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Abstract
In this paper, we consider a strictly increasing continuous function β , and we present
a general quantum difference operator Dβ which is defined to be
Dβ f (t) = (f (β(t)) – f (t))/(β(t) – t). This operator yields the Hahn difference operator
when β(t) = qt +ω, the Jackson q-difference operator when β(t) = qt, q ∈ (0, 1), ω > 0
are fixed real numbers and the forward difference operator when β(t) = t +ω, ω > 0.
A calculus based on the operator Dβ and its inverse is established.
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1 Introduction
The quantum calculus is known as the calculus without limits. It substitutes the classical
derivative by a quantum difference operator which allows to deal with sets of nondiffer-
entiable functions. Quantum difference operators have an interesting role due to their
applications in several mathematical areas such as orthogonal polynomials, basic hyper-
geometric functions, combinatorics, the calculus of variations and the theory of relativity.
New results in quantum calculus can be found in [–] and the references cited therein.
One type of quantum calculus is the Hahn quantum calculus. In [], Hahn introduced his
difference operator, as a tool for constructing families of orthogonal polynomials, which
is defined by

Dq,ωf (t) =
f (qt + ω) – f (t)

t(q – ) + ω
, t �= ω, (.)

where q ∈ (, ), ω >  are fixed and ω = ω
–q . The derivative at t = ω is defined to be the

usual derivative f ′(ω) whenever it exists. In [, ], the inverse operator was constructed
and a rigorous analysis of the calculus associated with Dq,ω was given. Hamza and Ahmed,
in [], studied the existence and uniqueness of solutions of the Hahn difference equations.
Also, in [], they established the theory of linear Hahn difference equations. Hahn quan-
tum difference operator unifies two important difference operators. The first is the Jackson
q-difference operator which is defined by

Dqf (t) =
f (qt) – f (t)

t(q – )
, t �= , (.)

and Dqf () = f ′(), where q is a fixed number, q ∈ (, ). The function f is defined on a
q-geometric set A ⊆ R (or C) such that whenever t ∈ A, qt ∈ A. See [, ]. The second is
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the forward difference operator Dω which is defined by

Dωf (t) =
f (t + ω) – f (t)

ω
, t ∈R, (.)

where ω is a fixed number and ω > . We refer the reader also to the interesting book []
by Kac and Cheung who presented the q-calculus and the ω-calculus in details, associated
with the difference operators Dq and Dω , respectively.

Auch in his PhD thesis [] in  (supervised by Lynn Erbe and Allan Peterson) intro-
duced the forward difference operator

�a,bf (t) =
f (σ (t)) – f (t)

σ (t) – t
, (.)

where σ (t) = at + b with a ≥ , b ≥  and a + b > , and its inverse ρ(t) = t–b
a . He defined f

on a mixed time scale Tα := {. . . ,ρ(α),ρ(α),α,σ (α),σ (α), . . .}, α > b
–a , which is a discrete

subset of R.
In this paper, we introduce a general quantum difference operator defined by

Dβ f (t) =
f (β(t)) – f (t)

β(t) – t
(.)

for every t with β(t) �= t and Dβ f (t) = f ′(t) when β(t) = t provided that f ′(t) exists in the
usual sense. Here, β : I −→ I is a strictly increasing continuous function, and f is an arbi-
trary function defined, in general, on a subset I ⊆R with β(t) ∈ I for any t ∈ I .

Throughout this paper X is a Banach space with norm ‖ · ‖, and we denote by

βk(t) := β ◦ β ◦ · · · ◦ β
︸ ︷︷ ︸

k times

(t) and β–k(t) := β– ◦ β– ◦ · · · ◦ β–
︸ ︷︷ ︸

k times

(t),

k ∈ N = N∪ {}, where N is the set of natural numbers. For convenience β(t) = t for all
t ∈ I .

The general function β may be linear or nonlinear. Then β has many types according to
the number of its fixed points in I . Two classes of β can be considered. The first class is
the family of all β that has a unique fixed point s ∈ I and satisfies the following inequality:

(t – s)
(

β(t) – t
) ≤  for all t ∈ I.

The second class is the family of all β that has a unique fixed point s ∈ I and satisfies the
following inequality:

(t – s)
(

β(t) – t
) ≥  for all t ∈ I.

Hahn and Jackson difference operators are special linear forms of the general difference
operator Dβ when β(t) = qt +ω and β(t) = qt, q ∈ (, ), ω > , respectively. These functions
belong to the first class. Furthermore, the function β(t) = qt +ω, q > , ω >  belongs to the
second class. The forward difference operator Dω is a type of β which has no fixed points.
Also, β(t) = at + b, a > , b ≥  belongs to the second class.
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In the whole paper, we consider all functions β that belong to the first class, and give a
rigorous analysis of the calculus based on Dβ . In this class, the movement of the sequence
{βk(t)}k∈N is towards s. Every choice of the function β gives a new difference operator.
Thus, we can obtain a wide class of quantum difference operators with the corresponding
quantum calculi.

The advantage of this study is that it helps and allows us to avoid repetition in proving
results once for the Jackson q-difference operator, once for the Hahn difference operator
and once for any difference operator on the form Dβ with β in that class.

