s}}^{1}\right)\right. \\
& \left.-h\left(s, z_{h_{1 s}}^{2}, z_{h_{2 s}}^{2}, \ldots, z_{h_{k s}}^{2}\right)\left|+\sum_{t=s}^{\infty}\right| f\left(t, z_{f_{1 t}}^{1}, z_{f_{2 t} t}^{1}, \ldots, z_{f_{k t}}^{1}\right)-f\left(t, z_{f_{1 t}}^{2}, z_{f_{2 t} t}^{2}, \ldots, z_{f_{k t}}^{2}\right) \mid\right) \\
& \geq\left|L_{1}-L_{2}\right|-\frac{1}{n^{2}} \sum_{i=1}^{\infty} \sum_{v=n+i \tau}^{\infty} \sum_{u=v}^{\infty} \sum_{s=u}^{\infty} \frac{1}{\left|a_{s}\right|}\left(R_{s} \max \left\{\left|z_{h_{l s}}^{1}-z_{h_{l s}}^{2}\right|: 1 \leq l \leq k\right\}\right. \\
& \left.+\sum_{t=s}^{\infty} P_{t} \max \left\{\left|z_{f_{l t}}^{1}-z_{f_{t t}}^{2}\right|: 1 \leq l \leq k\right\}\right) \\
& \geq\left|L_{1}-L_{2}\right|-\frac{\left\|z^{1}-z^{2}\right\|}{n^{2}} \sum_{i=1}^{\infty} \sum_{v=n+i \tau}^{\infty} \sum_{u=v}^{\infty} \sum_{s=u}^{\infty} \frac{1}{\left|a_{s}\right|}\left(R_{s} H_{s}+\sum_{t=s}^{\infty} P_{t} F_{t}\right) \\
& \geq\left|L_{1}-L_{2}\right|-\frac{\left\|z^{1}-z^{2}\right\|}{\max \left\{T_{1}^{2}, T_{2}^{2}\right\}} \sum_{i=1}^{\infty} \sum_{v=\max \left\{T_{1}, T_{2}\right\}+i \tau}^{\infty} \sum_{u=v}^{\infty} \sum_{s=u}^{\infty} \frac{1}{\left|a_{s}\right|}\left(R_{s} H_{s}+\sum_{t=s}^{\infty} P_{t} F_{t}\right) \\
& \geq\left|L_{1}-L_{2}\right|-\max \left\{\theta_{1}, \theta_{2}\right\}\left\|z^{1}-z^{2}\right\|, \quad \forall n \geq \max \left\{T_{1}, T_{2}\right\},
\end{aligned}
$$

which yields that

$$
\left\|z^{1}-z^{2}\right\| \geq \frac{\left|L_{1}-L_{2}\right|}{1+\max \left\{\theta_{1}, \theta_{2}\right\}}>0
$$

that is, $z^{1} \neq z^{2}$. This completes the proof.

Theorem 2.2 Assume that there exist two constants M and N with $M>N>0$ and four nonnegative sequences $\left\{P_{n}\right\}_{n \in \mathbb{N}_{n_{0}}},\left\{Q_{n}\right\}_{n \in \mathbb{N}_{n_{0}}},\left\{R_{n}\right\}_{n \in \mathbb{N}_{n_{0}}}$ and $\left\{W_{n}\right\}_{n \in \mathbb{N}_{n_{0}}}$ satisfying (2.1), (2.2),

$$
\begin{align*}
& \lim _{n \rightarrow \infty} \frac{1}{n^{2}} \sum_{v=n}^{\infty} \sum_{u=v}^{\infty} \sum_{s=u}^{\infty} \frac{1}{\left|a_{s}\right|} \max \left\{R_{s} H_{s}, W_{s}\right\}=0 \tag{2.17}\\
& \lim _{n \rightarrow \infty} \frac{1}{n^{2}} \sum_{v=n}^{\infty} \sum_{u=v}^{\infty} \sum_{s=u}^{\infty} \sum_{t=s}^{\infty} \frac{1}{\left|a_{s}\right|} \max \left\{P_{t} F_{t}, Q_{t},\left|c_{t}\right|\right\}=0 \tag{2.18}\\
& b_{n}=1 \text { eventually. } \tag{2.19}
\end{align*}
$$

Then

(a) for any $L \in(N, M)$, there exist $\theta \in(0,1)$ and $T \geq n_{0}+\tau+\beta$ such that for each $x_{0}=\left\{x_{0 n}\right\}_{n \in \mathbb{N}_{\beta}} \in A(N, M)$, the Mann iterative sequence $\left\{x_{m}\right\}_{m \in \mathbb{N}_{0}}=\left\{\left\{x_{m n}\right\}_{n \in \mathbb{N}_{\beta}}\right\}_{m \in \mathbb{N}_{0}}$ generated by the scheme:

$$
x_{m+1 n}=\left\{\begin{array}{l}
\left(1-\alpha_{m}\right) x_{m n}+\alpha_{m}\left\{n^{2} L\right. \tag{2.20}\\
\quad+\sum_{i=1}^{\infty} \sum_{v=n+(2 i-1) \tau}^{n+2 i \tau-1} \sum_{u=v}^{\infty} \sum_{s=u}^{\infty} \frac{1}{a_{s}}\left[h\left(s, x_{m h_{1 s}}, x_{m h_{2 s}}, \ldots, x_{m h_{k s}}\right)\right. \\
\left.\left.\quad-\sum_{t=s}^{\infty}\left(f\left(t, x_{m f_{1 t}}, x_{m f_{2 t}}, \ldots, x_{m f_{k t}}\right)-c_{t}\right)\right]\right\}, \quad m \geq 0, n \geq T, \\
\left(1-\alpha_{m}\right) \frac{n^{2}}{T^{2}} x_{m T}+\alpha_{m} \frac{n^{2}}{T^{2}}\left\{T^{2} L\right. \\
\quad+\sum_{i=1}^{\infty} \sum_{v=T+(2 i-1) \tau}^{T+2 i \tau-1} \sum_{u=v}^{\infty} \sum_{s=u}^{\infty} \frac{1}{a_{s}}\left[h\left(s, x_{m h_{1 s}}, x_{m h_{2 s}}, \ldots, x_{m h_{k s}}\right)\right. \\
\left.\left.\quad-\sum_{t=s}^{\infty}\left(f\left(t, x_{m f_{1 t}}, x_{m f_{2 t}}, \ldots, x_{m f_{k t}}\right)-c_{t}\right)\right]\right\}, \quad m \geq 0, \beta \leq n<T
\end{array}\right.
$$

converges to a positive solution $w=\left\{w_{n}\right\}_{n \in \mathbb{N}_{\beta}} \in A(N, M)$ of Eq. (1.1) with (2.7) and has the error estimate (2.8), where $\left\{\alpha_{m}\right\}_{m \in \mathbb{N}_{0}}$ is an arbitrary sequence in $[0,1]$ satisfying (2.9);
(b) Equation (1.1) possesses uncountably many positive solutions in $A(N, M)$.

Proof Set $L \in(N, M)$. It follows from (2.17)-(2.19) that there exist $\theta \in(0,1)$ and $T \geq n_{0}+$ $\tau+\beta$ satisfying

$$
\begin{align*}
& \theta=\frac{1}{T^{2}} \sum_{v=T}^{\infty} \sum_{u=v}^{\infty} \sum_{s=u}^{\infty} \frac{1}{\left|a_{s}\right|}\left(R_{s} H_{s}+\sum_{t=s}^{\infty} P_{t} F_{t}\right) ; \tag{2.21}\\
& \frac{1}{T^{2}} \sum_{v=T}^{\infty} \sum_{u=v}^{\infty} \sum_{s=u}^{\infty} \frac{1}{\left|a_{s}\right|}\left(W_{s}+\sum_{t=s}^{\infty}\left(Q_{t}+\left|c_{t}\right|\right)\right)<\min \{M-L, L-N\} ; \tag{2.22}\\
& b_{n}=1, \quad \forall n \geq T . \tag{2.23}
\end{align*}
$$

Define a mapping $S_{L}: A(N, M) \rightarrow l_{\beta}^{\infty}$ by

$$
S_{L} x_{n}=\left\{\begin{array}{l}
n^{2} L+\sum_{i=1}^{\infty} \sum_{v=n+(2 i-1) \tau}^{n+2 i \tau-1} \sum_{u=v}^{\infty} \sum_{s=u}^{\infty} \frac{1}{a_{s}}\left\{h\left(s, x_{h_{1 s}}, x_{h_{2 s}}, \ldots, x_{h_{k s}}\right)\right. \tag{2.24}\\
\left.\quad-\sum_{t=s}^{\infty}\left[f\left(t, x_{f_{1 t}}, x_{f_{2 t}}, \ldots, x_{f_{k k}}\right)-c_{t}\right]\right\}, \quad n \geq T, \\
\frac{n^{2}}{T^{2}} S_{L} x_{T}, \quad \beta \leq n<T
\end{array}\right.
$$

for each $x=\left\{x_{n}\right\}_{n \in \mathbb{N}_{\beta}} \in A(N, M)$. Using (2.1), (2.2), (2.21)-(2.24), we obtain that for each $x=\left\{x_{n}\right\}_{n \in \mathbb{N}_{\beta}}, y=\left\{y_{n}\right\}_{n \in \mathbb{N}_{\beta}} \in A(N, M)$

$$
\begin{aligned}
& \left|\frac{S_{L} x_{n}}{n^{2}}-\frac{S_{L} y_{n}}{n^{2}}\right| \\
& \quad \leq \frac{1}{n^{2}} \sum_{i=1}^{\infty} \sum_{v=n+(2 i-1) \tau}^{n+2 i \tau-1} \sum_{u=v}^{\infty} \sum_{s=u}^{\infty} \frac{1}{\left|a_{s}\right|}\left(\left|h\left(s, x_{h_{1 s}}, x_{h_{2 s}}, \ldots, x_{h_{k s}}\right)-h\left(s, y_{h_{1 s}}, y_{h_{2 s}}, \ldots, y_{h_{k s}}\right)\right|\right. \\
& \left.\quad+\sum_{t=s}^{\infty}\left|f\left(t, x_{f_{1 t}}, x_{f_{2 t}}, \ldots, x_{f_{k t}}\right)-f\left(t, y_{f_{1 t}}, y_{f_{2 t}}, \ldots, y_{f_{k t}}\right)\right|\right) \\
& \quad \leq \frac{\|x-y\|}{n^{2}} \sum_{i=1}^{\infty} \sum_{v=n+(2 i-1) \tau}^{n+2 i \tau-1} \sum_{u=v}^{\infty} \sum_{s=u}^{\infty} \frac{1}{\left|a_{s}\right|}\left(R_{s} H_{s}+\sum_{t=s}^{\infty} P_{t} F_{t}\right)
\end{aligned}
$$

$$
\begin{aligned}
& \quad \leq \frac{\|x-y\|}{T^{2}} \sum_{v=T}^{\infty} \sum_{u=v}^{\infty} \sum_{s=u}^{\infty} \frac{1}{\left|a_{s}\right|}\left(R_{s} H_{s}+\sum_{t=s}^{\infty} P_{t} F_{t}\right) \\
& =\theta\|x-y\|, \quad \forall n \geq T, \\
& \left|\frac{S_{L} x_{n}}{n^{2}}-\frac{S_{L} y_{n}}{n^{2}}\right|
\end{aligned}=\left\lvert\, \frac{\left|\frac{L_{L} x_{T}}{T^{2}}-\frac{S_{L} y_{T}}{T^{2}}\right| \leq \theta\|x-y\|, \quad \beta \leq n<T,}{\left|\frac{S_{L} x_{n}}{n^{2}}-L\right| \leq} \begin{aligned}
& \frac{1}{n^{2}} \sum_{i=1}^{\infty} \sum_{v=n+2 i t-1) \tau}^{n+2 i t-1} \sum_{u=v}^{\infty} \sum_{s=u}^{\infty} \frac{1}{\left|a_{s}\right|}\left(\left|h\left(s, x_{h_{1 s}}, x_{h_{2 s}}, \ldots, x_{h_{k s}}\right)\right|\right. \\
& \\
& \quad+\sum_{t=s}^{\infty}\left[\mid f\left(t, x_{f_{1 t},}, x_{f_{2 t} t}, \ldots, x_{f_{k t}}| |+\left|c_{t}\right|\right]\right) \\
& \quad \leq \frac{1}{T^{2}} \sum_{v=T}^{\infty} \sum_{u=v}^{\infty} \sum_{s=u}^{\infty} \frac{1}{\left|a_{s}\right|}\left(W_{s}+\sum_{t=s}^{\infty}\left(Q_{t}+\left|c_{t}\right|\right)\right) \\
& \quad<\min \{M-L, L-N\}, \quad \forall n \geq T
\end{aligned}\right.
$$

and

$$
\left|\frac{S_{L} x_{n}}{n^{2}}-L\right|=\left|\frac{S_{L} x_{T}}{T^{2}}-L\right|<\min \{M-L, L-N\}, \quad \beta \leq n<T,
$$

which mean (2.14). Consequently, (2.14) gives that S_{L} is a contraction in $A(N, M)$ and has a unique fixed point $w=\left\{w_{n}\right\}_{n \in \mathbb{N}_{\beta}} \in A(N, M)$, that is,

$$
\begin{align*}
& w_{n}=S_{L} w_{n}=n^{2} L+\sum_{i=1}^{\infty} \sum_{v=n+(2 i-1) \tau}^{n+2 i \tau-1} \sum_{u=v}^{\infty} \sum_{s=u}^{\infty} \frac{1}{a_{s}}\left\{h\left(s, w_{h_{1 s}}, w_{h_{2 s}}, \ldots, w_{h_{k s}}\right)\right. \\
& \left.-\sum_{t=s}^{\infty}\left[f\left(t, w_{f_{1 t}}, w_{f_{2 t}}, \ldots, w_{f_{k t}}\right)-c_{t}\right]\right\}, \quad \forall n \geq T \tag{2.25}
\end{align*}
$$

and (2.16) holds. It follows from (2.25) that

$$
\begin{aligned}
\Delta\left(w_{n}+w_{n-\tau}\right)= & (4 n+2-2 \tau) L-\sum_{u=n}^{\infty} \sum_{s=u}^{\infty} \frac{1}{a_{s}}\left\{h\left(s, w_{h_{1 s}}, w_{h_{2 s}}, \ldots, w_{h_{k s}}\right)\right. \\
& \left.-\sum_{t=s}^{\infty}\left[f\left(t, w_{f_{1 t}}, w_{f_{2 t}}, \ldots, w_{f_{k t}}\right)-c_{t}\right]\right\}, \quad \forall n \geq T+\tau \\
\Delta^{2}\left(w_{n}+w_{n-\tau}\right)= & 4 L+\sum_{s=n}^{\infty} \frac{1}{a_{s}}\left\{h\left(s, w_{h_{1 s}}, w_{h_{2 s}}, \ldots, w_{h_{k s}}\right)\right. \\
& \left.-\sum_{t=s}^{\infty}\left[f\left(t, w_{f_{1 t}}, w_{f_{2 t}}, \ldots, w_{f_{k t}}\right)-c_{t}\right]\right\}, \quad \forall n \geq T+\tau \\
a_{n} \Delta^{3}\left(w_{n}+w_{n-\tau}\right)= & -h\left(n, w_{h_{1 n}}, w_{h_{2 n}}, \ldots, w_{h_{k n}}\right) \\
& +\sum_{t=n}^{\infty}\left[f\left(t, w_{f_{1 t}}, w_{f_{2 t}}, \ldots, w_{f_{k t}}\right)-c_{t}\right], \quad \forall n \geq T+\tau
\end{aligned}
$$

and

$$
\begin{aligned}
\Delta\left(a_{n} \Delta^{3}\left(w_{n}+w_{n-\tau}\right)\right)= & -\Delta h\left(n, w_{h_{1 n}}, w_{h_{2 n}}, \ldots, w_{h_{k n}}\right) \\
& -\left[f\left(n, w_{f_{1 n}}, w_{f_{2 n}}, \ldots, w_{f_{k n}}\right)-c_{n}\right], \quad \forall n \geq T+\tau
\end{aligned}
$$

that is, $w=\left\{w_{n}\right\}_{n \in \mathbb{N}_{\beta}}$ is a positive solution of Eq. (1.1) in $A(N, M)$. In terms of (2.2), (2.17), (2.18) and (2.25), we infer that

$$
\begin{aligned}
\left|\frac{w_{n}}{n^{2}}-L\right|= & \frac{1}{n^{2}} \left\lvert\, \sum_{i=1}^{\infty} \sum_{v=n+(2 i-1) \tau}^{n+2 i \tau-1} \sum_{u=v}^{\infty} \sum_{s=u}^{\infty} \frac{1}{a_{s}}\left\{h\left(s, w_{h_{1 s}}, w_{h_{2 s}}, \ldots, w_{h_{k s}}\right)\right.\right. \\
& \left.-\sum_{t=s}^{\infty}\left[f\left(t, w_{f_{1 t}}, w_{f_{2 t}}, \ldots, w_{f_{k t}}\right)-c_{t}\right]\right\} \mid \\
\leq & \frac{1}{n^{2}} \sum_{i=1}^{\infty} \sum_{v=n+(2 i-1) \tau}^{n+2 i \tau-1} \sum_{u=v}^{\infty} \sum_{s=u}^{\infty} \frac{1}{\left|a_{s}\right|}\left(\left|h\left(s, w_{h_{1 s}}, w_{h_{2 s}}, \ldots, w_{h_{k s}}\right)\right|\right. \\
& \left.+\sum_{t=s}^{\infty}\left[\left|f\left(t, w_{f_{1 t}}, w_{f_{2 t}}, \ldots, w_{f_{k t}}\right)\right|+\left|c_{t}\right|\right]\right) \\
\leq & \frac{1}{n^{2}} \sum_{i=1}^{\infty} \sum_{v=n+(2 i-1) \tau}^{n+2 i \tau-1} \sum_{u=v}^{\infty} \sum_{s=u}^{\infty} \frac{1}{\left|a_{s}\right|}\left(W_{s}+\sum_{t=s}^{\infty}\left(Q_{t}+\left|c_{t}\right|\right)\right) \\
\leq & \frac{1}{n^{2}} \sum_{v=n}^{\infty} \sum_{u=v}^{\infty} \sum_{s=u}^{\infty} \frac{1}{\left|a_{s}\right|}\left(W_{s}+\sum_{t=s}^{\infty}\left(Q_{t}+\left|c_{t}\right|\right)\right) \\
\rightarrow & 0 \text { as } n \rightarrow \infty,
\end{aligned}
$$

that is, (2.7) holds. Linking (2.14), (2.16), (2.20), (2.21) and (2.25), we infer that