We organize this paper as follows. In Section , we introduce the definition of β-deriv-
ative and prove its main properties. For instance, we deduce the chain rule, Leibniz’ for-
mula and the mean value theorem. In Section , we introduce the β-integral and we es-
tablish the fundamental theorem of β-calculus.

2 β-differentiation
Assume that the function β has only one fixed point s ∈ I and satisfies the following
condition:

(t – s)
(

β(t) – t
) ≤  for all t ∈ I, (.)

where the equality holds only if t = s. Here, I is supposed to be an interval of the real line.
In the following, we introduce two important lemmas in proving our main results.

Lemma . The following statements are true.
(i) The sequence of functions {βk(t)}k∈N converges uniformly to the constant function

β̂(t) := s on every compact interval J ⊆ I containing s.
(ii) The series

∑∞
k=|βk(t) – βk+(t)| is uniformly convergent to |t – s| on every compact

interval J ⊆ I containing s.

Proof (i) Let J = [a, b], s ∈ J . If t ∈ [s, b], then condition (.) implies βk+(t) ≤ βk(t) for
all k ∈N. So, the sequence {βk(t)}k∈N is decreasing to the constant function β̂(t) = s. By
Dini’s theorem {βk(t)}k∈N is uniformly convergent to the constant function β̂(t) on the
interval [s, b]. Similarly, we can prove its uniform convergence on [a, s]. Consequently,
the sequence {βk(t)}k∈N is uniformly convergent on the interval J = [a, b].

(ii) We apply Dini’s theorem to Sn(t) =
∑n

k=(βk(t) – βk+(t)), n = , , . . . on both [s, b]
and [a, s] to get the desired result. �

The proof of the following lemma is straightforward and will be omitted.

Lemma . If f : I −→ X is continuous at s, then the sequence {f (βk(t))}k∈N converges
uniformly to f (s) on every compact interval J ⊆ I containing s.

Theorem . If f : I −→ X is continuous at s, then the series
∑∞

k=‖(βk(t) –
βk+(t))f (βk(t))‖ is uniformly convergent on every compact interval J ⊆ I containing s.

Proof Let J ⊆ I be a compact interval containing s. By Lemma ., there exists k ∈ N

such that

∥

∥f
(

βk(t)
)

– f (s)
∥

∥ <  ∀t ∈ J , k ≥ k.
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Then ‖f (βk(t))‖ <  + ‖f (s)‖ for k ≥ k and t ∈ J , which in turn implies that

∣

∣

(

βk(t) – βk+(t)
)∣

∣

∥

∥f
(

βk(t)
)∥

∥ <
∣

∣

(

βk(t) – βk+(t)
)∣

∣

(

 +
∥

∥f (s)
∥

∥

) ∀t ∈ J , k ≥ k. (.)

Consider the two sequences

Dn(t) =
n

∑

k=

∥

∥

(

βk(t) – βk+(t)
)

f
(

βk(t)
)∥

∥ (.)

and

Cn(t) =
n

∑

k=

∣

∣

(

βk(t) – βk+(t)
)∣

∣

(

 +
∥

∥f (s)
∥

∥

)

. (.)

By Lemma .(ii), Cn(t) is uniformly convergent to |t – s|( + ‖f (s)‖) on J .
By the Cauchy criterion, given ε > , there exists n ∈N such that

∥

∥Cn(t) – Cm(t)
∥

∥ < ε ∀t ∈ J , n ≥ m ≥ n. (.)

By using (.) and (.), we have

∥

∥Dn(t) – Dm(t)
∥

∥ ≤ ∥

∥Cn(t) – Cm(t)
∥

∥ < ε ∀n ≥ m ≥ max{n, k}.

Therefore,
∑∞

k= ‖(βk(t) – βk+(t))f (βk(t))‖ is uniformly convergent on J . �

In the following, we present some examples of special forms of β which has one fixed
point s ∈ I and satisfies condition (.).

Examples . . β(t) := qt ∓ ω for fixed ω ≥  and q ∈ (, ) is defined on I = R. In this
case, s = ∓ω

–q ,

βk(t) = qkt ∓ ω[k]q and β–k(t) =
t ± ω[k]q

qk ,

where [k]q = –qk

–q . We have

lim
k→∞

βk(t) = s and lim
k→∞

β–k(t) =

{

∞, t > s,
–∞, t < s

for the iteration of β(t) = qt + ω see Figure .
This case represents both of the forward and backward Hahn difference operators, re-

spectively. Also, the Jackson q-difference operator when ω = , see [–, , ].
. β(t) := qtn for fixed q ∈ (, ) and fixed n ∈ N+ , and β is defined on I = (–q 

–n , q 
–n ).

Then β is a strictly increasing function from I onto I and has a unique fixed point s = ,
and β–(t) = n

√

t
q . Moreover,

βk(t) = q[k]n tnk
, β–k(t) = q–n–k[k]n tn–k

,
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Figure 1 The iteration of β(t) = qt + ω on I = R.

Figure 2 The iteration of β(t) = qtn on I = (–θ ,θ ), where θ = q
1

1–n .

and for t ∈ I ,

lim
k→∞

βk(t) = ,

lim
k→∞

β–k(t) =

⎧

⎪
⎨

⎪
⎩

q


–n ,  < t,
, t = ,
–q 

–n , t < .

In Figure , we illustrate the behavior of βk(t) for t ∈ I . This case yields the power quantum
difference operator

Dn,qf (t) :=

{

f (qtn)–f (t)
qtn–t , t �= ,

f ′(), t = ,

which was introduced by Aldwoah et al. in [].
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. Fix n ∈ N+ , β(t) := tn for t ∈ I = (–, ). β : I −→ I is strictly increasing, β–(t) = n√t,
the unique fixed point is s = , βk(t) = tnk , β–k(t) = t–nk , limk→∞ βk(t) =  for t ∈ I , and

lim
k→∞

β–k(t) =

⎧

⎪
⎨

⎪
⎩

, t ∈ (, ),
, t = ,
–, t ∈ (–, ).

This case represents the n-power difference operator []

Dnf (t) :=

{

f (tn)–f (t)
tn–t , t �= ,

f ′(), t = .
(.)

. β(t) := ln t +  which is a strictly increasing and continuous nonlinear function defined
on I = [,∞). The only fixed point is s = . We can see that

βk(t) = lnβk–(t) + , β–(t) = et–,

and for t ∈ I ,

lim
k→∞

βk(t) = , lim
k→∞

β–k(t) = ∞.

Now, we introduce the β-difference operator as follows.

Definition . For a function f : I −→X, we define the β-difference operator of f as

Dβ f (t) =

{

f (β(t))–f (t)
β(t)–t , t �= s,

f ′(s), t = s,

provided that the ordinary derivative f ′ exists at t = s. In this case, we say that Dβ f (t) is
the β-derivative of f at t. We say that f is β-differentiable on I if f ′(s) exists.

In the following, we state some clear properties of the β-difference operator.
(i) Dβ is a linear operator.

(ii) If f is β-differentiable at t, then f (β(t)) = f (t) + (β(t) – t)Dβ f (t).
(iii) If f is β-differentiable, then f is continuous at s.

Simple calculations show that the following theorem is true. So, its proof will be omitted.

Theorem . Assume that f : I −→ X and g : I −→ R are β-differentiable functions at
t ∈ I . Then:

(i) The product fg : I −→X is β-differentiable at t and

Dβ (fg)(t) =
(

Dβ f (t)
)

g(t) + f
(

β(t)
)

Dβg(t)

=
(

Dβ f (t)
)

g
(

β(t)
)

+ f (t)Dβg(t).

(ii) f /g is β-differentiable at t and

Dβ (f /g)(t) =
(Dβ f (t))g(t) – f (t)Dβg(t)

g(t)g(β(t))
, g(t)g

(

β(t)
) �= .
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Examples .
. Dβ tn =

∑n–
k=(β(t))n–k–tk , t ∈ I , n ≥ .

. For t �= , Dβ

t = – 

tβ(t) , t ∈ I , β(t) �= .
. If f : I −→R

 defined by f (t) = (t, t) and β(t) = 
 t + , then

Dβ f (t) =
(– 

 t + t + ,  – t)
 – 

 t
.

. If β(t) = 
 t and f : I −→M× defined by f (t) =

[ t 
t t

]

, then one can see that

Dβ f (t) =
[ 

 t 

 
 t

]

, where M× is the space of all  ×  matrices.

Lemma . Let f : I −→X be β-differentiable and Dβ f (t) =  for all t ∈ I , then f (t) = f (s),
t ∈ I .

Proof Since Dβ f (t) = , t ∈ I , then f (t) = f (β(t)), t ∈ I . Consequently, f (t) = f (βk(t)), t ∈ I
and k ∈ N. Taking k → ∞ and using the continuity of f at s, we obtain f (t) = f (s) for
t ∈ I . �

As a direct consequence we obtain the following corollary.

Corollary . Suppose that f , g : I −→ X are β-differentiable on I . If Dβ f (t) = Dβg(t) for
all t ∈ I , then f (t) – g(t) = f (s) – g(s) for all t ∈ I .

Definition . Let s ∈ [a, b] ⊆ I . We define the β-interval by

[a, b]β =
{

βk(a); k ∈N
} ∪ {

βk(b); k ∈N
} ∪ {s},

and the class [c]β for any point c ∈ I by

[c]β =
{

βk(c); k ∈N
} ∪ {s}.

Finally, for any set A ⊂R, we define

A∗ = A \ {s}.

In the following lemma, [a, b] is a compact subinterval of I and s ∈ [a, b].

Lemma . Let f : [a, b] −→ R be continuous at s. The following statements are true:
(i) Dβ f (t) >  for all t ∈ [a, b]∗β if and only if f is strictly increasing on [a, b]β .

(ii) Dβ f (t) <  for all t ∈ [a, b]∗β if and only if f is strictly decreasing on [a, b]β .