$$
\begin{aligned}
& \frac{\left|x_{m+1 n}-w_{n}\right|}{n^{2}} \\
&= \left.\frac{1}{n^{2}} \right\rvert\,\left(1-\alpha_{m}\right) x_{m n}+\alpha_{m}\left\{n^{2} L\right. \\
&+\sum_{i=1}^{\infty} \sum_{v=n+(2 i-1) \tau}^{n+2 i \tau-1} \sum_{u=v}^{\infty} \sum_{s=u}^{\infty} \frac{1}{a_{s}}\left[h\left(s, x_{m h_{1 s}}, x_{m h_{2 s}}, \ldots, x_{m h_{k s}}\right)\right. \\
&\left.\left.-\sum_{t=s}^{\infty}\left[f\left(t, x_{m f_{1} t}, x_{m f_{2} t}, \ldots, x_{m f_{k t}}\right)-c_{t}\right]\right]\right\}-w_{n} \mid \\
& \leq\left(1-\alpha_{m}\right) \frac{\left|x_{m n}-w_{n}\right|}{n^{2}}+\alpha_{m} \frac{\left|S_{L} x_{m n}-S_{L} w_{n}\right|}{n^{2}} \\
& \leq\left(1-\alpha_{m}\right)\left\|x_{m}-w\right\|+\theta \alpha_{m}\left\|x_{m}-w\right\| \\
&= {\left[1-(1-\theta) \alpha_{m}\right]\left\|x_{m}-w\right\| } \\
& \leq e^{-(1-\theta) \alpha_{m}}\left\|x_{m}-w\right\|, \quad \forall m \in \mathbb{N}_{0}, n \geq T
\end{aligned}
$$

and

$$
\begin{aligned}
& \frac{\left|x_{m+1 n}-w_{n}\right|}{n^{2}} \\
& =\frac{1}{n^{2}} \left\lvert\,\left(1-\alpha_{m}\right) \frac{n^{2}}{T^{2}} x_{m T}\right. \\
& \quad+\alpha_{m} \frac{n^{2}}{T^{2}}\left\{T^{2} L+\sum_{i=1}^{\infty} \sum_{v=T+(2 i-1) \tau}^{T+2 i \tau-1} \sum_{u=v}^{\infty} \sum_{s=u}^{\infty} \frac{1}{a_{s}}\left[h\left(s, x_{m h_{1 s}}, x_{m h_{2 s}}, \ldots, x_{m h_{k s}}\right)\right.\right. \\
& \left.\left.\quad-\sum_{t=s}^{\infty}\left[f\left(t, x_{m f_{1} t}, x_{m f_{2 t}}, \ldots, x_{m f_{k t}}\right)-c_{t}\right]\right]\right\}-w_{n} \mid \\
& \leq \\
& \leq\left(1-\alpha_{m}\right) \frac{\left|x_{m T}-w_{T}\right|}{T^{2}}+\alpha_{m} \frac{\left|S_{L} x_{m T}-S_{L} w_{T}\right|}{T^{2}} \\
& \leq \\
& \leq \\
& \leq \\
& \leq
\end{aligned}
$$

which imply that

$$
\left\|x_{m+1}-w\right\| \leq e^{-(1-\theta) \alpha_{m}}\left\|x_{m}-w\right\| \leq e^{-(1-\theta) \sum_{i=0}^{m} \alpha_{i}}\left\|x_{0}-w\right\|, \quad \forall m \in \mathbb{N}_{0}
$$

that is, (2.8) holds. It follows from (2.8) and (2.9) that $\lim _{m \rightarrow \infty} x_{m}=w$.
Next we show that (b) holds. Let $L_{1}, L_{2} \in(N, M)$ and $L_{1} \neq L_{2}$. Similar to the proof of (a), we get that for each $c \in\{1,2\}$, there exist constants $\theta_{c} \in(0,1), T_{c} \geq n_{0}+\tau+\beta$ and a mapping $S_{L_{c}}$ satisfying (2.21)-(2.24), where θ, L and T are replaced by θ_{c}, L_{c} and T_{c}, respectively, and the mapping $S_{L_{c}}$ has a fixed point $z^{c}=\left\{z_{n}^{c}\right\}_{n \in \mathbb{N}_{\beta}} \in A(N, M)$, which is a positive solution of Eq. (1.1) in $A(N, M)$, that is,

$$
\begin{aligned}
z_{n}^{c}= & n^{2} L_{c}-\sum_{i=1}^{\infty} \sum_{v=n+(2 i-1) \tau}^{n+2 i \tau} \sum_{u=v}^{\infty} \sum_{s=u}^{\infty} \frac{1}{a_{s}}\left\{h\left(s, z_{h_{1 s}}^{c}, z_{h_{2 s}}^{c}, \ldots, z_{h_{k s}}^{c}\right)\right. \\
& \left.-\sum_{t=s}^{\infty}\left[f\left(t, z_{f_{1 t}}^{c}, z_{f_{2 t}}^{c}, \ldots, z_{f_{k t}}^{c}\right)-c_{t}\right]\right\}, \quad \forall n \geq T_{c},
\end{aligned}
$$

which together with (2.1), (2.10) and (2.23) implies that

$$
\begin{aligned}
& \left|\frac{z_{n}^{1}}{n^{2}}-\frac{z_{n}^{2}}{n^{2}}\right| \\
& \quad \geq\left|L_{1}-L_{2}\right|-\frac{1}{n^{2}} \sum_{i=1}^{\infty} \sum_{v=n+(2 i-1) \tau}^{n+2 i \tau} \sum_{u=v}^{\infty} \sum_{s=u}^{\infty} \frac{1}{\left|a_{s}\right|}\left(\mid h\left(s, z_{h_{1 s}}^{1}, z_{h_{2 s}}^{1}, \ldots, z_{h_{k s}}^{1}\right)\right. \\
& \left.\quad-h\left(s, z_{h_{1 s}}^{2}, z_{h_{2 s}}^{2}, \ldots, z_{h_{k s}}^{2}\right)\left|+\sum_{t=s}^{\infty}\right| f\left(t, z_{f_{1 t}}^{1}, z_{f_{2 t}}^{1}, \ldots, z_{f_{k t}}^{1}\right)-f\left(t, z_{f_{1 t}}^{2}, z_{f_{2 t}}^{2}, \ldots, z_{f_{k t}}^{2}\right) \mid\right) \\
& \quad \geq\left|L_{1}-L_{2}\right|-\frac{1}{n^{2}} \sum_{i=1}^{\infty} \sum_{v=n+(2 i-1) \tau}^{n+2 i \tau} \sum_{u=v}^{\infty} \sum_{s=u}^{\infty} \frac{1}{\left|a_{s}\right|}\left(R_{s} \max \left\{\left|z_{h_{l s}}^{1}-z_{h_{l s}}^{2}\right|: 1 \leq l \leq k\right\}\right.
\end{aligned}
$$

$$
\begin{aligned}
& \left.+\sum_{t=s}^{\infty} P_{t} \max \left\{\left|z_{f_{l t}}^{1}-z_{f l t}^{2}\right|: 1 \leq l \leq k\right\}\right) \\
\geq & \left|L_{1}-L_{2}\right|-\frac{\left\|z^{1}-z^{2}\right\|}{n^{2}} \sum_{i=1}^{\infty} \sum_{v=n+(2 i-1) \tau}^{n+2 i \tau} \sum_{u=v}^{\infty} \sum_{s=u}^{\infty} \frac{1}{\left|a_{s}\right|}\left(R_{s} H_{s}+\sum_{t=s}^{\infty} P_{t} F_{t}\right) \\
\geq & \left|L_{1}-L_{2}\right|-\frac{\left\|z^{1}-z^{2}\right\|}{\max \left\{T_{1}^{2}, T_{2}^{2}\right\}} \sum_{v=\max \left\{T_{1}, T_{2}\right\}}^{\infty} \sum_{u=v}^{\infty} \sum_{s=u}^{\infty} \frac{1}{\left|a_{s}\right|}\left(R_{s} H_{s}+\sum_{t=s}^{\infty} P_{t} F_{t}\right) \\
\geq & \left|L_{1}-L_{2}\right|-\max \left\{\theta_{1}, \theta_{2}\right\}\left\|z^{1}-z^{2}\right\|, \quad \forall n \geq \max \left\{T_{1}, T_{2}\right\},
\end{aligned}
$$

which yields that

$$
\left\|z^{1}-z^{2}\right\| \geq \frac{\left|L_{1}-L_{2}\right|}{1+\max \left\{\theta_{1}, \theta_{2}\right\}}>0
$$

that is, $z^{1} \neq z^{2}$. This completes the proof.

Theorem 2.3 Assume that there exist three constants b, M and N with $(1-b) M>N>0$ and four nonnegative sequences $\left\{P_{n}\right\}_{n \in \mathbb{N}_{n_{0}}},\left\{Q_{n}\right\}_{n \in \mathbb{N}_{n_{0}}},\left\{R_{n}\right\}_{n \in \mathbb{N}_{n_{0}}}$ and $\left\{W_{n}\right\}_{n \in \mathbb{N}_{n_{0}}}$ satisfying (2.1), (2.2), (2.17), (2.18) and

$$
\begin{equation*}
0 \leq b_{n} \leq b<1 \quad \text { eventually } . \tag{2.26}
\end{equation*}
$$

Then

(a) for any $L \in(b M+N, M)$, there exist $\theta \in(0,1)$ and $T \geq n_{0}+\tau+\beta$ such that for each $x_{0}=\left\{x_{0 n}\right\}_{n \in \mathbb{N}_{\beta}} \in A(N, M)$, the Mann iterative sequence $\left\{x_{m}\right\}_{m \in \mathbb{N}_{0}}=\left\{\left\{x_{m n}\right\}_{n \in \mathbb{N}_{\beta}}\right\}_{m \in \mathbb{N}_{0}}$ generated by the scheme:

$$
x_{m+1 n}=\left\{\begin{array}{l}
\left(1-\alpha_{m}\right) x_{m n}+\alpha_{m}\left\{n^{2} L-b_{n} x_{m n-\tau}\right. \tag{2.27}\\
\quad+\sum_{v=n}^{\infty} \sum_{u=v}^{\infty} \sum_{s=u}^{\infty} \frac{1}{a_{s}}\left[h\left(s, x_{m h_{1 s}}, x_{m h_{2 s}}, \ldots, x_{m h_{k s}}\right)\right. \\
\left.\left.\quad-\sum_{t=s}^{\infty}\left(f\left(t, x_{m f_{1 t}}, x_{m f_{2 t}}, \ldots, x_{m f_{k t}}\right)-c_{t}\right)\right]\right\}, \quad m \geq 0, n \geq T, \\
\left(1-\alpha_{m}\right) \frac{n^{2}}{T^{2}} x_{m T}+\alpha_{m} \frac{n^{2}}{T^{2}}\left\{T^{2} L-b_{T} x_{m T-\tau}\right. \\
\quad+\sum_{s=T}^{\infty} \frac{1}{a_{s}}\left[h\left(s, x_{m h_{1 s}}, x_{m h_{2 s}}, \ldots, x_{m h_{k s}}\right)\right. \\
\left.\left.\quad-\sum_{t=s}^{\infty}\left(f\left(t, x_{m f_{1 t}}, x_{m f_{2 t}}, \ldots, x_{m f_{k t}}\right)-c_{t}\right)\right]\right\}, \quad m \geq 0, \beta \leq n<T
\end{array}\right.
$$

converges to a positive solution $w=\left\{w_{n}\right\}_{n \in \mathbb{N}_{\beta}} \in A(N, M)$ of Eq. (1.1) with

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \frac{w_{n}+b_{n} w_{n-\tau}}{n^{2}}=L \tag{2.28}
\end{equation*}
$$

and has the error estimate (2.8), where $\left\{\alpha_{m}\right\}_{m \in \mathbb{N}_{0}}$ is an arbitrary sequence in $[0,1]$ satisfying (2.9);
(b) Equation (1.1) possesses uncountably many positive solutions in $A(N, M)$.

Proof Put $L \in(b M+N, M)$. It follows from (2.17), (2.18) and (2.26) that there exist $\theta \in(0,1)$ and $T \geq n_{0}+\tau+\beta$ satisfying

$$
\begin{align*}
& \theta=b+\frac{1}{T^{2}} \sum_{v=T}^{\infty} \sum_{u=v}^{\infty} \sum_{s=u}^{\infty} \frac{1}{\left|a_{s}\right|}\left(R_{s} H_{s}+\sum_{t=s}^{\infty} P_{t} F_{t}\right) \tag{2.29}\\
& \frac{1}{T^{2}} \sum_{v=T}^{\infty} \sum_{u=v}^{\infty} \sum_{s=u}^{\infty} \frac{1}{\left|a_{s}\right|}\left(W_{s}+\sum_{t=s}^{\infty}\left(Q_{t}+\left|c_{t}\right|\right)\right)<\min \{M-L, L-b M-N\} \tag{2.30}\\
& 0 \leq b_{n} \leq b<1, \quad \forall n \geq T . \tag{2.31}
\end{align*}
$$

Define a mapping $S_{L}: A(N, M) \rightarrow l_{\beta}^{\infty}$ by

$$
S_{L} x_{n}=\left\{\begin{array}{l}
n^{2} L-b_{n} x_{n-\tau}+\sum_{v=n}^{\infty} \sum_{u=v}^{\infty} \sum_{s=u}^{\infty} \frac{1}{a_{s}}\left\{h\left(s, x_{h_{1 s}}, x_{h_{2 s}}, \ldots, x_{h_{k s}}\right)\right. \tag{2.32}\\
\left.\quad-\sum_{t=s}^{\infty}\left[f\left(t, x_{f_{11}}, x_{f_{2 t}}, \ldots, x_{f_{k t}}\right)-c_{t}\right]\right\}, \quad n \geq T \\
\frac{n^{2}}{T^{2}} S_{L} x_{T}, \quad \beta \leq n<T
\end{array}\right.
$$

for each $x=\left\{x_{n}\right\}_{n \in \mathbb{N}_{\beta}} \in A(N, M)$. According to (2.1), (2.2) and (2.29)-(2.32), we obtain that for each $x=\left\{x_{n}\right\}_{n \in \mathbb{N}_{\beta}}, y=\left\{y_{n}\right\}_{n \in \mathbb{N}_{\beta}} \in A(N, M)$

$$
\begin{aligned}
& \left|\frac{S_{L} x_{n}}{n^{2}}-\frac{S_{L} y_{n}}{n^{2}}\right| \\
& \leq b_{n} \cdot \frac{(n-\tau)^{2}}{n^{2}}\left|\frac{x_{n-\tau}-y_{n-\tau}}{(n-\tau)^{2}}\right| \\
& +\frac{1}{n^{2}} \sum_{v=n}^{\infty} \sum_{u=v}^{\infty} \sum_{s=u}^{\infty} \frac{1}{\left|a_{s}\right|}\left(\left|h\left(s, x_{h_{1 s}}, x_{h_{2 s}}, \ldots, x_{h_{k s}}\right)-h\left(s, y_{h_{1 s}}, y_{h_{2 s}}, \ldots, y_{h_{k s}}\right)\right|\right. \\
& \left.+\sum_{t=s}^{\infty}\left|f\left(t, x_{f_{1 t}}, x_{f_{2 t}}, \ldots, x_{f_{k t}}\right)-f\left(t, y_{f_{1 t},}, y_{f_{2 t}}, \ldots, y_{f_{k t}}\right)\right|\right) \\
& \leq\left[b+\frac{1}{T^{2}} \sum_{v=T}^{\infty} \sum_{u=v}^{\infty} \sum_{s=u}^{\infty} \frac{1}{\left|a_{s}\right|}\left(R_{s} H_{s}+\sum_{t=s}^{\infty} P_{t} F_{t}\right)\right]\|x-y\| \\
& =\theta\|x-y\|, \quad \forall n \geq T, \\
& \left|\frac{S_{L} x_{n}}{n^{2}}-\frac{S_{L} y_{n}}{n^{2}}\right|=\frac{n^{2}}{T^{2}}\left|\frac{S_{L} x_{T}}{n^{2}}-\frac{S_{L} y_{T}}{n^{2}}\right| \leq \theta\|x-y\|, \quad \beta \leq n<T, \\
& \frac{S_{L} x_{n}}{n^{2}} \leq L+\frac{1}{n^{2}} \sum_{v=n}^{\infty} \sum_{u=v}^{\infty} \sum_{s=u}^{\infty} \frac{1}{\left|a_{s}\right|}\left(\left|h\left(s, x_{h_{1 s}}, x_{h_{2 s}}, \ldots, x_{h_{k s}}\right)\right|\right. \\
& \left.+\sum_{t=s}^{\infty}\left[\left|f\left(t, x_{f_{1 t}}, x_{f_{2 t}}, \ldots, x_{f_{k t}}\right)\right|+\left|c_{t}\right|\right]\right) \\
& \leq L+\frac{1}{T^{2}} \sum_{v=T}^{\infty} \sum_{u=v}^{\infty} \sum_{s=u}^{\infty} \frac{1}{\left|a_{s}\right|}\left(W_{s}+\sum_{t=s}^{\infty}\left(Q_{t}+\left|c_{t}\right|\right)\right) \\
& <L+\min \{M-L, L-b M-N\} \\
& \leq M, \quad \forall n \geq T,
\end{aligned}
$$

$$
\begin{aligned}
\frac{S_{L} x_{n}}{n^{2}}= & \frac{n^{2}}{T^{2}} \cdot \frac{S_{L} x_{T}}{n^{2}} \leq M, \quad \beta \leq n<T \\
\frac{S_{L} x_{n}}{n^{2}}= & L-b_{n} \frac{x_{n-\tau}}{(n-\tau)^{2}} \cdot \frac{(n-\tau)^{2}}{n^{2}}+\frac{1}{n^{2}} \sum_{v=n}^{\infty} \sum_{u=v}^{\infty} \sum_{s=u}^{\infty} \frac{1}{a_{s}}\left(h\left(s, x_{h_{1 s}}, x_{h_{2 s}}, \ldots, x_{h_{k s}}\right)\right. \\
& \left.-\sum_{t=s}^{\infty}\left[f\left(t, x_{f_{1 t}}, x_{f_{2 t}}, \ldots, x_{f_{k t}}\right)-c_{t}\right]\right) \\
\geq & L-b M-\frac{1}{n^{2}} \sum_{v=n}^{\infty} \sum_{u=v}^{\infty} \sum_{s=u}^{\infty} \frac{1}{\left|a_{s}\right|}\left(\left|h\left(s, x_{h_{1 s}}, x_{h_{2 s}}, \ldots, x_{h_{k s}}\right)\right|\right. \\
& \left.+\sum_{t=s}^{\infty}\left[\left|f\left(t, x_{f_{1 t}}, x_{f_{2 t}}, \ldots, x_{f_{k t}}\right)\right|+\left|c_{t}\right|\right]\right) \\
\geq & L-b M-\frac{1}{T^{2}} \sum_{v=T}^{\infty} \sum_{u=v}^{\infty} \sum_{s=u}^{\infty} \frac{1}{\left|a_{s}\right|}\left(W_{s}+\sum_{t=s}^{\infty}\left(Q_{t}+\left|c_{t}\right|\right)\right) \\
> & L-b M-\min \{M-L, L-b M-N\} \\
\geq & N, \quad \forall n \geq T
\end{aligned}
$$