Proof We prove only the first part and the second one can be shown similarly. For the
proof of (i), suppose Dβ f (t) >  for all t ∈ [a, b]∗β . We may assume that s /∈ {a, b}. We have
a < β(a) < β(a) < · · · < βk(a) < · · · < s < · · · < βm(b) < · · · < β(b) < b. Then, using the con-
tinuity of f at s, we conclude that f (a) < f (β(a)) < f (β(a)) < · · · < f (βk(a)) < · · · < f (s) <
· · · < f (βm(b)) < · · · < f (β(b)) < f (b). This implies that f is strictly increasing on [a, b]β . Con-
versely, suppose that f is strictly increasing on [a, b]β for any k ∈N. If βk+(t) > βk(t), then
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f (βk+(t)) > f (βk(t)), and if βk+(t) < βk(t), then f (βk+(t)) < f (βk(t)). Therefore, Dβ f (t) > 
for all t ∈ [a, b]∗β . �

The following example shows that the previous lemma may not hold on [a, b] \ [a, b]β .

Example . Let f : [, 
 ] −→ R defined by f (t) = t – t and let β(t) = 

 t + 
 . One

can see that Dβ f (t) < , t ∈ [, 
 ) and s = 

 . Let t = . < t = ., then f (t) = –. <
f (t) = –., which means that f is not strictly decreasing on the interval [, 

 ]. Note that
t, t /∈ [, 

 ]β .

Simple calculations, using induction on m, show that the following theorem is true. So
its proof will be omitted.

Theorem . Let α be a constant and m ∈N.
(i) If f (t) = (t – α)m, then

Dβ f (t) =
m–
∑

r=

(

β(t) – α
)r(t – α)m––r. (.)

(ii) If g(t) = /(t – α)m, then

Dβg(t) = –
∑m–

r=


(β(t) – α)m–r(t – α)r+ , (.)

provided that (β(t) – α)m–r(t – α)r+ �= , r = , , . . . , m – .

The following example shows that the ordinary chain rule does not hold in the β-cal-
culus.

Example . Consider the functions f (t) = t and g(t) = t. Then

Dβ (f ◦ g)(t) = 
(

β(t) + t
)

,

while

Dβ f
(

g(t)
)

Dβg(t) = 
(

β(t) + t
)

. (.)

That is,

Dβ (f ◦ g)(t) �= Dβ f
(

g(t)
)

Dβg(t). (.)

The next theorem gives us an analogous formula of the chain rule for β-calculus.

Theorem . Let g : I −→ R be a continuous and β-differentiable function and f : R−→
X be continuously differentiable. Then there exists a point c between β(t) and t such that

Dβ (f ◦ g)(t) = f ′(g(c)
)

Dβg(t). (.)
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Proof The case t = s is the usual chain rule. The case t �= s with g(β(t)) = g(t) is evident
since both sides of (.) are zero. For t �= s with g(β(t)) �= g(t), we have

Dβ (f ◦ g)(t) =
(f ◦ g)(β(t)) – (f ◦ g)(t)

β(t) – t

=
f (g(β(t))) – f (g(t))

g(β(t)) – g(t)
g(β(t)) – g(t)

β(t) – t
.

By the mean value theorem, there exists a real number η between g(β(t)) and g(t) such
that

f (g(β(t))) – f (g(t))
g(β(t)) – g(t)

= f ′(η).

Since g is a continuous function, then there exists c between β(t) and t such that g(c) = η.
Hence

Dβ (f ◦ g)(t) = f ′(g(c)
)

Dβ

(

g(t)
)

. �

In the following theorem, we derive the formula for the nth β-derivative of the product
fg , where one of them is a real-valued function and the other is a vector-valued function.

For n ∈ N, let S(n)
k be the set of all possible strings of length n containing k times β and

n–k times Dβ . We denote f Dββ (t) = (Dβ f )(β(t)) and f βDβ (t) = Dβ (f (β(t))), and f 
 is defined
accordingly for 
 ∈ S(n)

k .
If f is β-differentiable n times over I , then the higher order derivatives of f are defined

by

Dn
β f = Dβ

(

Dn–
β f

)

, n ∈N, where D
β f = f .

Finally, one can see that

(

∑


∈S(n)
k

f 
Dβ

)

(t) +
(

∑


∈S(n)
k–

f 
β

)

(t) =
(

∑


∈S(n+)
k

f 


)

(t).

Theorem . (Leibniz’ formula) If f and g are n times β-differentiable functions, then
we have

Dn
β (fg)(t) =

n
∑

k=

(

∑


∈S(n)
k

f 


)

(t)Dk
βg(t), t �= s. (.)

Proof We prove by induction on n. By Theorem .(i), the statement is true for n = .
Suppose that (.) is true for n = m. Now, we prove that it is true for n = m + . We have

Dm+
β (fg)(t) = Dβ

[ m
∑

k=

(

∑


∈S(m)
k

f 


)

(t)Dk
βg(t)

]

=
m

∑

k=

(

∑


∈S(m)
k

Dβ f 


)

(t)Dk
βg(t) +

m
∑

k=

(

∑


∈S(m)
k

f 


)

(

β(t)
)

Dk+
β g(t)



Hamza et al. Advances in Difference Equations  (2015) 2015:182 Page 10 of 19

=
m

∑

k=

(

∑


∈S(m)
k

Dβ f 


)

(t)Dk
βg(t) +

m+
∑

k=

(

∑


∈S(m)
k–

f 


)

(

β(t)
)

Dk
βg(t)

=
(

∑


∈S(m)


Dβ f 


)

(t)g(t) +
m

∑

k=

(

∑


∈S(m)
k

Dβ f 


)

(t)Dk
βg(t)

+
(

∑


∈S(m)
m

f 


)

(

β(t)
)

Dm+
β g(t) +

m
∑

k=

(

∑


∈S(m)
k–

f 


)

(

β(t)
)

Dk
βg(t)

=
(

∑


∈S(m)


Dβ f 


)

(t)g(t) +
(

∑


∈S(m)
m

f 


)

(

β(t)
)

Dm+
β g(t)

+
m

∑

k=

[(

∑


∈S(m)
k

f 
Dβ

)

(t) +
(

∑


∈S(m)
k–

f 
β

)]

Dk
βg(t)

=
(

∑


∈S(m+)


f 


)

(t)g(t) +
(

∑


∈S(m+)
m+

f 


)

(t)Dm+
β g(t)

+
m

∑

k=

(

∑


∈S(m+)
k

f 


)

(t)Dk
βg(t)

=
m+
∑

k=

(

∑


∈S(m+)
k

f 


)

(t)Dk
βg(t).

Hence (.) holds for all n ∈N. �

The following example shows that the function f may be discontinuous but it is β-differ-
entiable.

Example . Let f : [–, ] −→R be such that

f (t) =

⎧

⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎩

t, t ∈ (–, ),
–t, t ∈ (, ),
, t = ,
, t = , –,

and let

β(t) =



t +



.

We see that the function f is discontinuous but it is β-differentiable, where

Dβ f (t) =

⎧

⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎩

, t ∈ (–, ),
–, t ∈ (, ),
–, t = ,
, t = , –.
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Rolle’s theorem, in general, is not true with respect to the β-derivative. This can be
shown by the following example.

Example . The function f (t) = t – t, defined in Example ., is ordinary differ-
entiable and hence β-differentiable over R with respect to β(t) = 

 t + 
 . Clearly, f () =

f (β()), but f (t) �= f (β(t)) inside the interval [,β()], i.e., there are no points between 
and β() such that Dβ f (t) = . In fact, f (t) = f (β(t)) only at  and 

 . This implies the failure
of Rolle’s theorem with respect to the β-derivative.

In the following theorem, we obtain analogues for the classical mean value theorem. We
postpone the proof of this theorem to Section .

Theorem . (Mean value theorem) Suppose f , g : I −→ X are β-differentiable functions
on I . Then

∥

∥f (y) – f (x)
∥

∥ ≤ sup
t∈I

∥

∥Dβ f (t)
∥

∥(y – x) (.)

for every x, y ∈ [a, b]β , x < s < y, where a, b ∈ I , a ≤ b.

The following example shows that inequality (.) does not hold with x, y /∈ [a, b]β , x <
s < y and a, b ∈ I , a ≤ b.

Example . Let f , g : I = [– 
 , ] −→ R defined by f (t) = t and g(t) = t and β(t) =


 t + 

 . Then s =  and one can see that |Dβ f (t)| < Dβg(t) for all t ∈ I . If we take a = b = –,
then

[–]β =
{

,
n – 

n : n = –, , , . . .
}

.

Let x, y ∈ [–]β , x < y. By Theorem ., |y – x| ≤ 
 (y – x) for every x, y ∈ [–]β , x < y,

where supt∈I |Dβ f (t)| = 
 . Now, if we take x, y /∈ [–]β , where x = 

 and y = 
 . One can see

that |y – x| > 
 (y – x).

3 β-integration
We say that F is a β-antiderivative of the function f : I −→X if DβF(t) = f (t) for t ∈ I .

Definition . We denote by � the vector space of all functions g : I → X which are
continuous at s and vanish at s. Define the operator Tβ : � −→ � by

Tβ (g)(t) = g
(

β(t)
)

, t ∈ I.

Let Y be the range of I – Tβ , where I is the identity operator. One can check that for
g ∈ Y the series

∑∞
k= g(βk(t)) is uniformly convergent on I . Clearly, the operator I – Tβ

is one-to-one.

We need the following lemma in proving the next theorem. Its proof is straightforward,
so it will be omitted.
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Lemma . The operator A : Y −→ � defined by

A(g)(t) =
∞

∑

k=

g
(

βk(t)
)

(.)

is the inverse of the operator I – Tβ .

Theorem . Assume f : I → X is continuous at s. Then the function F defined by

F(t) =
∞

∑

k=

(

βk(t) – βk+(t)
)

f
(

βk(t)
)

, t ∈ I (.)

is a β-antiderivative of f with F(s) = . Conversely, a β-antiderivative F of f vanishing at
s is given by formula (.).

Proof For all t ∈ I and t �= s, we have

DβF(t) =
F(β(t)) – F(t)

β(t) – t

=
∑∞

k=(βk+(t) – βk+(t))f (βk+(t)) –
∑∞

k=(βk(t) – βk+(t))f (βk(t))
β(t) – t

= f (t).

To show that DβF(s) = f (s), let ε > . By the continuity of f (t) at t = s, there is δ >  such
that

∥

∥f
(

βk(s + h)
)

– f (s)
∥

∥ < ε, k ≥ ,  < h < δ.

This implies

∥

∥

∥

∥


h

F(s + h) – f (s)
∥

∥

∥

∥
≤

∞
∑

k=


h
(

βk(s + h) – βk+(s + h)
)∥

∥f
(

βk(s + h)
)

– f (s)
∥

∥

< ε,  < h < δ.