and

$$
\frac{S_{L} x_{n}}{n^{2}}=\frac{n^{2}}{T^{2}} \cdot \frac{S_{L} x_{T}}{n^{2}} \geq N, \quad \beta \leq n<T
$$

which give (2.14), in turns, which implies that S_{L} is a contraction in $A(N, M)$ and possesses a unique fixed point $w=\left\{w_{n}\right\}_{n \in \mathbb{N}_{\beta}} \in A(N, M)$, that is,

$$
\begin{align*}
w_{n}=S_{L} w_{n}= & n^{2} L-b_{n} w_{n-\tau}+\sum_{v=n}^{\infty} \sum_{u=v}^{\infty} \sum_{s=u}^{\infty} \frac{1}{a_{s}}\left\{h\left(s, w_{h_{1 s}}, w_{h_{2 s}}, \ldots, w_{h_{k s}}\right)\right. \\
& \left.-\sum_{t=s}^{\infty}\left[f\left(t, w_{f_{11}}, w_{f_{2 t}}, \ldots, w_{f_{k t}}\right)-c_{t}\right]\right\}, \quad \forall n \geq T \tag{2.33}
\end{align*}
$$

and (2.16) is satisfied. It is easy to verify that (2.33) yields that

$$
\begin{aligned}
& \Delta\left(w_{n}+b_{n} w_{n-\tau}\right)=(2 n+1) L-\sum_{u=n}^{\infty} \sum_{s=u}^{\infty} \frac{1}{a_{s}}\left\{h\left(s, w_{h_{1 s}}, w_{h_{2 s}}, \ldots, w_{h_{k s}}\right)\right. \\
& \left.-\sum_{t=s}^{\infty}\left[f\left(t, w_{f_{11}}, w_{f_{2 t}}, \ldots, w_{f_{k t}}\right)-c_{t}\right]\right\}, \quad \forall n \geq T+\tau, \\
& \Delta^{2}\left(w_{n}+b_{n} w_{n-\tau}\right)=2 L+\sum_{s=n}^{\infty} \frac{1}{a_{s}}\left\{h\left(s, w_{h_{1 s}}, w_{h_{2 s}}, \ldots, w_{h_{k s}}\right)\right. \\
& \left.-\sum_{t=s}^{\infty}\left[f\left(t, w_{f_{11}}, w_{f_{2 t}}, \ldots, w_{f_{k t}}\right)-c_{t}\right]\right\}, \quad \forall n \geq T+\tau, \\
& a_{n} \Delta^{3}\left(w_{n}+b_{n} w_{n-\tau}\right)=-h\left(n, w_{h_{1 n}}, w_{h_{2 n}}, \ldots, w_{h_{k n}}\right) \\
& +\sum_{t=n}^{\infty}\left[f\left(t, w_{f_{11}}, w_{f_{2 t}}, \ldots, w_{f_{k t}}\right)-c_{t}\right], \quad \forall n \geq T+\tau
\end{aligned}
$$

and

$$
\begin{aligned}
\Delta\left(a_{n} \Delta^{3}\left(w_{n}+b_{n} w_{n-\tau}\right)\right)= & -\Delta h\left(n, w_{h_{1 n},}, w_{h_{2 n}}, \ldots, w_{h_{k n}}\right) \\
& -f\left(n, w_{f_{1},}, w_{f_{2 n}}, \ldots, w_{f_{k n}}\right)+c_{n}, \quad \forall n \geq T+\tau,
\end{aligned}
$$

that is, $w=\left\{w_{n}\right\}_{n \in \mathbb{N}_{\beta}}$ is a positive solution of Eq. (1.1) in $A(N, M)$. Making use of (2.17), (2.18) and (2.33), we infer that

$$
\begin{aligned}
&\left|\frac{w_{n}+b_{n} w_{n-\tau}}{n^{2}}-L\right| \leq \frac{1}{n^{2}} \sum_{v=n}^{\infty} \sum_{u=v}^{\infty} \sum_{s=u}^{\infty} \frac{1}{\left|a_{s}\right|}\left(\left|h\left(s, w_{h_{1 s}}, w_{h_{2 s}}, \ldots, w_{h_{k s}}\right)\right|\right. \\
&\left.+\sum_{t=s}^{\infty}\left[\left|f\left(t, w_{f_{1 t}}, w_{f_{2 t}}, \ldots, w_{f_{k t}}\right)\right|+\left|c_{t}\right|\right]\right) \\
& \leq \frac{1}{n^{2}} \sum_{v=n}^{\infty} \sum_{u=v}^{\infty} \sum_{s=u}^{\infty} \frac{1}{\left|a_{s}\right|}\left(W_{s}+\sum_{t=s}^{\infty}\left(Q_{t}+\left|c_{t}\right|\right)\right) \\
& \rightarrow 0 \quad \text { as } n \rightarrow \infty,
\end{aligned}
$$

which gives (2.28). In light of (2.14), (2.16), (2.27), (2.29) and (2.33), we deduce that

$$
\begin{aligned}
\frac{\left|x_{m+1 n}-w_{n}\right|}{n^{2}}= & \left.\frac{1}{n^{2}} \right\rvert\,\left(1-\alpha_{m}\right) x_{m n}+\alpha_{m}\left\{n^{2} L-b_{n} x_{m n-\tau}\right. \\
& +\sum_{v=n}^{\infty} \sum_{u=v}^{\infty} \sum_{s=u}^{\infty} \frac{1}{a_{s}}\left[h\left(s, x_{m h_{1 s}}, x_{m h_{2 s}}, \ldots, x_{m h_{k s}}\right)\right. \\
& \left.\left.-\sum_{t=s}^{\infty}\left[f\left(t, x_{m f_{t},}, x_{m f_{2 t}}, \ldots, x_{m f_{k t}}\right)-c_{t}\right]\right]\right\}-w_{n} \mid \\
\leq & \left(1-\alpha_{m}\right) \frac{\left|x_{m n}-w_{n}\right|}{n^{2}}+\alpha_{m} \frac{\left|S_{L} x_{m n}-S_{L} w_{n}\right|}{n^{2}} \\
\leq & \left(1-\alpha_{m}\right)\left\|x_{m}-w\right\|+\theta \alpha_{m}\left\|x_{m}-w\right\|=\left[1-(1-\theta) \alpha_{m}\right]\left\|x_{m}-w\right\| \\
\leq & e^{-(1-\theta) \alpha_{m}}\left\|x_{m}-w\right\|, \quad \forall m \in \mathbb{N}_{0}, n \geq T
\end{aligned}
$$

and

$$
\begin{aligned}
\frac{\left|x_{m+1 n}-w_{n}\right|}{n^{2}}= & \frac{1}{n^{2}} \left\lvert\,\left(1-\alpha_{m}\right) \frac{n^{2}}{T^{2}} x_{m T}+\alpha_{m} \frac{n^{2}}{T^{2}}\left\{T^{2} L-b_{T} x_{m T-\tau}\right.\right. \\
& +\sum_{v=T}^{\infty} \sum_{u=v}^{\infty} \sum_{s=u}^{\infty} \frac{1}{a_{s}}\left[h\left(s, x_{m h_{1 s}}, x_{m h_{2 s}}, \ldots, x_{m h_{s s}}\right)\right. \\
& \left.\left.-\sum_{t=s}^{\infty}\left[f\left(t, x_{m f_{t}}, x_{m f_{2 t}}, \ldots, x_{m f_{k t}}\right)-c_{t}\right]\right]\right\}-w_{n} \mid \\
\leq & \left(1-\alpha_{m}\right) \frac{\left|x_{m T}-w_{T}\right|}{T^{2}}+\alpha_{m} \frac{\left|S_{L} x_{m T}-S_{L} w_{T}\right|}{T^{2}} \\
\leq & {\left[1-(1-\theta) \alpha_{m}\right]\left\|x_{m}-w\right\| } \\
\leq & e^{-(1-\theta) \alpha_{m}}\left\|x_{m}-w\right\|, \quad \forall m \in \mathbb{N}_{0}, \beta \leq n<T,
\end{aligned}
$$

which imply that

$$
\left\|x_{m+1}-w\right\| \leq e^{-(1-\theta) \alpha_{m}}\left\|x_{m}-w\right\| \leq e^{-(1-\theta) \sum_{i=0}^{m} \alpha_{i}}\left\|x_{0}-w\right\|, \quad \forall m \in \mathbb{N}_{0}
$$

that is, (2.8) holds. It follows from (2.8) and (2.9) that $\lim _{m \rightarrow \infty} x_{m}=w$.
Next we show that (b) holds. Let $L_{1}, L_{2} \in(b M+N, M)$ and $L_{1} \neq L_{2}$. Similar to the proof of (a), we get that for each $c \in\{1,2\}$ there exist constants $\theta_{c} \in(0,1), T_{c} \geq n_{0}+\tau+\beta$ and a mapping $S_{L_{c}}$ satisfying (2.29)-(2.32), where θ, L and T are replaced by θ_{c}, L_{c} and T_{c}, respectively, and the mapping $S_{L_{c}}$ has a fixed point $z^{c}=\left\{z_{n}^{c}\right\}_{n \in \mathbb{N}_{\beta}} \in A(N, M)$, which is a positive solution of Eq. (1.1) in $A(N, M)$, that is,

$$
\begin{aligned}
z_{n}^{c}= & n^{2} L_{c}-b_{n} z_{n-\tau}^{c}+\sum_{v=n}^{\infty} \sum_{u=v}^{\infty} \sum_{s=u}^{\infty} \frac{1}{a_{s}}\left\{h\left(s, z_{h_{1 s}}^{c}, z_{h_{2 s}}^{c}, \ldots, z_{h_{k s}}^{c}\right)\right. \\
& \left.-\sum_{t=s}^{\infty}\left[f\left(t, z_{f_{1 t}}^{c}, z_{f_{2 t}}^{c}, \ldots, z_{f_{k t}}^{c}\right)-c_{t}\right]\right\}, \quad \forall n \geq T_{c},
\end{aligned}
$$

which together with (2.1), (2.29) and (2.31) means that

$$
\begin{aligned}
\left\lvert\, \frac{z_{n}^{1}}{n^{2}}-\right. & \left.\frac{z_{n}^{2}}{n^{2}} \right\rvert\, \\
\geq & \left|L_{1}-L_{2}\right|-b_{n} \frac{\left|z_{n}^{1}(n-\tau)-z_{n}^{2}(n-\tau)\right|}{(n-\tau)^{2}} \cdot \frac{(n-\tau)^{2}}{n^{2}} \\
& \quad-\frac{1}{n^{2}} \sum_{v=n}^{\infty} \sum_{u=v}^{\infty} \sum_{s=u}^{\infty} \frac{1}{\left|a_{s}\right|}\left(\left|h\left(s, z_{h_{1 s}}^{1}, z_{h_{2 s}}^{1}, \ldots, z_{h_{k s}}^{1}\right)-h\left(s, z_{h_{1 s}}^{2}, z_{h_{2 s}}^{2}, \ldots, z_{h_{k s}}^{2}\right)\right|\right. \\
& \left.+\sum_{t=s}^{\infty}\left|f\left(t, z_{f_{1 t}}^{1}, z_{f_{2 t}}^{1}, \ldots, z_{f_{k t}}^{1}\right)-f\left(t, z_{f_{1 t}}^{2}, z_{f_{2 t}}^{2}, \ldots, z_{f_{k t} t}^{2}\right)\right|\right) \\
\geq & \left|L_{1}-L_{2}\right|-b\left\|z^{1}-z^{2}\right\|-\frac{1}{n^{2}} \sum_{v=n}^{\infty} \sum_{u=v}^{\infty} \sum_{s=u}^{\infty} \frac{1}{\left|a_{s}\right|}\left(R_{s} \max \left\{\left|z_{h_{l s}}^{1}-z_{h_{l s}}^{2}\right|: 1 \leq l \leq k\right\}\right. \\
& \left.\quad+\sum_{t=s}^{\infty} P_{t} \max \left\{\left|z_{f_{l t}}^{1}-z_{f_{l t}}^{2}\right|: 1 \leq l \leq k\right\}\right) \\
\geq & \left|L_{1}-L_{2}\right|-b\left\|z^{1}-z^{2}\right\|-\frac{\left\|z^{1}-z^{2}\right\|}{n^{2}} \sum_{v=n}^{\infty} \sum_{u=v}^{\infty} \sum_{s=u}^{\infty} \frac{1}{\left|a_{s}\right|}\left(R_{s} H_{s}+\sum_{t=s}^{\infty} P_{t} F_{t}\right) \\
\geq & \left|L_{1}-L_{2}\right|-b\left\|z^{1}-z^{2}\right\|-\frac{\left\|z^{1}-z^{2}\right\|}{\max \left\{T_{1}^{2}, T_{2}^{2}\right\}} \sum_{v=\max \left\{T_{1}, T_{2}\right\}}^{\infty} \sum_{u=v}^{\infty} \sum_{s=u}^{\infty} \frac{1}{\left|a_{s}\right|}\left(R_{s} H_{s}+\sum_{t=s}^{\infty} P_{t} F_{t}\right) \\
\geq & \left|L_{1}-L_{2}\right|-\max \left\{\theta_{1}, \theta_{2}\right\}\left\|z^{1}-z^{2}\right\|, \quad \forall n \geq \max \left\{T_{1}, T_{2}\right\},
\end{aligned}
$$

which yields that

$$
\left\|z^{1}-z^{2}\right\| \geq \frac{\left|L_{1}-L_{2}\right|}{1+\max \left\{\theta_{1}, \theta_{2}\right\}}>0
$$

that is, $z^{1} \neq z^{2}$. This completes the proof.

Theorem 2.4 Assume that there exist constants b, M and N with $(1+b) M>N>0$ and four nonnegative sequences $\left\{P_{n}\right\}_{n \in \mathbb{N}_{n_{0}}},\left\{Q_{n}\right\}_{n \in \mathbb{N}_{n_{0}}},\left\{R_{n}\right\}_{n \in \mathbb{N}_{n_{0}}},\left\{W_{n}\right\}_{n \in \mathbb{N}_{n_{0}}}$ satisfying (2.1), (2.2), (2.17), (2.18) and

$$
\begin{equation*}
-1<b \leq b_{n} \leq 0 \quad \text { eventually } . \tag{2.34}
\end{equation*}
$$

Then
(a) for any $L \in(N,(1+b) M)$, there exist $\theta \in(0,1)$ and $T \geq n_{0}+\tau+\beta$ such that for each $x_{0}=\left\{x_{0 n}\right\}_{n \in \mathbb{N}_{\beta}} \in A(N, M)$, the Mann iterative sequence $\left\{x_{m}\right\}_{m \in \mathbb{N}_{0}}=\left\{\left\{x_{m n}\right\}_{n \in \mathbb{N}_{\beta}}\right\}_{m \in \mathbb{N}_{0}}$ generated by (2.27) converges to a positive solution $w=\left\{w_{n}\right\}_{n \in \mathbb{N}_{\beta}} \in A(N, M)$ of Eq. (1.1) with (2.28) and has the error estimate (2.8), where $\left\{\alpha_{m}\right\}_{m \in \mathbb{N}_{0}}$ is an arbitrary sequence in $[0,1]$ satisfying (2.9);
(b) Equation (1.1) possesses uncountably many positive solutions in $A(N, M)$.

Proof Put $L \in(N,(1+b) M)$. It follows from (2.17), (2.18) and (2.34) that there exist $\theta \in$ $(0,1)$ and $T \geq n_{0}+\tau+\beta$ satisfying

$$
\begin{align*}
& \theta=-b+\frac{1}{T^{2}} \sum_{v=T}^{\infty} \sum_{u=v}^{\infty} \sum_{s=u}^{\infty} \frac{1}{\left|a_{s}\right|}\left(R_{s} H_{s}+\sum_{t=s}^{\infty} P_{t} F_{t}\right) \tag{2.35}\\
& \frac{1}{T^{2}} \sum_{v=T}^{\infty} \sum_{u=v}^{\infty} \sum_{s=u}^{\infty} \frac{1}{\left|a_{s}\right|}\left(W_{s}+\sum_{t=s}^{\infty}\left(Q_{t}+\left|c_{t}\right|\right)\right)<\min \{(1+b) M-L, L-N\} ; \tag{2.36}\\
& -1<b \leq b_{n} \leq 0, \quad \forall n \geq T . \tag{2.37}
\end{align*}
$$

Define a mapping $S_{L}: A(N, M) \rightarrow l_{\beta}^{\infty}$ by (2.32). By virtue of (2.2), (2.32), (2.36) and (2.37), we easily verify that

$$
\begin{aligned}
\frac{S_{L} x_{n}}{n^{2}} \leq & L-b_{n} \frac{x_{n-\tau}}{(n-\tau)^{2}} \cdot \frac{(n-\tau)^{2}}{n^{2}}+\frac{1}{n^{2}} \sum_{v=n}^{\infty} \sum_{u=v}^{\infty} \sum_{s=u}^{\infty} \frac{1}{\left|a_{s}\right|}\left(\mid h\left(s, x_{h_{1 s}}, x_{h_{2 s}}, \ldots, x_{h_{k s}} \mid\right.\right. \\
& \left.+\sum_{t=s}^{\infty}\left[\left|f\left(t, x_{f_{1 t}}, x_{f_{2 t}}, \ldots, x_{f_{k t}}\right)\right|+\left|c_{t}\right|\right]\right) \\
\leq & L-b M+\frac{1}{T^{2}} \sum_{v=T}^{\infty} \sum_{u=v}^{\infty} \sum_{s=u}^{\infty} \frac{1}{\left|a_{s}\right|}\left(W_{s}+\sum_{t=s}^{\infty}\left(Q_{t}+\left|c_{t}\right|\right)\right) \\
< & L-b M+\min \{(1+b) M-L, L-N\} \\
\leq & M, \quad \forall n \geq T, \\
\frac{S_{L} x_{n}}{n^{2}}= & \frac{n^{2}}{T^{2}} \cdot \frac{S_{L} x_{T}}{n^{2}} \leq M, \quad \beta \leq n<T,
\end{aligned}
$$

$$
\begin{aligned}
\frac{S_{L} x_{n}}{n^{2}} \geq & \geq-\frac{1}{n^{2}} \sum_{v=T}^{\infty} \sum_{u=v}^{\infty} \sum_{s=u}^{\infty} \frac{1}{\left|a_{s}\right|}\left(\mid h\left(s, x_{h_{1 s}}, x_{h_{2 s}}, \ldots, x_{h_{k s}} \mid\right.\right. \\
& \left.+\sum_{t=s}^{\infty}\left[\left|f\left(t, x_{f_{f t}}, x_{f_{2 t} t}, \ldots, x_{f_{k t}}\right)\right|+\left|c_{t}\right|\right]\right) \\
\geq & \geq-\frac{1}{T^{2}} \sum_{v=T}^{\infty} \sum_{u=v}^{\infty} \sum_{s=u}^{\infty} \frac{1}{\left|a_{s}\right|}\left(W_{s}+\sum_{t=s}^{\infty}\left(Q_{t}+\left|c_{t}\right|\right)\right) \\
& >L-\min \{(1+b) M-L, L-N\} \\
\geq & \geq N, \quad \forall n \geq T
\end{aligned}
$$

and

$$
\frac{S_{L} x_{n}}{n^{2}}=\frac{n^{2}}{T^{2}} \cdot \frac{S_{L} x_{T}}{n^{2}} \geq N, \quad \beta \leq n<T,
$$

which yield that $S_{L}(A(N, M)) \subseteq A(N, M)$. The rest of the proof is similar to that of Theorem 2.3 and is omitted. This completes the proof.