Conversely, assume that F is a β-antiderivative of f vanishing at s. This implies that

f (t) = DβF(t) =
F(β(t)) – F(t)

β(t) – t

=
Tβ (F(t)) – F(t)

β(t) – t

=
(I – Tβ )F(t)

t – β(t)
.

Then f (t)(t – β(t)) = (I – Tβ )F(t), which implies that F(t) = (I – Tβ )–(t – β(t))f (t). The
function G(t) = (t – β(t))f (t) belongs to � and F(t) = (I – Tβ )–G(t). By Lemma ., we
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have

F(t) =
∞

∑

k=

G
(

βk(t)
)

=
∞

∑

k=

(

βk(t) – βk+(t)
)

f
(

βk(t)
)

. (.)
�

Definition . Let f : I −→ X and a, b ∈ I . We define the β-integral of f from a to b by

∫ b

a
f (t) dβ t =

∫ b

s

f (t) dβ t –
∫ a

s

f (t) dβ t, (.)

where

∫ x

s

f (t) dβ t =
∞

∑

k=

(

βk(x) – βk+(x)
)

f
(

βk(x)
)

, x ∈ I, (.)

provided that the series converges at x = a and x = b. f is called β-integrable on I if the
series converges at a, b for all a, b ∈ I . Clearly, if f is continuous at s ∈ I , then f is β-inte-
grable on I .

In the integral formulas (.) and (.), when β(t) = qt, q ∈ (, ), we obtain Jackson
q-integration

∫ b

a
f (t) dqt :=

∫ b


f (t) dqt –

∫ a


f (t) dqt, (.)

where

∫ x


f (t) dqt := x( – q)

∞
∑

k=

qkf
(

xqk), x ∈ I, (.)

see [, –]. If β(t) = qt + ω, q ∈ (, ), ω > , then (.) and (.) reduce to the Hahn
integral

∫ b

a
f (t) dq,ωt :=

∫ b

ω

f (t) dq,ωt –
∫ a

ω

f (t) dq,ωt, (.)

where

∫ x

ω

f (t) dq,ωt :=
(

x( – q) – ω
)

∞
∑

k=

qkf
(

xqk + ω[k]q
)

, x ∈ I, (.)

where ω = ω
–q and [k]q = –qk

–q , see [, –, , ].

Lemma . Let f : I −→ X be β-integrable on I and a, b, c ∈ I , then the following statements
are true:

(i) The β-integral is a linear operator.
(ii)

∫ a
a f (t) dβ t = .

(iii)
∫ b

a f (t) dβ t = –
∫ a

b f (t) dβ t.
(iv)

∫ b
a f (t) dβ t =

∫ c
a f (t) dβ t +

∫ b
c f (t) dβ t.
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Proof The proof is straightforward. �

By Theorem ., we obtain the first fundamental theorem of β-calculus which is stated
as follows.

Theorem . Let f : I −→X be continuous at s. Define the function

F(x) =
∫ x

s

f (t) dβ t, x ∈ I. (.)

Then F is continuous at s, DβF(x) exists for all x ∈ I and DβF(x) = f (x).

Corollary . If f : I −→ X is continuous at s. Then

∫ β(t)

t
f (τ ) dβτ =

(

β(t) – t
)

f (t), t ∈ I. (.)

Proof Let F(t) =
∫ t

s
f (τ ) dβτ , t ∈ I . By Theorem ., F(t) is continuous at s and DβF(t) =

f (t) for all t ∈ I . Then

∫ β(t)

t
f (τ ) dβτ =

∫ β(t)

s

f (τ ) dβτ –
∫ t

s

f (τ ) dβτ

= F
(

β(t)
)

– F(t).

Since F(β(t)) = F(t) + (β(t) – t)DβF(t), then

∫ β(t)

t
f (τ ) dβτ =

(

β(t) – t
)

f (t), t ∈ I. �

Now, we state and prove the second fundamental theorem of β-calculus.

Theorem . If f : I −→X is β-differentiable on I , then

∫ b

a
Dβ f (t) dβ t = f (b) – f (a) for all a, b ∈ I. (.)

Proof We have

∫ b

s

Dβ f (t) dβ t =
∞

∑

k=

(

βk(b) – βk+(b)
)

(Dβ f )
(

βk(b)
)

=
∞

∑

k=

(

f
(

βk(b)
)

– f
(

βk+(b)
))

= lim
n→∞

n
∑

k=

(

f
(

βk(b)
)

– f
(

βk+(b)
))

= f (b) – f (s).
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Similarly,

∫ a

s

Dβ f (t) dβ t = f (a) – f (s).

Therefore,

∫ b

a
Dβ f (t) dβ t = f (b) – f (a) for all a, b ∈ I. �

As a direct consequence of Theorem ., one can see that the following theorem is true.

Theorem . If f : I −→ X is continuous at s and � : I −→ X is a β-antiderivative of f
on I , then for a, b ∈ I , we have

∫ b

a
f (t) dβ t = �(b) – �(a).

The following theorem establishes the formula for the β-integral by parts. The proof is
straightforward, so it will be omitted.