Theorem 2.5 Assume that there exist constants q, b_{*}, b^{*}, M and N and four nonnegative sequences $\left\{P_{n}\right\}_{n \in \mathbb{N}_{n_{0}}},\left\{Q_{n}\right\}_{n \in \mathbb{N}_{n_{0}}},\left\{R_{n}\right\}_{n \in \mathbb{N}_{n_{0}}},\left\{W_{n}\right\}_{n \in \mathbb{N}_{n_{0}}}$ satisfying (2.1), (2.2), (2.17), (2.18) and

$$
\begin{array}{ll}
q^{2} b^{*}<1<b_{*} q, & b^{*}(M q+N)<\frac{M}{q}+\frac{N}{q b^{*}}, \\
1<b_{*} \leq b_{n} \leq b^{*}, & \text { eventually. } \tag{2.39}
\end{array}
$$

Then

(a) for any $L \in\left(b^{*}(M q+N), \frac{M}{q}+\frac{N}{q b^{*}}\right)$, there exist $\theta \in(0,1)$ and $T \geq n_{0}+\tau+\beta$ such that for each $x_{0}=\left\{x_{0 n}\right\}_{n \in \mathbb{N}_{\beta}} \in A(N, M)$, the Mann iterative sequence $\left\{x_{m}\right\}_{m \in \mathbb{N}_{0}}=\left\{\left\{x_{m n}\right\}_{n \in \mathbb{N}_{\beta}}\right\}_{m \in \mathbb{N}_{0}}$ generated by the scheme:
converges to a positive solution $w=\left\{w_{n}\right\}_{n \in \mathbb{N}_{\beta}} \in A(N, M)$ of Eq. (1.1) with (2.28) and has the error estimate (2.8), where $\left\{\alpha_{m}\right\}_{m \in \mathbb{N}_{0}}$ is an arbitrary sequence in $[0,1]$ satisfying (2.9);
(b) Equation (1.1) possesses uncountably many positive solutions in $A(N, M)$.

Proof Let $L \in\left(b^{*}(M q+N), \frac{M}{q}+\frac{N}{q b^{*}}\right)$. It follows from (2.17), (2.18), (2.38) and (2.39) that there exist $\theta \in(0,1)$ and $T \geq n_{0}+\tau+\beta$ satisfying

$$
\begin{align*}
& \theta=q+\frac{1}{b_{*} T^{2}} \sum_{v=T}^{\infty} \sum_{u=v}^{\infty} \sum_{s=u}^{\infty} \frac{1}{\left|a_{s}\right|}\left(R_{s} H_{s}+\sum_{t=s}^{\infty} P_{t} F_{t}\right) \tag{2.41}\\
& \frac{1}{b_{*} T^{2}} \sum_{v=T}^{\infty} \sum_{u=v}^{\infty} \sum_{s=u}^{\infty} \frac{1}{\left|a_{s}\right|}\left(W_{s}+\sum_{t=s}^{\infty}\left(Q_{t}+\left|c_{t}\right|\right)\right) \\
& \quad<\min \left\{M-q L+\frac{N}{b^{*}}, \frac{L}{b^{*}}-M q-N\right\} \tag{2.42}\\
& \left(1+\frac{\tau}{n}\right)^{2}<b_{*} q, \quad 1<b_{*} \leq b_{n} \leq b^{*}, \forall n \geq T . \tag{2.43}
\end{align*}
$$

Define a mapping $S_{L}: A(N, M) \rightarrow l_{\beta}^{\infty}$ by

$$
S_{L} x_{n}=\left\{\begin{array}{l}
\frac{(n+\tau)^{2} L}{b_{n+\tau}}-\frac{x_{n+\tau}}{b_{n+\tau}}+\frac{1}{b_{n+\tau}} \sum_{v=n+\tau}^{\infty} \sum_{u=\nu}^{\infty} \sum_{s=u}^{\infty} \frac{1}{a_{s}}\left\{h\left(s, x_{h_{1 s}}, x_{h_{2 s}}, \ldots, x_{h_{k s}}\right)\right. \tag{2.44}\\
\left.\quad-\sum_{t=s}^{\infty}\left[f\left(t, x_{f_{1}}, x_{f_{2 t}}, \ldots, x_{f_{k t}}\right)-c_{t}\right]\right\}, \quad n \geq T \\
\frac{n^{2}}{T^{2}} S_{L} x_{T}, \quad \beta \leq n<T
\end{array}\right.
$$

for each $x=\left\{x_{n}\right\}_{n \in \mathbb{N}_{\beta}} \in A(N, M)$. On account of (2.1), (2.2) and (2.41)-(2.44), we ensure that for each $x=\left\{x_{n}\right\}_{n \in \mathbb{N}_{\beta}}, y=\left\{y_{n}\right\}_{n \in \mathbb{N}_{\beta}} \in A(N, M)$

$$
\begin{aligned}
\left\lvert\, \frac{S_{L} x_{n}}{n^{2}}\right. & \left.-\frac{S_{L} y_{n}}{n^{2}} \right\rvert\, \\
\leq & \frac{1}{b_{n+\tau}} \cdot \frac{(n+\tau)^{2}}{n^{2}} \cdot \frac{\left|x_{n+\tau}-y_{n+\tau}\right|}{(n+\tau)^{2}} \\
& +\frac{1}{b_{n+\tau} n^{2}} \sum_{v=n+\tau}^{\infty} \sum_{u=v}^{\infty} \sum_{s=u}^{\infty} \frac{1}{\left|a_{s}\right|}\left(\left|h\left(s, x_{h_{1 s}}, x_{h_{2 s}}, \ldots, x_{h_{k s}}\right)-h\left(s, y_{h_{1 s}}, y_{h_{2 s}}, \ldots, y_{h_{k s}}\right)\right|\right. \\
& +\sum_{t=s}^{\infty} \mid f\left(t, x_{f_{1 t}}, x_{f_{2 t}}, \ldots, x_{f_{k t}}\right)-f\left(t, y_{\left.\left.f_{1 t}, y_{f_{2 t}}, \ldots, y_{f_{k t}}\right) \mid\right)}^{\leq}\right. \\
& \frac{1}{b_{*}}\left(1+\frac{\tau}{T}\right)^{2}\|x-y\| \\
& +\frac{1}{b_{*} T^{2}} \sum_{v=T}^{\infty} \sum_{u=v}^{\infty} \sum_{s=u}^{\infty} \frac{1}{\left|a_{s}\right|}\left(R_{s} \max \left\{\left|x_{h_{l s}}-y_{h_{l s}}\right|: 1 \leq l \leq k\right\}\right. \\
& \left.+\sum_{t=s}^{\infty} P_{t} \max \left\{\left|x_{f_{l t}}-y_{f_{l t}}\right|: 1 \leq l \leq k\right\}\right) \\
\leq & {\left[q+\frac{1}{b_{*} T^{2}} \sum_{v=T}^{\infty} \sum_{u=v}^{\infty} \sum_{s=u}^{\infty} \frac{1}{\left|a_{s}\right|}\left(R_{s} H_{s}+\sum_{t=s}^{\infty} P_{t} F_{t}\right)\right]\|x-y\| } \\
= & \theta\|x-y\|, \quad \forall n \geq T, \\
\left\lvert\, \frac{S_{L} x_{n}}{n^{2}}\right. & \left.-\frac{S_{L} y_{n}}{n^{2}}\left|=\frac{n^{2}}{T^{2}}\right| \frac{S_{L} x_{T}}{n^{2}}-\frac{S_{L} y_{T}}{n^{2}} \right\rvert\, \leq \theta\|x-y\|, \quad \beta \leq n<T,
\end{aligned}
$$

$$
\begin{aligned}
& \frac{S_{L} x_{n}}{n^{2}}=\left(1+\frac{\tau}{n}\right)^{2} \frac{L}{b_{n+\tau}}-\frac{1}{b_{n+\tau}}\left(1+\frac{\tau}{n}\right)^{2} \frac{x_{n+\tau}}{(n+\tau)^{2}} \\
& +\frac{1}{b_{n+\tau} n^{2}} \sum_{v=n+\tau}^{\infty} \sum_{u=v}^{\infty} \sum_{s=u}^{\infty} \frac{1}{a_{s}}\left(h\left(s, x_{h_{1 s}}, x_{h_{2 s}}, \ldots, x_{h_{k s}}\right)\right. \\
& \left.-\sum_{t=s}^{\infty}\left[f\left(t, x_{f_{1 t}}, x_{f_{2 t}}, \ldots, x_{f_{k t}}\right)-c_{t}\right]\right) \\
& \leq\left(1+\frac{\tau}{n}\right)^{2} \frac{L}{b_{*}}-\frac{N}{b^{*}}+\frac{1}{b_{*} n^{2}} \sum_{v=n+\tau}^{\infty} \sum_{u=v}^{\infty} \sum_{s=u}^{\infty} \frac{1}{\left|a_{s}\right|}\left\{\left|h\left(s, x_{h_{1 s}}, x_{h_{2 s}}, \ldots, x_{h_{k s}}\right)\right|\right. \\
& \left.+\sum_{t=s}^{\infty}\left[\left|f\left(t, x_{f_{1 t}}, x_{f_{2 t}}, \ldots, x_{f_{k t}}\right)\right|+\left|c_{t}\right|\right]\right\} \\
& \leq q L-\frac{N}{b^{*}}+\frac{1}{b_{*} T^{2}} \sum_{v=T}^{\infty} \sum_{u=v}^{\infty} \sum_{s=u}^{\infty} \frac{1}{\left|a_{s}\right|}\left(W_{s}+\sum_{t=s}^{\infty}\left(Q_{t}+\left|c_{t}\right|\right)\right) \\
& <q L-\frac{N}{b^{*}}+\min \left\{M-q L+\frac{N}{b^{*}}, \frac{L}{b^{*}}-M q-N\right\} \\
& \leq M, \quad \forall n \geq T, \\
& \frac{S_{L} x_{n}}{n^{2}}=\frac{n^{2}}{T^{2}} \cdot \frac{S_{L} x_{T}}{n^{2}} \leq M, \quad \beta \leq n<T, \\
& \frac{S_{L} x_{n}}{n^{2}} \geq \frac{L}{b^{*}}-\frac{M}{b_{*}}\left(1+\frac{\tau}{n}\right)^{2}-\frac{1}{b_{*} n^{2}} \sum_{v=n+\tau}^{\infty} \sum_{u=v}^{\infty} \sum_{s=u}^{\infty} \frac{1}{\left|a_{s}\right|}\left(\left|h\left(s, x_{h_{1 s}}, x_{h_{2 s}}, \ldots, x_{h_{k s}}\right)\right|\right. \\
& \left.+\sum_{t=s}^{\infty}\left[\left|f\left(t, x_{f_{1 t}}, x_{f_{2 t}}, \ldots, x_{f_{k t}}\right)\right|+\left|c_{t}\right|\right]\right) \\
& \geq \frac{L}{b^{*}}-M q-\frac{1}{b_{*} T^{2}} \sum_{v=T}^{\infty} \sum_{u=v}^{\infty} \sum_{s=u}^{\infty} \frac{1}{\left|a_{s}\right|}\left(W_{s}+\sum_{t=s}^{\infty}\left(Q_{t}+\left|c_{t}\right|\right)\right) \\
& >\frac{L}{b^{*}}-M q-\min \left\{M-q L+\frac{N}{b^{*}}, \frac{L}{b^{*}}-M q-N\right\} \\
& \geq N, \quad \forall n \geq T
\end{aligned}
$$

and

$$
\frac{S_{L} x_{n}}{n^{2}}=\frac{n^{2}}{T^{2}} \cdot \frac{S_{L} x_{T}}{n^{2}} \geq N, \quad \beta \leq n<T
$$

which mean (2.14). It follows from the Banach fixed point theorem that the contraction mapping S_{L} possesses a unique fixed point $w=\left\{w_{n}\right\}_{n \in \mathbb{N}_{\beta}} \in A(N, M)$, that is,

$$
\begin{align*}
w_{n}=S_{L} w_{n}= & \frac{(n+\tau)^{2}}{b_{n+\tau}} L-\frac{w_{n+\tau}}{b_{n+\tau}}+\frac{1}{b_{n+\tau}} \sum_{v=n+\tau}^{\infty} \sum_{u=v}^{\infty} \sum_{s=u}^{\infty} \frac{1}{a_{s}}\left\{h\left(s, w_{h_{1 s}}, w_{h_{2 s}}, \ldots, w_{h_{k s}}\right)\right. \\
& \left.-\sum_{t=s}^{\infty}\left[f\left(t, w_{f_{1 t}}, w_{f_{2 t}}, \ldots, w_{f_{k t}}\right)-c_{t}\right]\right\}, \quad \forall n \geq T \tag{2.45}
\end{align*}
$$

and (2.16) is satisfied. It is easy to verify that (2.45) yields that

$$
\begin{align*}
& \begin{aligned}
w_{n}+b_{n} w_{n-\tau}= & n^{2} L
\end{aligned}+\sum_{v=n}^{\infty} \sum_{u=v}^{\infty} \sum_{s=u}^{\infty} \frac{1}{a_{s}}\left\{h\left(s, w_{h_{1 s}}, w_{h_{2 s}}, \ldots, w_{h_{k s}}\right)\right. \\
& - \tag{2.46}\\
& \left.-\sum_{t=s}^{\infty}\left[f\left(t, w_{f_{1 t}}, w_{f_{2 t}}, \ldots, w_{f_{k t}}\right)-c_{t}\right]\right\}, \quad \forall n \geq T+\tau, \\
& \begin{aligned}
\Delta\left(w_{n}+b_{n} w_{n-\tau}\right)= & (2 n+1) L-\sum_{u=n}^{\infty} \sum_{s=u}^{\infty} \frac{1}{a_{s}}\left\{h\left(s, w_{h_{1 s}}, w_{h_{2 s}}, \ldots, w_{h_{k s}}\right)\right. \\
& \left.-\sum_{t=s}^{\infty}\left[f\left(t, w_{f_{11}}, w_{f_{2 t}}, \ldots, w_{f_{k t}}\right)-c_{t}\right]\right\}, \quad \forall n \geq T+\tau, \\
& \left.\quad-\sum_{t=s}^{\infty}\left[f\left(t, w_{f_{11}}, w_{f_{2 t}}, \ldots, w_{f_{k t}}\right)-c_{t}\right]\right\}, \quad \forall n \geq T+\tau, \\
\Delta^{2}\left(w_{n}+b_{n} w_{n-\tau}\right)= & 2 L+\sum_{s=n}^{\infty} \frac{1}{a_{s}}\left\{h\left(s, w_{h_{1 s}}, w_{h_{2 s}}, \ldots, w_{h_{k s}}\right)\right. \\
& +\sum_{t=n}^{\infty}\left[f\left(t, w_{f_{1 t}}, w_{f_{2 t} t}, \ldots, w_{f_{k t}}\right)-c_{t}\right], \quad \forall n \geq T+\tau
\end{aligned}
\end{align*}
$$

and

$$
\begin{aligned}
\Delta\left(a_{n} \Delta^{3}\left(w_{n}+b_{n} w_{n-\tau}\right)\right)= & -\Delta h\left(n, w_{h_{1 n}}, w_{h_{2 n}}, \ldots, w_{h_{k n}}\right) \\
& -f\left(n, w_{f_{1 n}}, w_{f_{2 n}}, \ldots, w_{f_{k n}}\right)+c_{n}, \quad \forall n \geq T+\tau
\end{aligned}
$$

that is, $w=\left\{w_{n}\right\}_{n \in \mathbb{N}_{\beta}}$ is a positive solution of Eq. (1.1) in $A(N, M)$. Making use of (2.17), (2.18) and (2.46), we infer that

$$
\begin{aligned}
&\left|\frac{w_{n}+b_{n} w_{n-\tau}}{n^{2}}-L\right| \leq \frac{1}{n^{2}} \sum_{v=n}^{\infty} \sum_{u=v}^{\infty} \sum_{s=u}^{\infty} \frac{1}{\left|a_{s}\right|}\left(\left|h\left(s, w_{h_{1 s}}, w_{h_{2 s}}, \ldots, w_{h_{k s}}\right)\right|\right. \\
&\left.+\sum_{t=s}^{\infty}\left[\left|f\left(t, w_{f_{1 t}}, w_{f_{2 t}}, \ldots, w_{f_{k t}}\right)\right|+\left|c_{t}\right|\right]\right) \\
& \leq \frac{1}{n^{2}} \sum_{v=n}^{\infty} \sum_{u=v}^{\infty} \sum_{s=u}^{\infty} \frac{1}{\left|a_{s}\right|}\left(W_{s}+\sum_{t=s}^{\infty}\left(Q_{t}+\left|c_{t}\right|\right)\right) \\
& \rightarrow 0 \quad \text { as } n \rightarrow \infty
\end{aligned}
$$

which gives (2.28). In terms of (2.14), (2.16), (2.40), (2.44) and (2.45), we deduce that

$$
\begin{aligned}
\frac{\left|x_{m+1 n}-w_{n}\right|}{n^{2}}= & \frac{1}{n^{2}} \left\lvert\,\left(1-\alpha_{m}\right) x_{m n}+\alpha_{m}\left\{\frac{(n+\tau)^{2} L}{b_{n+\tau}}-\frac{x_{n+\tau}}{b_{n+\tau}}\right.\right. \\
& +\frac{1}{b_{n+\tau}} \sum_{v=n+\tau}^{\infty} \sum_{u=v}^{\infty} \sum_{s=u}^{\infty} \frac{1}{a_{s}}\left[h\left(s, x_{m h_{1 s}}, x_{m h_{2 s}}, \ldots, x_{m h_{k s}}\right)\right.
\end{aligned}
$$