Theorem . Assume f , g are β-differentiable functions on I and Dβ f , Dβg both contin-
uous at s. Then

∫ b

a
f (t)Dβg(t) dβ t = f (b)g(b) – f (a)g(a) –

∫ b

a

(

Dβ f (t)
)

g
(

β(t)
)

dβ t, a, b ∈ I.

Here, at least one of the functions f and g is a real-valued function.

The following two lemmas and Definition . are fundamental in the study of the calcu-
lus of variations. The first is based originally on [], Lemma . and the second on [],
Lemma .. Both are adapted in [] for the case of Hahn’s function β(t) = qt + ω, q ∈ (, ),
ω > . Here, following [], we show that both lemmas are valid for the case of our general
function β(t).

Let D denote the set of all real-valued functions defined on [c, d]β and continuous at s,
where c, d ∈ I and c < d.

Lemma . Let f ∈ D. Then
∫ d

c f (t)h(β(t)) dβ t =  for all functions h ∈ D with h(c) =
h(d) =  if and only if f (t) =  for all t ∈ [c, d]β .

Proof It is obvious from the definition of β-integration that if f (t) =  for all t ∈ [c, d]β ,
then

∫ d
c f (t)h(β(t)) dβ t = . To prove the other implication, assume on the contrary that

there is some l ∈ [c, d]β such that f (l) �= . We have the following two cases.
Case I: l �= s. Then either l = βk(c) or l = βk(d) for some k ∈ N. First, assume that l =

βk(c) for some k ∈ N. Define

h(t) =

{

f (l), t = β(l),
, otherwise.
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Clearly, h ∈ D with h(c) = h(d) = . Then

∫ d

c
f (t)h

(

β(t)
)

dβ t =
∫ d

s

f (t)h
(

β(t)
)

dβ t –
∫ c

s

f (t)h
(

β(t)
)

dβ t

= –
(

l – β(l)
)

f (l) �= .

The case l = βk(d) can be treated similarly.
Case II: l = s. Let f (s) �=  and without loss of generality assume f (s) > .
The continuity of f at s implies limk→∞ f (βk(c)) = limk→∞ f (βk(d)) = f (s).
Consequently, there exists k ∈N such that f (βk(c)) >  and f (βk(d)) >  for all k > k.
If s /∈ {c, d}, we define h by

h(t) =

⎧

⎪
⎨

⎪
⎩

f (βk(c)), t = βk+(c) for all k > k,
f (βk(d)), t = βk+(d) for all k > k,
, otherwise.

Hence,

∫ d

c
f (t)h

(

β(t)
)

dβ t =
∑∞

k=k

(

βk(d) – βk+(d)
)

f (βk(d)
)

–
∑∞

k=k

(

βk(c) – βk+(c)
)

f (βk(c)
) �= .

For s = c, we define h by

h(t) =

{

f (βk(d)), t = βk+(d) for all k > k,
, otherwise.

Therefore,

∫ d

c
f (t)h

(

β(t)
)

dβ t =
∑∞

k=k

(

βk(d) – βk+(d)
)

f (βk(d)
) �= .

The case s = d can be treated similarly. �

Definition . ([]) Let g : [r]β× ] – θ̃ , θ̃ [−→ R. We say that g(t, ·) is continuous in
θ uniformly in t iff for every ε > , there exists δ >  such that |θ – θ| < δ implies
|g(t, θ ) – g(t, θ)| < ε for all t ∈ [r]β . Furthermore, we say that g(t, ·) is differentiable at
θ uniformly in t iff for every ε >  there exists δ >  such that  < |θ – θ| < δ implies
| g(t,θ )–g(t,θ)

(θ–θ) – gθ (t, θ)| < ε for all t ∈ [r]β .

Lemma . Assume g(t, ·) is differentiable at θ, uniformly in t for all t ∈ [r]β and that
G(θ ) =

∫ r
s

g(t, θ ) dβ t for θ in a neighborhood of θ and
∫ r

s
gθ (t, θ) dβ t exists. Then G(θ ) is

differentiable at θ with G′(θ) =
∫ r

s
gθ (t, θ) dβ t.

Proof Since g(t, ·) is differentiable at θ uniformly in t, then for every ε > , there exists
δ >  such that for all t ∈ [r]β and for  < |θ – θ| < δ, the following inequalities hold:

∣

∣

∣

∣

g(t, θ ) – g(t, θ)
θ – θ

– gθ (t, θ)
∣

∣

∣

∣
<

ε

r – s
,



Hamza et al. Advances in Difference Equations  (2015) 2015:182 Page 17 of 19

∣

∣

∣

∣

G(θ ) – G(θ)
θ – θ

– G′(θ )
∣

∣

∣

∣
≤

∫ r

s

∣

∣

∣

∣

g(t, θ ) – g(t, θ)
θ – θ

– gθ (t, θ)
∣

∣

∣

∣
dβ t

<
∫ r

s

ε

r – s
dβ t = ε.

Hence, G(·) is differentiable at θ and G′(θ) =
∫ r

s
gθ (t, θ) dβ t. �

Following [], Lemma ., we show that their results hold for our general function β(t).