$$
\begin{aligned}
& \left.\left.-\sum_{t=s}^{\infty}\left[f\left(t, x_{m f_{1}}, x_{m f_{2}}, \ldots, x_{m f_{k t}}\right)-c_{t}\right]\right]\right\}-w_{n} \mid \\
\leq & \left(1-\alpha_{m}\right) \frac{\left|x_{m n}-w_{n}\right|}{n^{2}}+\alpha_{m} \frac{\left|S_{L} x_{m n}-S_{L} w_{n}\right|}{n^{2}} \\
\leq & \left(1-\alpha_{m}\right)\left\|x_{m}-w\right\|+\theta \alpha_{m}\left\|x_{m}-w\right\| \\
= & {\left[1-(1-\theta) \alpha_{m}\right]\left\|x_{m}-w\right\| } \\
\leq & e^{-(1-\theta) \alpha_{m}}\left\|x_{m}-w\right\|, \quad \forall m \in \mathbb{N}_{0}, n \geq T
\end{aligned}
$$

and

$$
\begin{aligned}
\frac{\left|x_{m+1 n}-w_{n}\right|}{n^{2}}= & \frac{1}{n^{2}} \left\lvert\,\left(1-\alpha_{m}\right) \frac{n^{2}}{T^{2}} x_{m T}+\alpha_{m} \frac{n^{2}}{T^{2}}\left\{\frac{(T+\tau)^{2} L}{b_{T+\tau}}-\frac{x_{m T+\tau}}{b_{T+\tau}}\right.\right. \\
& +\sum_{v=T+\tau}^{\infty} \sum_{u=v}^{\infty} \sum_{s=u}^{\infty} \frac{1}{a_{s}}\left[h\left(s, x_{m h_{1 s}}, x_{m h_{2 s}}, \ldots, x_{m h_{k s}}\right)\right. \\
& \left.\left.-\sum_{t=s}^{\infty}\left[f\left(t, x_{m f_{1} t}, x_{m f_{2 t}}, \ldots, x_{m f_{k t}}\right)-c_{t}\right]\right]\right\}-w_{n} \mid \\
\leq & \left(1-\alpha_{m}\right) \frac{\left|x_{m T}-w_{T}\right|}{T^{2}}+\alpha_{m} \frac{\left|S_{L} x_{m T}-S_{L} w_{T}\right|}{T^{2}} \\
\leq & {\left[1-(1-\theta) \alpha_{m}\right]\left\|x_{m}-w\right\| } \\
\leq & e^{-(1-\theta) \alpha_{m}}\left\|x_{m}-w\right\|, \quad \forall m \in \mathbb{N}_{0}, \beta \leq n<T,
\end{aligned}
$$

which imply that

$$
\left\|x_{m+1}-w\right\| \leq e^{-(1-\theta) \alpha_{m}}\left\|x_{m}-w\right\| \leq e^{-(1-\theta) \sum_{i=0}^{m} \alpha_{i}}\left\|x_{0}-w\right\|, \quad \forall m \in \mathbb{N}_{0}
$$

that is, (2.8) holds. It follows from (2.8) and (2.9) that $\lim _{m \rightarrow \infty} x_{m}=w$.
Next we show that (b) holds. Let $L_{1}, L_{2} \in\left(b^{*}(M q+N), \frac{M}{q}+\frac{N}{q b^{*}}\right)$ and $L_{1} \neq L_{2}$. Similar to the proof of (a), we get that for each $c \in\{1,2\}$ there exist constants $\theta_{c} \in(0,1), T_{c} \geq n_{0}+\tau+\beta$ and a mapping $S_{L_{c}}$ satisfying (2.41)-(2.44), where θ, L and T are replaced by θ_{c}, L_{c} and T_{c}, respectively, and the mapping $S_{L_{c}}$ has a fixed point $z^{c}=\left\{z_{n}^{c}\right\}_{n \in \mathbb{N}_{\beta}} \in A(N, M)$, which is a positive solution of Eq. (1.1) in $A(N, M)$, that is,

$$
\begin{aligned}
z_{n}^{c}= & \frac{(n+\tau)^{2}}{b_{n+\tau}} L_{c}-\frac{z_{n+\tau}^{c}}{b_{n+\tau}}+\frac{1}{b_{n+\tau}} \sum_{v=n}^{\infty} \sum_{u=v}^{\infty} \sum_{s=u}^{\infty} \frac{1}{a_{s}}\left\{h\left(s, z_{h_{1 s}}^{c}, z_{h_{2 s}}^{c}, \ldots, z_{h_{k s}}^{c}\right)\right. \\
& \left.-\sum_{t=s}^{\infty}\left[f\left(t, z_{f_{1 t}}^{c}, z_{f_{2 t}}^{c}, \ldots, z_{f_{k t}}^{c}\right)-c_{t}\right]\right\}, \quad \forall n \geq T_{c},
\end{aligned}
$$

which together with (2.1), (2.41) and (2.43) means that

$$
\begin{aligned}
& \left|\frac{z_{n}^{1}}{n^{2}}-\frac{z_{n}^{2}}{n^{2}}\right| \\
& \quad \geq \frac{1}{b_{n+\tau}}\left(1+\frac{\tau}{n}\right)^{2}\left|L_{1}-L_{2}\right|-\frac{1}{b_{n+\tau}} \cdot \frac{(n+\tau)^{2}}{n^{2}} \cdot \frac{\left|z_{n}^{1}(n+\tau)-z_{n}^{2}(n+\tau)\right|}{(n+\tau)^{2}}
\end{aligned}
$$

$$
\begin{aligned}
& -\frac{1}{b_{n+\tau} n^{2}} \sum_{v=n+\tau}^{\infty} \sum_{u=v}^{\infty} \sum_{s=u}^{\infty} \frac{1}{\left|a_{s}\right|}\left(\left|h\left(s, z_{h_{1 s}}^{1}, z_{h_{2 s}}^{1}, \ldots, z_{h_{k s}}^{1}\right)-h\left(s, z_{h_{1 s}}^{2}, z_{h_{2 s}}^{2}, \ldots, z_{h_{k s}}^{2}\right)\right|\right. \\
& \left.+\sum_{t=s}^{\infty}\left|f\left(t, z_{f i t}^{1}, z_{f_{2 t}}^{1}, \ldots, z_{f_{k t}}^{1}\right)-f\left(t, z_{f_{t},}^{2}, z_{f_{2 t}}^{2}, \ldots, z_{f_{k t}}^{2}\right)\right|\right) \\
\geq & \frac{\left|L_{1}-L_{2}\right|}{b^{*}}-\frac{1}{b_{*}}\left(1+\frac{\tau}{n}\right)^{2}\left\|z^{1}-z^{2}\right\| \\
& -\frac{1}{b_{*} n^{2}} \sum_{v=n+\tau}^{\infty} \sum_{u=v}^{\infty} \sum_{s=u}^{\infty} \frac{1}{\left|a_{s}\right|}\left(R_{s} \max \left\{\left|z_{h_{l s}}^{1}-z_{h_{l s}}^{2}\right|: 1 \leq l \leq k\right\}\right. \\
& \left.+\sum_{t=s}^{\infty} P_{t} \max \left\{\left|z_{f_{t t}}^{1}-z_{f_{t l}}^{2}\right|: 1 \leq l \leq k\right\}\right) \\
\geq & \frac{\left|L_{1}-L_{2}\right|}{b^{*}}-q\left\|z^{1}-z^{2}\right\|-\frac{\left\|z^{1}-z^{2}\right\|}{b_{*} \max \left\{T_{1}^{2}, T_{2}^{2}\right\}} \sum_{v=\max \left\{T_{1}, T_{2}\right\}}^{\infty} \sum_{u=v}^{\infty} \sum_{s=u}^{\infty} \frac{1}{\left|a_{s}\right|}\left(R_{s} H_{s}+\sum_{t=s}^{\infty} P_{t} F_{t}\right) \\
\geq & \frac{\left|L_{1}-L_{2}\right|}{b^{*}}-\max \left\{\theta_{1}, \theta_{2}\right\}\left\|z^{1}-z^{2}\right\|, \quad \forall n \geq \max \left\{T_{1}, T_{2}\right\},
\end{aligned}
$$

which yields that

$$
\left\|z^{1}-z^{2}\right\| \geq \frac{\left|L_{1}-L_{2}\right|}{b^{*}\left(1+\max \left\{\theta_{1}, \theta_{2}\right\}\right)}>0,
$$

that is, $z^{1} \neq z^{2}$. This completes the proof.

Theorem 2.6 Assume that there exist constants b_{*}, b^{*}, M and N with $N \frac{1+b_{*}}{1+b^{*}}>M>N>0$ and four nonnegative sequences $\left\{P_{n}\right\}_{n \in \mathbb{N}_{n_{0}}},\left\{Q_{n}\right\}_{n \in \mathbb{N}_{n_{0}}},\left\{R_{n}\right\}_{n \in \mathbb{N}_{n_{0}}}$ and $\left\{W_{n}\right\}_{n \in \mathbb{N}_{n_{0}}}$ satisfying (2.1), (2.2), (2.17), (2.18) and

$$
\begin{equation*}
b_{*} \leq b_{n} \leq b^{*}<-1 \quad \text { eventually } . \tag{2.47}
\end{equation*}
$$

Then

(a) for any $L \in\left(N\left(1+b_{*}\right), M\left(1+b^{*}\right)\right)$, there exist $\theta \in(0,1)$ and $T \geq n_{0}+\tau+\beta$ such that for each $x_{0}=\left\{x_{0 n}\right\}_{n \in \mathbb{N}_{\beta}} \in A(N, M)$, the Mann iterative sequence $\left\{x_{m}\right\}_{m \in \mathbb{N}_{0}}=\left\{\left\{x_{m n}\right\}_{n \in \mathbb{N}_{\beta}}\right\}_{m \in \mathbb{N}_{0}}$ generated by (2.40) converges to a positive solution $w=\left\{w_{n}\right\}_{n \in \mathbb{N}_{\beta}} \in A(N, M)$ of Eq. (1.1) with (2.28) and has the error estimate (2.8), where $\left\{\alpha_{m}\right\}_{m \in \mathbb{N}_{0}}$ is an arbitrary sequence in $[0,1]$ satisfying (2.9);
(b) Equation (1.1) possesses uncountably many positive solutions in $A(N, M)$.

Proof Put $L \in\left(N\left(1+b_{*}\right), M\left(1+b^{*}\right)\right)$. Observe that

$$
\begin{aligned}
\lim _{n \rightarrow \infty}\left[N\left(1+b_{*}\left(1+\frac{\tau}{n}\right)^{-2}\right)\right] & =N\left(1+b_{*}\right)<L<M\left(1+b^{*}\right) \\
& =\lim _{n \rightarrow \infty}\left[M\left(1+b^{*}\left(1-\frac{\tau}{n}\right)^{-2}\right)\right] \\
& =\lim _{n \rightarrow \infty}\left[M\left(1+b^{*}\left(1+\frac{\tau}{n}\right)^{-2}\right)\right],
\end{aligned}
$$

which implies that there exists $T_{0} \in \mathbb{N}_{n_{0}+\tau+\beta}$ satisfying

$$
\begin{align*}
L & \in\left(N\left(1+b_{*}\left(1+\frac{\tau}{n}\right)^{-2}\right), M\left(1+b^{*}\left(1-\frac{\tau}{n}\right)^{-2}\right)\right) \\
& \subset\left(N\left(1+b_{*}\right), M\left(1+b^{*}\right)\right) \\
& \subset\left(N\left(1+b_{*}\right), M\left(1+b^{*}\left(1+\frac{\tau}{n}\right)^{-2}\right)\right), \quad \forall n \in \mathbb{N}_{T_{0}} . \tag{2.48}
\end{align*}
$$

It follows from (2.17), (2.18) and (2.47) that there exist $\theta \in(0,1)$ and $T \geq T_{0}$ satisfying

$$
\begin{align*}
& \theta=-\frac{1}{b^{*}}\left[\left(1+\frac{\tau}{T}\right)^{2}+\frac{1}{T^{2}} \sum_{v=T}^{\infty} \sum_{u=v}^{\infty} \sum_{s=u}^{\infty} \frac{1}{\left|a_{s}\right|}\left(R_{s} H_{s}+\sum_{t=s}^{\infty} P_{t} F_{t}\right)\right] ; \tag{2.49}\\
&-\frac{1}{b^{*} T^{2}} \sum_{v=T}^{\infty} \sum_{u=v}^{\infty} \sum_{s=u}^{\infty} \frac{1}{\left|a_{s}\right|}\left(W_{s}+\sum_{t=s}^{\infty}\left(Q_{t}+\left|c_{t}\right|\right)\right) \\
&<\min \left\{M+\left(1+\frac{\tau}{T}\right)^{2} \frac{M-L}{b^{*}},\left(1+\frac{\tau}{T}\right)^{2} \frac{L-N}{b_{*}}-N\right\} ; \tag{2.50}\\
& b_{n} \leq b<-1, \quad \forall n \geq T . \tag{2.51}
\end{align*}
$$

Define a mapping $S_{L}: A(N, M) \rightarrow l_{\beta}^{\infty}$ by (2.44). Making use of (2.1), (2.2), (2.44) and (2.48)-(2.51), we conclude that for each $x=\left\{x_{n}\right\}_{n \in \mathbb{N}_{\beta}}, y=\left\{y_{n}\right\}_{n \in \mathbb{N}_{\beta}} \in A(N, M)$

$$
\begin{aligned}
\left\lvert\, \frac{S_{L} x_{n}}{n^{2}}\right. & \left.-\frac{S_{L} y_{n}}{n^{2}} \right\rvert\, \\
\leq & -\frac{1}{b_{n+\tau}} \cdot \frac{(n+\tau)^{2}}{n^{2}}\left|\frac{x_{n+\tau}-y_{n+\tau}}{(n+\tau)^{2}}\right| \\
& -\frac{1}{b_{n+\tau} n^{2}} \sum_{v=n+\tau}^{\infty} \sum_{u=v}^{\infty} \sum_{s=u}^{\infty} \frac{1}{\left|a_{s}\right|}\left(\left|h\left(s, x_{h_{1 s}}, x_{h_{2 s}}, \ldots, x_{h_{k s}}\right)-h\left(s, y_{h_{1 s}}, y_{h_{2 s}}, \ldots, y_{h_{k s}}\right)\right|\right. \\
& \left.+\sum_{t=s}^{\infty}\left|f\left(t, x_{f_{1 t}}, x_{f_{2 t}}, \ldots, x_{f_{k t}}\right)-f\left(t, y_{f_{1 t}}, y_{f_{2 t}}, \ldots, y_{f_{k t}}\right)\right|\right) \\
\leq & -\frac{1}{b^{*}}\left(1+\frac{\tau}{T}\right)^{2}\|x-y\| \\
& -\frac{1}{b^{*} T^{2}} \sum_{v=T}^{\infty} \sum_{u=v}^{\infty} \sum_{s=u}^{\infty} \frac{1}{\left|a_{s}\right|}\left(R_{s} \max \left\{\left|x_{h_{l s}}-y_{h_{l s}}\right|: 1 \leq l \leq k\right\}\right. \\
& \left.+\sum_{t=s}^{\infty} P_{t} \max \left\{\left|x_{f_{l t}}-y_{f_{l t}}\right|: 1 \leq l \leq k\right\}\right) \\
\leq & -\frac{1}{b^{*}}\left[\left(1+\frac{\tau}{T}\right)^{2}+\frac{1}{T^{2}} \sum_{v=T}^{\infty} \sum_{u=v}^{\infty} \sum_{s=u}^{\infty} \frac{1}{\left|a_{s}\right|}\left(R_{s} H_{s}+\sum_{t=s}^{\infty} P_{t} F_{t}\right)\right]\|x-y\| \\
= & \theta\|x-y\|, \quad \forall n \geq T, \\
\left\lvert\, \frac{S_{L} x_{n}}{n^{2}}\right. & -\frac{S_{L} y_{n}}{n^{2}}\left|=\left|\frac{n^{2}}{T^{2}} \cdot \frac{S_{L} x_{T}}{n^{2}}-\frac{n^{2}}{T^{2}} \cdot \frac{S_{L} y_{T}}{n^{2}}\right| \leq \theta\|x-y\|, \quad \beta \leq n<T\right.
\end{aligned}
$$

$$
\begin{aligned}
& \frac{S_{L} x_{n}}{n^{2}}=\left(1+\frac{\tau}{n}\right)^{2} \frac{L}{b_{n+\tau}}-\frac{1}{b_{n+\tau}}\left(1+\frac{\tau}{n}\right)^{2} \frac{x_{n+\tau}}{(n+\tau)^{2}} \\
& +\frac{1}{b_{n+\tau} n^{2}} \sum_{v=n+\tau}^{\infty} \sum_{u=v}^{\infty} \sum_{s=u}^{\infty} \frac{1}{a_{s}}\left\{h\left(s, x_{h_{1 s}}, x_{h_{2 s}}, \ldots, x_{h_{k s}}\right)\right. \\
& \left.-\sum_{t=s}^{\infty}\left[f\left(t, x_{f_{1 t}}, x_{f_{2 t}}, \ldots, x_{f_{k t}}\right)-c_{t}\right]\right\} \\
& \leq\left(1+\frac{\tau}{n}\right)^{2} \frac{L}{b^{*}}-\left(1+\frac{\tau}{n}\right)^{2} \frac{M}{b^{*}} \\
& -\frac{1}{b^{*} n^{2}} \sum_{v=n+\tau}^{\infty} \sum_{u=v}^{\infty} \sum_{s=u}^{\infty} \frac{1}{\left|a_{s}\right|}\left(\left|h\left(s, x_{h_{1 s}}, x_{h_{2 s}}, \ldots, x_{h_{k s}}\right)\right|\right. \\
& \left.+\sum_{t=s}^{\infty}\left[\left|f\left(t, x_{f_{1}}, x_{f_{2 t}}, \ldots, x_{f_{k t}}\right)\right|+\left|c_{t}\right|\right]\right) \\
& \leq\left(1+\frac{\tau}{T}\right)^{2} \frac{L-M}{b^{*}}-\frac{1}{b^{*} T^{2}} \sum_{v=T}^{\infty} \sum_{u=v}^{\infty} \sum_{s=u}^{\infty} \frac{1}{\left|a_{s}\right|}\left(W_{s}+\sum_{t=s}^{\infty}\left(Q_{t}+\left|c_{t}\right|\right)\right) \\
& <\left(1+\frac{\tau}{T}\right)^{2} \frac{L-M}{b^{*}} \\
& +\min \left\{M+\left(1+\frac{\tau}{T}\right)^{2} \frac{M-L}{b^{*}},\left(1+\frac{\tau}{T}\right)^{2} \frac{L-N}{b_{*}}-N\right\} \\
& \leq M, \quad \forall n \geq T, \\
& \frac{S_{L} x_{n}}{n^{2}}=\frac{n^{2}}{T^{2}} \cdot \frac{S_{L} x_{T}}{n^{2}} \leq M, \quad \beta \leq n<T, \\
& \frac{S_{L} x_{n}}{n^{2}} \geq\left(1+\frac{\tau}{n}\right)^{2} \frac{L}{b_{*}}-\left(1+\frac{\tau}{n}\right)^{2} \frac{N}{b_{*}} \\
& +\frac{1}{b^{*} n^{2}} \sum_{v=n+\tau}^{\infty} \sum_{u=v}^{\infty} \sum_{s=u}^{\infty} \frac{1}{\left|a_{s}\right|}\left(\left|h\left(s, x_{h_{1 s}}, x_{h_{2 s}}, \ldots, x_{h_{k s}}\right)\right|\right. \\
& \left.+\sum_{t=s}^{\infty}\left[\left|f\left(t, x_{f_{1 t}}, x_{f_{2 t}}, \ldots, x_{f_{k t}}\right)\right|+\left|c_{t}\right|\right]\right) \\
& \geq\left(1+\frac{\tau}{n}\right)^{2} \frac{L-N}{b_{*}}+\frac{1}{b^{*} T^{2}} \sum_{v=T}^{\infty} \sum_{u=v}^{\infty} \sum_{s=u}^{\infty} \frac{1}{\left|a_{s}\right|}\left(W_{s}+\sum_{t=s}^{\infty}\left(Q_{t}+\left|c_{t}\right|\right)\right) \\
& >\left(1+\frac{\tau}{T}\right)^{2} \frac{L-N}{b_{*}} \\
& -\min \left\{M+\left(1+\frac{\tau}{T}\right)^{2} \frac{M-L}{b^{*}},\left(1+\frac{\tau}{T}\right)^{2} \frac{L-N}{b_{*}}-N\right\} \\
& \geq N, \quad \forall n \geq T
\end{aligned}
$$

and

$$
\frac{S_{L} x_{n}}{n^{2}}=\frac{n^{2}}{T^{2}} \cdot \frac{S_{L} x_{T}}{n^{2}} \geq N, \quad \beta \leq n<T,
$$

which yield (2.14). The rest of the proof is similar to that of Theorem 2.5 and is omitted. This completes the proof.

Theorem 2.7 Assume that there exist constants b, M and N with $(1-2 b) M>N>0$ and four nonnegative sequences $\left\{P_{n}\right\}_{n \in \mathbb{N}_{n_{0}}},\left\{Q_{n}\right\}_{n \in \mathbb{N}_{n_{0}}},\left\{R_{n}\right\}_{n \in \mathbb{N}_{n_{0}}},\left\{W_{n}\right\}_{n \in \mathbb{N}_{n_{0}}}$ satisfying (2.1), (2.2), (2.17), (2.18) and

$$
\begin{equation*}
\left|b_{n}\right| \leq b<\frac{1}{2} \quad \text { eventually. } \tag{2.52}
\end{equation*}
$$

Then

(a) for any $L \in(N+b M,(1-b) M)$, there exist $\theta \in(0,1)$ and $T \geq n_{0}+\tau+\beta$ such that for any $x_{0}=\left\{x_{0 n}\right\}_{n \in \mathbb{N}_{\beta}} \in A(N, M)$, the Mann iterative sequence $\left\{x_{m}\right\}_{m \in \mathbb{N}_{0}}=\left\{\left\{x_{m n}\right\}_{n \in \mathbb{N}_{\beta}}\right\}_{m \in \mathbb{N}_{0}}$ generated by (2.27) converges to a positive solution $w=\left\{w_{n}\right\}_{n \in \mathbb{N}_{\beta}} \in A(N, M)$ of Eq. (1.1) with (2.28) and has the error estimate (2.8), where $\left\{\alpha_{m}\right\}_{m \in \mathbb{N}_{0}}$ is an arbitrary sequence in $[0,1]$ satisfying (2.9);
(b) Equation (1.1) possesses uncountably many positive solutions in $A(N, M)$.

Proof Put $L \in(N+b M,(1-b) M)$. It follows from (2.17), (2.18) and (2.52) that there exist $\theta \in(0,1)$ and $T \geq n_{0}+\tau+\beta$ satisfying (2.29),

$$
\begin{align*}
& \frac{1}{T^{2}} \sum_{v=T}^{\infty} \sum_{u=v}^{\infty} \sum_{s=u}^{\infty} \frac{1}{\left|a_{s}\right|}\left(W_{s}+\sum_{t=s}^{\infty}\left(Q_{t}+\left|c_{t}\right|\right)\right)<\min \{(1-b) M-L, L-b M-N\} ; \tag{2.53}\\
& \left|b_{n}\right| \leq b, \quad \forall n \geq T \tag{2.54}
\end{align*}
$$

Define a mapping $S_{L}: A(N, M) \rightarrow l_{\beta}^{\infty}$ by (2.32). By virtue of (2.2), (2.32), (2.53) and (2.54), we easily verify that for each $x=\left\{x_{n}\right\}_{n \in \mathbb{N}_{\beta}}, y=\left\{y_{n}\right\}_{n \in \mathbb{N}_{\beta}} \in A(N, M)$

$$
\begin{aligned}
\frac{S_{L} x_{n}}{n^{2}} \leq & L-\left|b_{n}\right|\left(1-\frac{\tau}{n}\right)^{2} \frac{x_{n-\tau}}{(n-\tau)^{2}} \\
& +\frac{1}{n^{2}} \sum_{v=n}^{\infty} \sum_{u=v}^{\infty} \sum_{s=u}^{\infty} \frac{1}{\left|a_{s}\right|}\left(\mid h\left(s, x_{h_{1 s}}, x_{h_{2 s}}, \ldots, x_{h_{k s}} \mid\right.\right. \\
& \left.+\sum_{t=s}^{\infty}\left[\left|f\left(t, x_{f_{1}}, x_{f_{2 t}}, \ldots, x_{f_{k t}}\right)\right|+\left|c_{t}\right|\right]\right) \\
\leq & L+b M+\frac{1}{T^{2}} \sum_{v=T}^{\infty} \sum_{u=v}^{\infty} \sum_{s=u}^{\infty} \frac{1}{\left|a_{s}\right|}\left(W_{s}+\sum_{t=s}^{\infty}\left(Q_{t}+\left|c_{t}\right|\right)\right) \\
& <L+b M+\min \{(1-b) M-L, L-b M-N\} \\
\leq & M, \quad \forall n \geq T, \\
\frac{S_{L} x_{n}}{n^{2}}= & \frac{n^{2}}{T^{2}} \cdot \frac{S_{L} x_{T}}{n^{2}} \leq M, \quad \beta \leq n<T,
\end{aligned}
$$

$$
\begin{aligned}
\frac{S_{L} x_{n}}{n^{2}} \geq & L-\left|b_{n}\right|\left(1-\frac{\tau}{n}\right)^{2} \frac{x_{n-\tau}}{(n-\tau)^{2}} \\
& -\frac{1}{n^{2}} \sum_{v=n}^{\infty} \sum_{u=v}^{\infty} \sum_{s=u}^{\infty} \frac{1}{\left|a_{s}\right|}\left(\left|h\left(s, x_{h_{1 s}}, x_{h_{2 s}}, \ldots, x_{h_{k s}}\right)\right|\right. \\
& \left.+\sum_{t=s}^{\infty}\left[\left|f\left(t, x_{f_{1 i}}, x_{f_{2 t}}, \ldots, x_{f_{k t}}\right)\right|+\left|c_{t}\right|\right]\right) \\
\geq & L-b M-\frac{1}{T^{2}} \sum_{v=T}^{\infty} \sum_{u=v}^{\infty} \sum_{s=u}^{\infty} \frac{1}{\left|a_{s}\right|}\left(W_{s}+\sum_{t=s}^{\infty}\left(Q_{t}+\left|c_{t}\right|\right)\right) \\
> & L-b M-\min \{(1-b) M-L, L-b M-N\} \\
\geq & N, \quad \forall n \geq T
\end{aligned}
$$

and

$$
\frac{S_{L} x_{n}}{n^{2}}=\frac{n^{2}}{T^{2}} \cdot \frac{S_{L} x_{T}}{n^{2}} \geq N, \quad \beta \leq n<T
$$

which yield that $S_{L}(A(N, M)) \subseteq A(N, M)$. The rest of the proof is similar to that of Theorem 2.3 and is omitted. This completes the proof.

3 Examples

In this section, we suggest seven examples to explain the results presented in Section 2.
Example 3.1 Consider the fourth order neutral delay difference equation

$$
\begin{align*}
& \Delta\left(\left(n^{2}-n+1\right) \Delta^{3}\left(x_{n}-x_{n-\tau}\right)\right)+\Delta\left(\frac{\sin ^{2}\left(x_{n-3}-n x_{n^{2}-1}\right)}{n^{18}+3 n^{6}-4 n^{3}+1}\right) \\
& \quad+\frac{3 n-\sqrt{n}}{\left(n^{15}+2 n^{5}-n+1\right)\left(1+x_{n^{2}}^{2}+x_{n-2}^{2}\right)}=\frac{(-1)^{n} \ln ^{2} n}{n^{11}+2 n^{5}-n^{4}+1}, \quad \forall n \geq 4 \tag{3.1}
\end{align*}
$$

where $\tau \in \mathbb{N}$ is fixed. Let $n_{0}=4, k=2, \beta=\min \{4-\tau, 1\}=1 \in \mathbb{N}, M$ and N be two positive constants with $M>N$ and

$$
\begin{aligned}
& a_{n}=n^{2}-n+1, \quad b_{n}=-1, \quad c_{n}=\frac{(-1)^{n} \ln ^{2} n}{n^{11}+2 n^{5}-n^{4}+1}, \quad f_{1 n}=n^{2}, \\
& f_{2 n}=n-2, \quad F_{n}=n^{4}, \quad h_{1 n}=n-3, \quad h_{2 n}=n^{2}-1, \quad H_{n}=\left(n^{2}-1\right)^{2}, \\
& f(n, u, v)=\frac{3 n-\sqrt{n}}{\left(n^{15}+2 n^{5}-n+1\right)\left(1+u^{2}+v^{2}\right)}, \quad h(n, u, v)=\frac{\sin ^{2}(u-n v)}{n^{18}+3 n^{6}-4 n^{3}+1}, \\
& P_{n}=Q_{n}=\frac{20}{n^{14}}, \quad R_{n}=\frac{4}{n^{17}}, \quad W_{n}=\frac{1}{n^{18}}, \quad \forall(n, u, v) \in \mathbb{N}_{n_{0}} \times \mathbb{R}^{2} .
\end{aligned}
$$

It is easy to see that (2.1), (2.2) and (2.5) are satisfied. Note that Lemma 1.1 means that

$$
\begin{aligned}
& \frac{1}{n^{2}} \sum_{i=1}^{\infty} \sum_{v=n+i \tau}^{\infty} \sum_{u=v}^{\infty} \sum_{s=u}^{\infty} \frac{1}{\left|a_{s}\right|} \max \left\{R_{s} H_{s}, W_{s}\right\} \\
& \quad \leq \frac{1}{n^{2} \tau} \sum_{s=n+\tau}^{\infty} \frac{s^{3}}{s^{2}-s+1} \max \left\{\frac{4\left(s^{2}-1\right)^{2}}{s^{17}}, \frac{1}{s^{18}}\right\} \leq \frac{4}{n^{2} \tau} \sum_{s=n+\tau}^{\infty} \frac{1}{s^{10}} \rightarrow 0 \quad \text { as } n \rightarrow \infty
\end{aligned}
$$

and

$$
\begin{aligned}
& \frac{1}{n^{2}} \sum_{i=1}^{\infty} \sum_{v=n+i \tau}^{\infty} \sum_{u=v}^{\infty} \sum_{s=u}^{\infty} \sum_{t=s}^{\infty} \frac{1}{\left|a_{s}\right|} \max \left\{P_{t} F_{t}, Q_{t},\left|c_{t}\right|\right\} \\
& \quad=\frac{1}{n^{2}} \sum_{i=1}^{\infty} \sum_{v=n+i \tau}^{\infty} \sum_{u=v}^{\infty} \sum_{s=u}^{\infty} \sum_{t=s}^{\infty} \frac{1}{s^{2}-s+1} \max \left\{\frac{20}{t^{10}}, \frac{20}{t^{14}}, \frac{\ln ^{2} t}{t^{11}+2 t^{5}-t^{4}+1}\right\} \\
& \quad \leq \frac{20}{n^{2}} \sum_{i=1}^{\infty} \sum_{v=n+i \tau}^{\infty} \sum_{u=v}^{\infty} \sum_{s=u}^{\infty} \sum_{t=s}^{\infty} \frac{1}{t^{8}} \\
& \quad \leq \frac{20}{n^{2} \tau} \sum_{t=n+\tau}^{\infty} \frac{1}{t^{6}} \rightarrow 0 \quad \text { as } n \rightarrow \infty,
\end{aligned}
$$

which give that

$$
\lim _{n \rightarrow \infty} \frac{1}{n^{2}} \sum_{i=1}^{\infty} \sum_{v=n+i \tau}^{\infty} \sum_{u=v}^{\infty} \sum_{s=u}^{\infty} \frac{1}{\left|a_{s}\right|} \max \left\{R_{s} H_{s}, W_{s}\right\}=0
$$

and

$$
\lim _{n \rightarrow \infty} \frac{1}{n^{2}} \sum_{i=1}^{\infty} \sum_{v=n+i \tau}^{\infty} \sum_{u=v}^{\infty} \sum_{s=u}^{\infty} \sum_{t=s}^{\infty} \frac{1}{\left|a_{s}\right|} \max \left\{P_{t} F_{t}, Q_{t},\left|c_{t}\right|\right\}=0 .
$$

That is, (2.3) and (2.4) hold. Consequently Theorem 2.1 implies that Eq. (3.1) possesses uncountably many positive solutions in $A(N, M)$. Moreover, for each $L \in(N, M)$, there exist $\theta \in(0,1)$ and $T \geq n_{0}+\tau+\beta$ such that for each $x_{0}=\left\{x_{0 n}\right\}_{n \in \mathbb{N}_{\beta}} \in A(N, M)$, the Mann iterative sequence $\left\{x_{m}\right\}_{m \in \mathbb{N}_{0}}=\left\{\left\{x_{m n}\right\}_{n \in \mathbb{N}_{\beta}}\right\}_{m \in \mathbb{N}_{0}}$ generated by (2.6) converges to a positive solution $w=\left\{w_{n}\right\}_{n \in \mathbb{N}_{\beta}} \in A(N, M)$ of Eq. (3.1) with (2.7) and (2.8), where $\left\{\alpha_{m}\right\}_{m \in \mathbb{N}_{0}}$ is an arbitrary sequence in $[0,1]$ satisfying (2.9).

Example 3.2 Consider the fourth order neutral delay difference equation

$$
\begin{align*}
& \Delta\left((-1)^{n} n^{2} \Delta^{3}\left(x_{n}+x_{n-\tau}\right)\right)+\Delta\left(\frac{\cos ^{2}\left(n^{14} x_{n-4}-2\right)}{\left(n^{34}+28 n^{22}-1\right)\left(1+x_{2 n-3}^{4}\right)}\right) \\
& \quad+\frac{\left(n^{20}-n^{13}+(-1)^{n}\right)\left(x_{n^{2}-16}+x_{n^{2}-20}\right)}{\left(n^{36}+10 n^{28}-\sqrt{n}\right)\left(1+x_{n^{2}-16}^{2}+x_{n^{2}-20}^{2}\right)} \\
& \quad=\frac{(-1)^{n} n^{3}+4 n^{2}-\sqrt{\ln n}}{n^{19}+20 n^{15}-n^{4}+1}, \quad n \geq 5, \tag{3.2}
\end{align*}
$$

where $\tau \in \mathbb{N}$ is fixed. Let $n_{0}=5, k=2, \beta=5-\tau \in \mathbb{N}, M$ and N be two positive constants with $M>N$ and

$$
\begin{array}{ll}
a_{n}=(-1)^{n} n^{2}, & b_{n}=1, \quad c_{n}=\frac{(-1)^{n} n^{3}+4 n^{2}-\sqrt{\ln n}}{n^{19}+20 n^{15}-n^{4}+1}, \quad f_{1 n}=n^{2}-16 \\
f_{2 n}=n^{2}-20, & F_{n}=\left(n^{2}-16\right)^{2}, \quad h_{1 n}=2 n-3 \\
h_{2 n}=n-4, & H_{n}=(2 n-3)^{2},
\end{array}
$$

$$
\begin{aligned}
& f(n, u, v)=\frac{\left(n^{20}-n^{13}+(-1)^{n}\right)(u+v)}{\left(n^{36}+10 n^{28}-\sqrt{n}\right)\left(1+u^{2}+v^{2}\right)}, \\
& h(n, u, v)=\frac{\cos ^{2}\left(n^{14} v-2\right)}{\left(n^{34}+28 n^{22}-1\right)\left(1+u^{4}\right)}, \\
& P_{n}=Q_{n}=\frac{4}{n^{12}}, \quad R_{n}=W_{n}=\frac{10}{n^{13}}, \quad \forall(n, u, v) \in \mathbb{N}_{n_{0}} \times \mathbb{R}^{2} .
\end{aligned}
$$

It is clear that (2.1), (2.2) and (2.19) are fulfilled. Note that Lemma 1.1 ensures that

$$
\begin{aligned}
& \frac{1}{n^{2}} \sum_{v=n}^{\infty} \sum_{u=v}^{\infty} \sum_{s=u}^{\infty} \frac{1}{\left|a_{s}\right|} \max \left\{R_{s} H_{s}, W_{s}\right\} \\
& \quad \leq \frac{1}{n^{2}} \sum_{s=n}^{\infty} \frac{s^{2}}{\left|(-1)^{s} s^{2}\right|} \max \left\{\frac{10(2 s-3)^{2}}{s^{13}}, \frac{10}{s^{13}}\right\} \\
& \quad \leq \frac{40}{n^{2}} \sum_{s=n}^{\infty} \frac{1}{s^{11}} \rightarrow 0 \quad \text { as } n \rightarrow \infty
\end{aligned}
$$

and

$$
\begin{aligned}
& \frac{1}{n^{2}} \sum_{v=n}^{\infty} \sum_{u=v}^{\infty} \sum_{s=u}^{\infty} \sum_{t=s}^{\infty} \frac{1}{\left|a_{s}\right|} \max \left\{P_{t} F_{t}, Q_{t},\left|c_{t}\right|\right\} \\
& \quad=\frac{1}{n^{2}} \sum_{v=n}^{\infty} \sum_{u=v}^{\infty} \sum_{s=u}^{\infty} \sum_{t=s}^{\infty} \frac{1}{\left|(-1)^{s} s^{2}\right|} \max \left\{\frac{4\left|t^{2}-16\right|^{2}}{t^{12}}, \frac{4}{t^{12}},\left|\frac{(-1)^{t} t^{3}+4 t^{2}-\sqrt{\ln t}}{t^{19}+20 t^{15}-t^{4}+1}\right|\right\} \\
& \quad \leq \frac{4}{n^{2}} \sum_{v=n}^{\infty} \sum_{u=v}^{\infty} \sum_{s=u}^{\infty} \sum_{t=s}^{\infty} \frac{1}{t^{8}} \\
& \quad \leq \frac{4}{n^{2}} \sum_{t=n}^{\infty} \frac{1}{t^{5}} \rightarrow 0 \quad \text { as } n \rightarrow \infty,
\end{aligned}
$$

which mean that

$$
\lim _{n \rightarrow \infty} \frac{1}{n^{2}} \sum_{v=n}^{\infty} \sum_{u=v}^{\infty} \sum_{s=u}^{\infty} \frac{1}{\left|a_{s}\right|} \max \left\{R_{s} H_{s}, W_{s}\right\}=0
$$

and

$$
\lim _{n \rightarrow \infty} \frac{1}{n^{2}} \sum_{v=n}^{\infty} \sum_{u=v}^{\infty} \sum_{s=u}^{\infty} \sum_{t=s}^{\infty} \frac{1}{\left|a_{s}\right|} \max \left\{P_{t} F_{t}, Q_{t},\left|c_{t}\right|\right\}=0
$$

That is, (2.17) and (2.18) hold. Consequently Theorem 2.2 implies that Eq. (3.2) possesses uncountably many positive solutions in $A(N, M)$. Moreover, for each $L \in(N, M)$, there exist $\theta \in(0,1)$ and $T \geq n_{0}+\tau+\beta$ such that for each $x_{0}=\left\{x_{0 n}\right\}_{n \in \mathbb{N}_{\beta}} \in A(N, M)$, the Mann iterative sequence $\left\{x_{m}\right\}_{m \in \mathbb{N}_{0}}=\left\{\left\{x_{m n}\right\}_{n \in \mathbb{N}_{\beta}}\right\}_{m \in \mathbb{N}_{0}}$ generated by (2.20) converges to a positive solution $w=\left\{w_{n}\right\}_{n \in \mathbb{N}_{\beta}} \in A(N, M)$ of Eq. (3.2) with (2.7) and (2.8), where $\left\{\alpha_{m}\right\}_{m \in \mathbb{N}_{0}}$ is an arbitrary sequence in $[0,1]$ satisfying (2.9).