Lemma . Let f : I −→X, g : I −→R be β-integrable functions on I . If

∥

∥f (t)
∥

∥ ≤ g(t) for all t ∈ [a, b]β , a, b ∈ I and a ≤ b,

then for x, y ∈ [a, b]β , x < s < y, we have

∥

∥

∥

∥

∫ y

s

f (t) dβ t
∥

∥

∥

∥
≤

∫ y

s

g(t) dβ t, (.)

∥

∥

∥

∥

∫ x

s

f (t) dβ t
∥

∥

∥

∥
≤ –

∫ x

s

g(t) dβ t (.)

and
∥

∥

∥

∥

∫ y

x
f (t) dβ t

∥

∥

∥

∥
≤

∫ y

x
g(t) dβ t. (.)

Consequently, if g(t) ≥  for all t ∈ [a, b]β , then the inequalities
∫ y

s
g(t) dβ t ≥  and

∫ y
x g(t) dβ t ≥  hold for all x, y ∈ [a, b]β , x < s < y.

Proof Since y > s, then βk+(y) < βk(y), k ∈N, y ∈ [a, b]β ,

∥

∥

∥

∥

∫ y

s

f (t) dβ t
∥

∥

∥

∥
≤

∞
∑

k=

(

βk(y) – βk+(y)
)∥

∥f
(

βk(y)
)∥

∥

≤
∞

∑

k=

(

βk(y) – βk+(y)
)

g
(

βk(y)
)

=
∫ y

s

g(t) dβ t.

Similarly, we can prove equation (.). Also, if x, y ∈ [a, b]β and x < s < y, then there exist
k, k ∈ N such that x = βk (a) and y = βk (b). We conclude that

∥

∥

∥

∥

∫ y

x
f (t) dβ t

∥

∥

∥

∥
=

∥

∥

∥

∥

∥

∞
∑

k=k

[(

βk(y) – βk+(y)
)

f
(

βk(y)
)]

–
∞

∑

k=k

[(

βk(x) – βk+(x)
)

f
(

βk(x)
)]

∥

∥

∥

∥

∥

≤
∞

∑

k=

(

βk+k (y) – βk+k+(y)
)∥

∥f
(

βk+k (y)
)∥

∥
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+
∞

∑

k=

(

βk+k+(x) – βk+k (x)
)∥

∥f
(

βk+k (x)
)∥

∥

≤
∞

∑

k=

(

βk+k (y) – βk+k+(y)
)

g
(

βk+k (y)
)

–
∞

∑

k=

(

βk+k (x) – βk+k+(x)
)

g
(

βk+k (x)
)

=
∫ y

s

g(t) dβ t –
∫ x

s

g(t) dβ t =
∫ y

x
g(t) dβ t.

Putting f (t) =  in (.) and (.) we get
∫ y

s
g(t) dβ t ≥  and

∫ y
x g(t) dβ t ≥ . �

Lemma . Let f : I −→ X and g : I −→R be β-differentiable on I . If

∥

∥Dβ f (t)
∥

∥ ≤ Dβg(t), t ∈ [a, b]β , a, b ∈ I and a ≤ b,

then

∥

∥f (y) – f (x)
∥

∥ ≤ g(y) – g(x) (.)

for every x, y ∈ [a, b]β , x < s < y.

Proof Assume ‖Dβ f (t)‖ ≤ Dβg(t), t ∈ [a, b]β , a, b ∈ I , a ≤ b. By Theorem . and Lem-
ma . we obtain

∥

∥

∥

∥

∫ y

x
Dβ f (t) dβ t

∥

∥

∥

∥
≤

∫ y

x
Dβg(t) dβ t,

which leads to

∥

∥f (y) – f (x)
∥

∥ ≤ g(y) – g(x). �

We are now in a position to prove Theorem ..

Proof of Theorem . Define the function g by g(t) = supτ∈I ‖Dβ f (τ )‖(t – x). We have
Dβg(t) = supτ∈I ‖Dβ f (τ )‖ ≥ supτ∈[a,b]β ‖Dβ f (τ )‖ ≥ ‖Dβ f (t)‖, t ∈ [a, b]β . Then, by Lem-
ma .,

∥

∥f (y) – f (x)
∥

∥ ≤ g(y) – g(x) = sup
t∈I

∥

∥Dβ f (t)
∥

∥(y – x). �

4 Conclusion and perspectives
In this paper, we presented a general quantum difference operator Dβ f (t) = f (β(t))–f (t)

β(t)–t ,
where β is a strictly increasing continuous function defined on I ⊆ R which has only one
fixed point s ∈ I . This operator yields the Hahn difference operator when β(t) = qt + ω,
ω > , q ∈ (, ) are fixed real numbers, and the Jackson q-difference operator when
β(t) = qt, q ∈ (, ). A calculus based on this operator and its inverse was established. For
instance, the chain rule, Leibniz’ formula and the mean value theorem.
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There is still a lot of work ahead of us. In one direction, we should establish existence and
uniqueness results of solutions of difference equations based on Dβ (β-difference equa-
tions). Another direction is to establish the theory of linear quantum difference equations
associated with Dβ . Finally, we should ask about the stability of such equations. The the-
ory of β-difference equations helps and allows us to avoid proving results more than one
time, once for q-difference equations, once for Hahn difference equations and once for
any choice of β .
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