Example 3.3 Consider the fourth order neutral delay difference equation

$$
\begin{align*}
& \Delta\left(\sqrt{n^{5}+1} \Delta^{3}\left(x_{n}+\frac{3 n^{3}-2}{4 n^{3}+3} x_{n-\tau}\right)\right) \\
& \quad+\Delta\left(\frac{\sin \left(n^{8}\left|x_{n-1}\right|-\sqrt{n}\right)}{n^{24}+n^{4}-\sqrt{n}+1}-\frac{n^{5}-(-1)^{n} n+1}{\left(n^{19}+6 n^{8}-n^{2}+1\right) 2^{\left|x_{2 n-1}\right|}}\right) \\
& \quad+\frac{(-1)^{n} n^{9}-3 n^{4}+2 n^{2}+1}{\left(n^{17}+n^{5}+1\right)\left(1+x_{2 n-4}^{2}\right)}-\frac{n^{15} \sin ^{5}\left(3 n^{8}-1\right)+n^{3}-1}{\left(n^{25}+4 n^{24}+n^{7}-1\right)\left(1+x_{n-3}^{2}\right)} \\
& \quad=\frac{(-1)^{n} n^{21}-n^{7}+2 n^{3}-1}{n^{28}+8 n^{14}-2 n^{7}+1}, \quad \forall n \geq 7, \tag{3.3}
\end{align*}
$$

where $\tau \in \mathbb{N}$ is fixed. Let $n_{0}=7, k=2, b=\frac{3}{4}, \beta=\min \{7-\tau, 5\} \in \mathbb{N}, M$ and N be two positive constants with $M>4 N$ and

$$
\begin{aligned}
& a_{n}=\sqrt{n^{5}+1}, \quad b_{n}=\frac{3 n^{3}-2}{4 n^{3}+3}, \quad c_{n}=\frac{(-1)^{n} n^{21}-n^{7}+2 n^{3}-1}{n^{28}+8 n^{14}-2 n^{7}+1}, \quad f_{1 n}=2 n-4, \\
& f_{2 n}=n-3, \quad F_{n}=(2 n-4)^{2}, \quad h_{1 n}=n-1, \quad h_{2 n}=2 n-1, \quad H_{n}=(2 n-1)^{2}, \\
& f(n, u, v)=\frac{(-1)^{n} n^{9}-3 n^{4}+2 n^{2}+1}{\left(n^{17}+n^{5}+1\right)\left(1+u^{2}\right)}-\frac{n^{15} \sin ^{5}\left(3 n^{8}-1\right)+n^{3}-1}{\left(n^{25}+4 n^{24}+n^{7}-1\right)\left(1+v^{2}\right)}, \\
& h(n, u, v)=\frac{\sin \left(n^{8}|u|-\sqrt{n}\right)}{n^{24}+n^{4}-\sqrt{n}+1}-\frac{n^{5}-(-1)^{n} n+1}{\left(n^{19}+6 n^{8}-n^{2}+1\right) 2^{|v|}}, \\
& P_{n}=Q_{n}=\frac{3}{n^{8}}, \quad R_{n}=W_{n}=\frac{2}{n^{10}}, \quad \forall(n, u, v) \in \mathbb{N}_{n_{0}} \times \mathbb{R}^{2} .
\end{aligned}
$$

It is not difficult to verify that (2.1), (2.2) and (2.26) are fulfilled. Note that Lemma 1.1 implies that

$$
\begin{aligned}
& \frac{1}{n^{2}} \sum_{v=n}^{\infty} \sum_{u=v}^{\infty} \sum_{s=u}^{\infty} \frac{1}{\left|a_{s}\right|} \max \left\{R_{s} H_{s}, W_{s}\right\} \\
& \quad \leq \frac{1}{n^{2}} \sum_{s=n}^{\infty} \frac{s^{2}}{\sqrt{s^{5}+1}} \max \left\{\frac{2|2 s-1|^{2}}{s^{10}}, \frac{2}{s^{10}}\right\} \\
& \quad \leq \frac{8}{n^{2}} \sum_{s=n}^{\infty} \frac{1}{s^{6}} \rightarrow 0 \quad \text { as } n \rightarrow \infty
\end{aligned}
$$

and

$$
\begin{aligned}
& \frac{1}{n^{2}} \sum_{v=n}^{\infty} \sum_{u=v}^{\infty} \sum_{s=u}^{\infty} \sum_{t=s}^{\infty} \frac{1}{\left|a_{s}\right|} \max \left\{P_{t} F_{t}, Q_{t},\left|c_{t}\right|\right\} \\
& \quad=\frac{1}{n^{2}} \sum_{v=n}^{\infty} \sum_{u=v}^{\infty} \sum_{s=u}^{\infty} \sum_{t=s}^{\infty} \frac{1}{\left|\sqrt{s^{5}+1}\right|} \max \left\{\frac{3|2 t-4|^{2}}{t^{8}}, \frac{3}{t^{8}}, \frac{\left|(-1)^{t} t^{21}-t^{7}+2 t^{3}-1\right|}{t^{28}+8 t^{14}-2 t^{7}+1}\right\} \\
& \quad \leq \frac{12}{n^{2}} \sum_{v=n}^{\infty} \sum_{u=v}^{\infty} \sum_{s=u}^{\infty} \sum_{t=s}^{\infty} \frac{1}{t^{6}} \\
& \quad \leq \frac{12}{n^{2}} \sum_{t=n}^{\infty} \frac{1}{t^{3}} \rightarrow 0 \quad \text { as } n \rightarrow \infty,
\end{aligned}
$$

which mean that

$$
\lim _{n \rightarrow \infty} \frac{1}{n^{2}} \sum_{v=n}^{\infty} \sum_{u=v}^{\infty} \sum_{s=u}^{\infty} \frac{1}{\left|a_{s}\right|} \max \left\{R_{s} H_{s}, W_{s}\right\}=0
$$

and

$$
\lim _{n \rightarrow \infty} \frac{1}{n^{2}} \sum_{v=n}^{\infty} \sum_{u=v}^{\infty} \sum_{s=u}^{\infty} \sum_{t=s}^{\infty} \frac{1}{\left|a_{s}\right|} \max \left\{P_{t} F_{t}, Q_{t},\left|c_{t}\right|\right\}=0
$$

That is, (2.17) and (2.18) hold. Consequently Theorem 2.3 implies that Eq. (3.3) possesses uncountably many positive solutions in $A(N, M)$. Moreover, for each $L \in(b M+N, M)$, there exist $\theta \in(0,1)$ and $T \geq n_{0}+\tau+\beta$ such that for each $x_{0}=\left\{x_{0 n}\right\}_{n \in \mathbb{N}_{\beta}} \in A(N, M)$, the Mann iterative sequence $\left\{x_{m}\right\}_{m \in \mathbb{N}_{0}}=\left\{\left\{_{m n}\right\}_{n \in \mathbb{N}_{\beta}}\right\}_{m \in \mathbb{N}_{0}}$ generated by (2.27) converges to a positive solution $w=\left\{w_{n}\right\}_{n \in \mathbb{N}_{\beta}} \in A(N, M)$ of Eq. (3.3) with (2.28) and (2.7), where $\left\{\alpha_{m}\right\}_{m \in \mathbb{N}_{0}}$ is an arbitrary sequence in $[0,1]$ satisfying (2.9).

Example 3.4 Consider the fourth order neutral delay difference equation

$$
\begin{align*}
& \Delta\left((-1)^{n} \ln ^{3}(n+2) \Delta^{3}\left(x_{n}+\frac{2-7 \ln ^{9} n}{3+8 \ln ^{9} n} x_{n-\tau}\right)\right)+\Delta\left(\frac{-3 n^{2}+\ln ^{2} n-1}{\left(n^{9}+6 n^{6}+1\right)\left(1+x_{3 n-7}^{4}\right)}\right) \\
& +\frac{\sin ^{2}\left(n^{12} x_{2 n^{2}-1}-3 n^{4}+1\right)}{2 n^{26}+3 n^{8}+1}=\frac{(-1)^{n} n^{3}+n-2}{n^{9}+9 n^{6}-3 n^{3}+1}, \quad \forall n \geq 9, \tag{3.4}
\end{align*}
$$

where $\tau \in \mathbb{N}$ is fixed. Let $n_{0}=9, k=1, b=-\frac{7}{8}, \beta=9-\tau \in \mathbb{N}, M$ and N be two positive constants with $M>8 N$ and

$$
\begin{aligned}
& a_{n}=(-1)^{n} \ln ^{3}(n+2), \quad b_{n}=\frac{2-7 \ln ^{9} n}{3+8 \ln ^{9} n}, \\
& c_{n}=\frac{(-1)^{n} n^{3}+n-2}{n^{9}+9 n^{6}-3 n^{3}+1}, \quad f_{1 n}=2 n^{2}-1, \\
& F_{n}=\left(2 n^{2}-1\right)^{2}, \quad f(n, u)=\frac{\sin ^{2}\left(n^{12} u-3 n^{4}+1\right)}{2 n^{26}+3 n^{8}+1}, \\
& h(n, u)=\frac{-3 n^{2}+\ln ^{2} n-1}{\left(n^{9}+6 n^{6}+1\right)\left(1+u^{4}\right)}, \\
& h_{1 n}=3 n-7, \quad H_{n}=(3 n-7)^{2}, \quad P_{n}=Q_{n}=\frac{3}{n^{11}}, \\
& R_{n}=W_{n}=\frac{5}{n^{7}}, \quad \forall(n, u) \in \mathbb{N}_{n_{0}} \times \mathbb{R} .
\end{aligned}
$$

Obviously, (2.1), (2.2) and (2.34) are satisfied. Note that

$$
\begin{aligned}
& \frac{1}{n^{2}} \sum_{v=n}^{\infty} \sum_{u=v}^{\infty} \sum_{s=u}^{\infty} \frac{1}{\left|a_{s}\right|} \max \left\{R_{s} H_{s}, W_{s}\right\} \\
& \quad \leq \frac{1}{n^{2}} \sum_{s=n}^{\infty} \frac{s^{2}}{\left|(-1)^{s} \ln ^{3}(s+2)\right|} \max \left\{\frac{5|3 s-7|^{2}}{s^{7}}, \frac{5}{s^{7}}\right\} \\
& \quad \leq \frac{45}{n^{2}} \sum_{s=n}^{\infty} \frac{1}{s^{3}} \rightarrow 0 \quad \text { as } n \rightarrow \infty
\end{aligned}
$$

and

$$
\begin{aligned}
& \frac{1}{n^{2}} \sum_{v=n}^{\infty} \sum_{u=v}^{\infty} \sum_{s=u}^{\infty} \sum_{t=s}^{\infty} \frac{1}{\left|a_{s}\right|} \max \left\{P_{t} F_{t}, Q_{t},\left|c_{t}\right|\right\} \\
& \quad=\frac{1}{n^{2}} \sum_{v=n}^{\infty} \sum_{u=v}^{\infty} \sum_{s=u}^{\infty} \sum_{t=s}^{\infty} \frac{1}{\left|(-1)^{s} \ln ^{3}(s+2)\right|} \max \left\{\frac{3\left(2 t^{2}-1\right)^{2}}{t^{11}}, \frac{3}{t^{11}}, \frac{\left|(-1)^{t} t^{3}+t-2\right|}{t^{9}+9 t^{6}-3 t^{3}+1}\right\} \\
& \quad \leq \frac{12}{n^{2}} \sum_{v=n}^{\infty} \sum_{u=v}^{\infty} \sum_{s=u}^{\infty} \sum_{t=s}^{\infty} \frac{1}{t^{7}} \leq \frac{12}{n^{2}} \sum_{t=n}^{\infty} \frac{1}{t^{4}} \rightarrow 0 \quad \text { as } n \rightarrow \infty,
\end{aligned}
$$

which yield that

$$
\lim _{n \rightarrow \infty} \frac{1}{n^{2}} \sum_{v=n}^{\infty} \sum_{u=v}^{\infty} \sum_{s=u}^{\infty} \frac{1}{\left|a_{s}\right|} \max \left\{R_{s} H_{s}, W_{s}\right\}=0
$$

and

$$
\lim _{n \rightarrow \infty} \frac{1}{n^{2}} \sum_{v=n}^{\infty} \sum_{u=v}^{\infty} \sum_{s=u}^{\infty} \sum_{t=s}^{\infty} \frac{1}{\left|a_{s}\right|} \max \left\{P_{t} F_{t}, Q_{t},\left|c_{t}\right|\right\}=0
$$

That is, (2.17) and (2.18) hold. Thus Theorem 2.4 shows that Eq. (3.4) possesses uncountably many positive solutions in $A(N, M)$. Moreover, for each $L \in(N,(1+b) M)$, there exist $\theta \in(0,1)$ and $T \geq n_{0}+\tau+\beta$ such that for each $x_{0}=\left\{x_{0 n}\right\}_{n \in \mathbb{N}_{\beta}} \in A(N, M)$, the Mann iterative sequence $\left\{x_{m}\right\}_{m \in \mathbb{N}_{0}}=\left\{\left\{x_{m n}\right\}_{n \in \mathbb{N}_{\beta}}\right\}_{m \in \mathbb{N}_{0}}$ generated by (2.27) converges to a positive solution $w=\left\{w_{n}\right\}_{n \in \mathbb{N}_{\beta}} \in A(N, M)$ of Eq. (3.4) with (2.28) and (2.8), where $\left\{\alpha_{m}\right\}_{m \in \mathbb{N}_{0}}$ is an arbitrary sequence in $[0,1]$ satisfying (2.9).

Example 3.5 Consider the fourth order neutral delay difference equation

$$
\begin{align*}
& \Delta\left(\left(n^{3}-n^{2}+1\right) \Delta^{3}\left(x_{n}+\left(3+\frac{3}{n}\right) x_{n-\tau}\right)\right) \\
& \quad+\Delta\left(\frac{n^{2}-3 n+\arctan 2}{} n\left(\frac{n}{\left(n^{17}+9 n^{2}+1\right)\left(1+\left|\cos \left(n^{4} x_{2 n-1}-n\right)\right|\right)}\right)\right. \\
& \quad+\frac{n \cos \left(n^{3} x_{n-2}\right)-1}{n^{18}+2 n^{16}+\ln ^{3} n}=\frac{(-1)^{n-1} n^{4}-2 n^{3}+\sqrt{n+1}}{n^{21}+3 n^{15}-2 n^{11}+1}, \quad \forall n \geq 3, \tag{3.5}
\end{align*}
$$

where $\tau \in \mathbb{N}$ is fixed. Let $n_{0}=3, k=1, b^{*}=4, b_{*}=3, q=\frac{\sqrt{2}}{3}, \beta=\min \{3-\tau, 1\}=1, M=300$, $N=1$ and

$$
\begin{aligned}
& a_{n}=n^{3}-n^{2}+1, \quad b_{n}=3+\frac{3}{n}, \quad c_{n}=\frac{(-1)^{n-1} n^{4}-2 n^{3}+\sqrt{n+1}}{n^{21}+3 n^{15}-2 n^{11}+1}, \\
& f_{1 n}=n-2, \quad F_{n}=(n-2)^{2}, \quad h_{1 n}=2 n-1, \quad H_{n}=(2 n-1)^{2}, \\
& f(n, u)=\frac{n \cos \left(n^{3} u\right)-1}{n^{18}+2 n^{16}+\ln ^{3} n}, \quad h(n, u)=\frac{n^{2}-3 n+\arctan 2}{\left(n^{17}+9 n^{2}+1\right)\left(1+\left|\cos \left(n^{4} u-n\right)\right|\right)}, \\
& P_{n}=Q_{n}=\frac{1}{n^{14}}, \quad R_{n}=W_{n}=\frac{2}{n^{9}}, \quad \forall(n, u) \in \mathbb{N}_{n_{0}} \times \mathbb{R} .
\end{aligned}
$$

Clearly, (2.1), (2.2) and (2.39) are satisfied. Note that Lemma 1.1 yields that

$$
\begin{aligned}
& \frac{1}{n^{2}} \sum_{v=n}^{\infty} \sum_{u=v}^{\infty} \sum_{s=u}^{\infty} \frac{1}{\left|a_{s}\right|} \max \left\{R_{s} H_{s}, W_{s}\right\} \\
& \quad \leq \frac{1}{n^{2}} \sum_{s=n}^{\infty} \frac{s^{2}}{s^{3}-s^{2}+1} \max \left\{\frac{2(2 s-1)^{2}}{s^{9}}, \frac{2}{s^{9}}\right\} \\
& \quad \leq \frac{8}{n^{2}} \sum_{s=n}^{\infty} \frac{1}{s^{5}} \rightarrow 0 \quad \text { as } n \rightarrow \infty
\end{aligned}
$$

and

$$
\begin{aligned}
& \frac{1}{n^{2}} \sum_{v=n}^{\infty} \sum_{u=v}^{\infty} \sum_{s=u}^{\infty} \sum_{t=s}^{\infty} \frac{1}{\left|a_{s}\right|} \max \left\{P_{t} F_{t}, Q_{t},\left|c_{t}\right|\right\} \\
& \quad=\frac{1}{n^{2}} \sum_{v=n}^{\infty} \sum_{u=v}^{\infty} \sum_{s=u}^{\infty} \sum_{t=s}^{\infty} \frac{1}{s^{3}-s^{2}+1} \max \left\{\frac{|t-2|^{2}}{t^{14}}, \frac{1}{t^{14}}, \frac{\left|(-1)^{t-1} t^{4}-2 t^{3}+\sqrt{t+1}\right|}{t^{21}+3 t^{15}-2 t^{11}+1}\right\} \\
& \quad \leq \frac{1}{n^{2}} \sum_{v=n}^{\infty} \sum_{u=v}^{\infty} \sum_{s=u}^{\infty} \sum_{t=s}^{\infty} \frac{1}{t^{12}} \\
& \quad \leq \frac{1}{n^{2}} \sum_{t=n}^{\infty} \frac{1}{t^{9}} \rightarrow 0 \quad \text { as } n \rightarrow \infty
\end{aligned}
$$

which mean that

$$
\lim _{n \rightarrow \infty} \frac{1}{n^{2}} \sum_{v=n}^{\infty} \sum_{u=v}^{\infty} \sum_{s=u}^{\infty} \frac{1}{\left|a_{s}\right|} \max \left\{R_{s} H_{s}, W_{s}\right\}=0
$$

and

$$
\lim _{n \rightarrow \infty} \frac{1}{n^{2}} \sum_{v=n}^{\infty} \sum_{u=v}^{\infty} \sum_{s=u}^{\infty} \sum_{t=s}^{\infty} \frac{1}{\left|a_{s}\right|} \max \left\{P_{t} F_{t}, Q_{t},\left|c_{t}\right|\right\}=0
$$

That is, (2.17) and (2.18) hold. Thus Theorem 2.5 shows that Eq. (3.5) possesses uncountably many positive solutions in $A(N, M)$. Moreover, for each $L \in\left(b^{*}(M q+N), \frac{M}{q}+\frac{N}{q b^{*}}\right)$, there exist $\theta \in(0,1)$ and $T \geq n_{0}+\tau+\beta$ such that for each $x_{0}=\left\{x_{0 n}\right\}_{n \in \mathbb{N}_{\beta}} \in A(N, M)$, the Mann iterative sequence $\left\{x_{m}\right\}_{m \in \mathbb{N}_{0}}=\left\{\left\{x_{m n}\right\}_{n \in \mathbb{N}_{\beta}}\right\}_{m \in \mathbb{N}_{0}}$ generated by (2.40) converges to a positive solution $w=\left\{w_{n}\right\}_{n \in \mathbb{N}_{\beta}} \in A(N, M)$ of Eq. (3.5) with (2.28) and (2.8), where $\left\{\alpha_{m}\right\}_{m \in \mathbb{N}_{0}}$ is an arbitrary sequence in $[0,1]$ satisfying (2.9).

Example 3.6 Consider the fourth order neutral delay difference equation

$$
\begin{align*}
& \Delta\left(n^{4} \Delta^{3}\left(x_{n}-\frac{2 n^{12}+9 n^{11}-1}{n^{12}+3 n^{11}+2} x_{n-\tau}\right)\right)+\Delta\left(\frac{(-1)^{n} \cos \left(n^{30}-2 \sqrt{n+1}\right)}{(n+3)^{9} \sqrt{n\left|x_{n-2}\right|+1}}\right) \\
& +\frac{n^{4}-\ln ^{3} n}{n^{15}+2 n^{2}+\sin \left(n^{3} x_{n-1}\right)}=\frac{(-1)^{n-1} n^{4}+5 \ln ^{5} n-1}{n^{13}+12 n^{11}+1}, \quad \forall n \geq 6, \tag{3.6}
\end{align*}
$$

where $\tau \in \mathbb{N}$ is fixed. Let $n_{0}=6, k=1, b^{*}=-2, b_{*}=-3, \beta=\min \{6-\tau, 4\} \in \mathbb{N}, M$ and N be two positive constants with $2 N>M>N$ and

$$
\begin{aligned}
& a_{n}=n^{4}, \quad b_{n}=-\frac{2 n^{12}+9 n^{11}-1}{n^{12}+3 n^{11}+2}, \quad c_{n}=\frac{(-1)^{n-1} n^{4}+5 \ln ^{5} n-1}{n^{13}+12 n^{11}+1}, \\
& f_{1 n}=n-1, \quad F_{n}=(n-1)^{2}, \quad h_{1 n}=n-2, \quad H_{n}=(n-2)^{2}, \\
& f(n, u)=\frac{n^{4}-\ln ^{3} n}{n^{15}+2 n^{2}+\sin \left(n^{3} u\right)}, \quad h(n, u)=\frac{(-1)^{n} \cos \left(n^{30}-2 \sqrt{n+1}\right)}{(n+3)^{9} \sqrt{n|u|+1}}, \\
& P_{n}=Q_{n}=R_{n}=W_{n}=\frac{1}{n^{8}}, \quad \forall(n, u) \in \mathbb{N}_{n_{0}} \times \mathbb{R} .
\end{aligned}
$$

Obviously, (2.1), (2.2) and (2.47) are satisfied. Note that Lemma 1.1 guarantees that

$$
\begin{aligned}
& \frac{1}{n^{2}} \sum_{v=n}^{\infty} \sum_{u=v}^{\infty} \sum_{s=u}^{\infty} \frac{1}{\left|a_{s}\right|} \max \left\{R_{s} H_{s}, W_{s}\right\} \\
& \quad \leq \frac{1}{n^{2}} \sum_{s=n}^{\infty} \frac{s^{2}}{s^{4}} \max \left\{\frac{|s-2|^{2}}{s^{8}}, \frac{1}{s^{8}}\right\} \\
& \quad \leq \frac{1}{n^{2}} \sum_{s=n}^{\infty} \frac{1}{s^{8}} \rightarrow 0 \quad \text { as } n \rightarrow \infty
\end{aligned}
$$

and

$$
\begin{aligned}
& \frac{1}{n^{2}} \sum_{v=n}^{\infty} \sum_{u=v}^{\infty} \sum_{s=u}^{\infty} \sum_{t=s}^{\infty} \frac{1}{\left|a_{s}\right|} \max \left\{P_{t} F_{t}, Q_{t},\left|c_{t}\right|\right\} \\
& \quad=\frac{1}{n^{2}} \sum_{v=n}^{\infty} \sum_{u=v}^{\infty} \sum_{s=u}^{\infty} \sum_{t=s}^{\infty} \frac{1}{s^{4}} \max \left\{\frac{(t-1)^{2}}{t^{8}}, \frac{1}{t^{8}}, \frac{\left|(-1)^{t-1} t^{4}+5 \ln ^{5} t-1\right|}{t^{13}+12 t^{11}+1}\right\} \\
& \quad \leq \frac{1}{n^{2}} \sum_{v=n}^{\infty} \sum_{u=v}^{\infty} \sum_{s=u}^{\infty} \sum_{t=s}^{\infty} \frac{1}{t^{6}} \\
& \quad \leq \frac{1}{n^{2}} \sum_{t=n}^{\infty} \frac{1}{t^{3}} \rightarrow 0 \quad \text { as } n \rightarrow \infty
\end{aligned}
$$

which imply that

$$
\lim _{n \rightarrow \infty} \frac{1}{n^{2}} \sum_{v=n}^{\infty} \sum_{u=v}^{\infty} \sum_{s=u}^{\infty} \frac{1}{\left|a_{s}\right|} \max \left\{R_{s} H_{s}, W_{s}\right\}=0
$$

and

$$
\lim _{n \rightarrow \infty} \frac{1}{n^{2}} \sum_{v=n}^{\infty} \sum_{u=v}^{\infty} \sum_{s=u}^{\infty} \sum_{t=s}^{\infty} \frac{1}{\left|a_{s}\right|} \max \left\{P_{t} F_{t}, Q_{t},\left|c_{t}\right|\right\}=0
$$

That is, (2.17) and (2.18) hold. Thus Theorem 2.6 shows that Eq. (3.6) possesses uncountably many positive solutions in $A(N, M)$. Moreover, for each $L \in\left(N\left(1+b_{*}\right), M\left(1+b^{*}\right)\right)$, there exist $\theta \in(0,1)$ and $T \geq n_{0}+\tau+\beta$ such that for each $x_{0}=\left\{x_{0 n}\right\}_{n \in \mathbb{N}_{\beta}} \in A(N, M)$, the

Mann iterative sequence $\left\{x_{m}\right\}_{m \in \mathbb{N}_{0}}=\left\{\left\{x_{m n}\right\}_{n \in \mathbb{N}_{\beta}}\right\}_{m \in \mathbb{N}_{0}}$ generated by (2.40) converges to a positive solution $w=\left\{w_{n}\right\}_{n \in \mathbb{N}_{\beta}} \in A(N, M)$ of Eq. (3.6) with (2.28) and (2.8), where $\left\{\alpha_{m}\right\}_{m \in \mathbb{N}_{0}}$ is an arbitrary sequence in $[0,1]$ satisfying (2.9).

Example 3.7 Consider the fourth order neutral delay difference equation

$$
\begin{align*}
& \Delta\left(n \ln ^{2}(n+3) \Delta^{3}\left(x_{n}+\frac{2(-1)^{n} n^{8}-n+1}{5 n^{8}+3 n-1} x_{n-\tau}\right)\right)+\Delta\left(\frac{\sin x_{n-6}}{n^{12}+n x_{n^{2}-2}^{2}}\right) \\
& \quad+\frac{(-1)^{n-1} n^{3} \cos ^{3}\left(4 n^{9}-3 \ln ^{2} n\right)}{n^{15}+\ln ^{8} n+\left|n x_{3 n-1}-x_{2 n-3}\right|}=\frac{(-1)^{n} n^{8}-5 n^{7}-4 n^{3}+1}{n^{25}+30 n^{16}-2 n^{7}+1}, \quad \forall n \geq 8, \tag{3.7}
\end{align*}
$$

where $\tau \in \mathbb{N}$ is fixed. Let $n_{0}=4, k=2, b=\frac{2}{5}, \beta=\min \{4-\tau, 2\} \in \mathbb{N}, M$ and N be two positive constants with $M>5 N$ and

$$
\begin{aligned}
& a_{n}=n \ln ^{2}(n+3), \quad b_{n}=\frac{2(-1)^{n} n^{8}-n+1}{5 n^{8}+3 n-1}, \quad c_{n}=\frac{(-1)^{n} n^{8}-5 n^{7}-4 n^{3}+1}{n^{25}+30 n^{16}-2 n^{7}+1}, \\
& f_{1 n}=3 n-1, \quad f_{2 n}=2 n-3, \quad F_{n}=(3 n-1)^{2}, \\
& h_{1 n}=n^{2}-2, \quad h_{2 n}=n-4, \quad H_{n}=\left(n^{2}-2\right)^{2}, \\
& f(n, u, v)=\frac{(-1)^{n-1} n^{3} \cos ^{3}\left(4 n^{9}-3 \ln ^{2} n\right)}{n^{15}+\ln ^{8} n+|n u-v|}, \quad h(n, u, v)=\frac{\sin u}{n^{12}+n v^{2}}, \\
& P_{n}=Q_{n}=R_{n}=W_{n}=\frac{4}{n^{11}}, \quad \forall(n, u, v) \in \mathbb{N}_{n_{0}} \times \mathbb{R}^{2} .
\end{aligned}
$$

It is not difficult to verify that (2.1), (2.2) and (2.52) are fulfilled. Note that Lemma 1.1 gives that

$$
\begin{aligned}
& \frac{1}{n^{2}} \sum_{v=n}^{\infty} \sum_{u=v}^{\infty} \sum_{s=u}^{\infty} \frac{1}{\left|a_{s}\right|} \max \left\{R_{s} H_{s}, W_{s}\right\} \\
& \quad \leq \frac{1}{n^{2}} \sum_{s=n}^{\infty} \frac{s^{2}}{s \ln ^{2}(s+3)} \max \left\{\frac{4\left(s^{2}-2\right)^{2}}{s^{11}}, \frac{4}{s^{11}}\right\} \\
& \quad \leq \frac{4}{n^{2}} \sum_{s=n}^{\infty} \frac{1}{s^{6}} \rightarrow 0 \quad \text { as } n \rightarrow \infty
\end{aligned}
$$

and

$$
\begin{aligned}
& \frac{1}{n^{2}} \sum_{v=n}^{\infty} \sum_{u=v}^{\infty} \sum_{s=u}^{\infty} \sum_{t=s}^{\infty} \frac{1}{\left|a_{s}\right|} \max \left\{P_{t} F_{t}, Q_{t},\left|c_{t}\right|\right\} \\
& \quad=\frac{1}{n^{2}} \sum_{v=n}^{\infty} \sum_{u=v}^{\infty} \sum_{s=u}^{\infty} \sum_{t=s}^{\infty} \frac{1}{s \ln ^{2}(s+3)} \max \left\{\frac{4(3 t-1)^{2}}{t^{11}}, \frac{4}{t^{11}}, \frac{\left|(-1)^{t} t^{8}-5 t^{7}-4 t^{3}+1\right|}{t^{25}+30 t^{16}-2 t^{7}+1}\right\} \\
& \quad \leq \frac{36}{n^{2}} \sum_{v=n}^{\infty} \sum_{u=v}^{\infty} \sum_{s=u}^{\infty} \sum_{t=s}^{\infty} \frac{1}{t^{9}} \\
& \quad \leq \frac{36}{n^{2}} \sum_{t=n}^{\infty} \frac{1}{t^{6}} \rightarrow 0 \quad \text { as } n \rightarrow \infty,
\end{aligned}
$$

which mean that

$$
\lim _{n \rightarrow \infty} \frac{1}{n^{2}} \sum_{v=n}^{\infty} \sum_{u=v}^{\infty} \sum_{s=u}^{\infty} \frac{1}{\left|a_{s}\right|} \max \left\{R_{s} H_{s}, W_{s}\right\}=0
$$

and

$$
\lim _{n \rightarrow \infty} \frac{1}{n^{2}} \sum_{v=n}^{\infty} \sum_{u=v}^{\infty} \sum_{s=u}^{\infty} \sum_{t=s}^{\infty} \frac{1}{\left|a_{s}\right|} \max \left\{P_{t} F_{t}, Q_{t},\left|c_{t}\right|\right\}=0 .
$$

That is, (2.17) and (2.18) hold. Consequently Theorem 2.7 implies that Eq. (3.7) possesses uncountably many positive solutions in $A(N, M)$. Moreover, for each $L \in(N+b M,(1-$ b) M), there exist $\theta \in(0,1)$ and $T \geq n_{0}+\tau+\beta$ such that for each $x_{0}=\left\{x_{0 n}\right\}_{n \in \mathbb{N}_{\beta}} \in A(N, M)$, the Mann iterative sequence $\left\{x_{m}\right\}_{m \in \mathbb{N}_{0}}=\left\{\left\{x_{m n}\right\}_{n \in \mathbb{N}_{\beta}}\right\}_{m \in \mathbb{N}_{0}}$ generated by (2.27) converges to a positive solution $w=\left\{w_{n}\right\}_{n \in \mathbb{N}_{\beta}} \in A(N, M)$ of Eq. (3.7) with (2.28) and (2.8), where $\left\{\alpha_{m}\right\}_{m \in \mathbb{N}_{0}}$ is an arbitrary sequence in $[0,1]$ satisfying (2.9).

Competing interests

The authors declare that they have no competing interests.

Authors' contributions

All authors contributed equally to the writing of this paper. All authors read and approved the final manuscript

Author details

'Department of Mathematics, Liaoning Normal University, Dalian, Liaoning 116029, People's Republic of China.
${ }^{2}$ Department of Mathematics, Changwon National University, Changwon, 641-773, Korea. ${ }^{3}$ Department of Mathematics and RINS, Gyeongsang National University, Jinju, 660-701, Korea.

Acknowledgements

This research was supported by the Science Research Foundation of Educational Department of Liaoning Province (L2012380) and the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Science, ICT \& Future Planning (2013R1A1A2057665).

Received: 26 January 2015 Accepted: 19 May 2015 Published online: 12 June 2015

References

1. Agarwal, RP: Difference Equations and Inequalities, 2nd edn. Marcel Dekker, New York (2000)
2. Andruch-Sobilo, A, Migda, M: On the oscillation of solutions of third order linear difference equations of neutral type. Math. Bohem. 130, 19-33 (2005)
3. Dosla, Z, Kabza, A: Global asymptotic properties of third-order difference equations. Comput. Math. Appl. 48, 191-200 (2004)
4. Grace, SR, Hamedani, GG: On the oscillation of certain neutral difference equations. Math. Bohem. 125, 307-321 (2000)
5. Liu, Z, Hou, XC, Kang, SM, Ume, JS: Unbounded positive solutions and Mann iterative schemes of a second order nonlinear neutral delay difference equation. Abstr. Appl. Anal. 2013, Article ID 245012 (2013)
6. Liu, Z, Jia, M, Kang, SM, Kwun, YC: Bounded positive solutions for a third order discrete equation. Abstr. Appl. Anal 2012, Article ID 237036 (2012)
7. Liu, Z, Kang, SM, Ume, JS: Existence of uncountably many bounded nonoscillatory solutions and their iterative approximations for second order nonlinear neutral delay difference equations. Appl. Math. Comput. 213, 554-576 (2009)
8. Liu, Z, Wu, H, Kang, SM, Kwun, YC: On positive solutions and Mann iterative schemes of a third order difference equation. Abstr. Appl. Anal. 2014, Article ID 470181 (2014)
9. Liu, Z, Xu, YG, Kang, SM: Global solvability for a second order nonlinear neutral delay difference equation. Comput. Math. Appl. 57, 587-595 (2009)
10. Luo, JW, Bainov, DD: Oscillatory and asymptotic behavior of second-order neutral difference equations with maxima. J. Comput. Appl. Math. 131, 333-341 (2001)
11. Migda, M, Migda, J: Asymptotic properties of solutions of second-order neutral difference equations. Nonlinear Anal. 63, e789-e799 (2005)
12. Yan, J, Liu, B: Asymptotic behavior of a nonlinear delay difference equation. Appl. Math. Lett. 8, 1-5 (1995)
13. Zhang, ZG, Chen, JF, Zhang, CS: Oscillation of solutions for second order nonlinear difference equations with nonlinear neutral terms. Comput. Math. Appl. 41, 1487-1494 (2001)
14. Zhang, ZG, Li, QL: Oscillation theorems for second-order advanced functional difference equations. Comput. Math. Appl. 36, 11-18 (1998)
