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Abstract
The degenerate Bernoulli polynomials were introduced by Carlitz and rediscovered
later by Ustiniv under the name of Korobov polynomials of the second kind (see
Carlitz in Arch. Math. (Basel) 7:28-33, 1956; Util. Math. 15:51-88, 1979). In this paper, we
study q-analogs of degenerate Bernoulli polynomials and give some formulas related
to these polynomials.
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1 Introduction
Let p be a fixed prime number. Throughout this paper, Zp, Qp, and Cp will denote the ring
of p-adic integers, the field of p-adic rational numbers, and the completion of the algebraic
closure of Qp. The p-adic norm is normalized as |p|p = 

p . Let UD(Zp) be the space of all
Cp-valued uniformly differentiable functions on Zp, and let q be an indeterminate such
that | – q|p < p– 

p– . The q-extension of the number x is defined as [x]q = –qx

–q . Note that
limq→[x]q = x. For f ∈ UD(Zp), the p-adic q-integral on Zp is defined by Kim to be

Iq(f ) =
∫
Zp

f (x) dμq(x) = lim
N→∞


[pN ]q

pN –∑
x=

f (x)qx (see []). (.)

The ordinary p-adic invariant integral on Zp is given by

I(f ) = lim
q→

Iq(f ) =
∫
Zp

f (x) dμ(x) = lim
N→∞


pN

pN –∑
x=

f (x). (.)

From (.), we can derive the following integral equation:

qIq(f) – Iq(f ) = (q – )f () +
q – 
log q

f ′() (see [–]), (.)

where f(x) = f (x + ).
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For λ, t ∈C with |λt|p < p– 
p– , the degenerate Bernoulli polynomials are defined as

t

( + λt)

λ – 

( + λt)
x
λ =

∞∑
n=

βn(x | λ)
tn

n!
(see [, ]). (.)

When x = , βn(λ) = βn( | λ) are called the degenerate Bernoulli numbers. As is well
known, the Bernoulli polynomials of the second kind are defined by the generating func-
tion:

t
log( + t)

( + t)x =
∞∑

n=

bn(x)
tn

n!
(see [, ]). (.)

When x = , bn = bn() are called the Bernoulli numbers of the second kind. The Daehee
polynomials are also given by the generating function:

log( + t)
t

( + t)x =
∞∑

n=

Dn(x)
tn

n!
(see [, , , ]). (.)

Now, we define the q-analogs of Bernoulli polynomials of the second kind as follows:

t
(q – ) + q–

log q log( + t)
( + t)x =

∞∑
n=

bn,q(x)
tn

n!
. (.)

Note that limq→ bn,q(x) = bn(x).
The q-analogs of Daehee polynomials are defined by the generating function to be

(q – ) + q–
log q log( + t)

t
( + t)x =

∞∑
n=

Dn,q(x)
tn

n!
. (.)

When x = , bn,q = bn,q() are called the q-analogs of Bernoulli numbers of the second
kind and Dn,q = Dn,q() are called the q-analogs of Daehee numbers.

From (.) and (.), we have

bn,q(x) =
n∑

l=

(
n
l

)
(x)n–lbl,q, Dn,q(x) =

n∑
l=

(
n
l

)
(x)n–lDl,q, (.)

where (x)n = x(x – ) · · · (x – n + ) =
∑n

l= S(n, l)xl .
In this paper, we study q-analogs of degenerate Bernoulli polynomials and give some

formulas related to these polynomials.

2 q-Analogs of degenerate Bernoulli polynomials
In this section, we assume that λ, t ∈Cp with |λt| < p– 

p– . Let us take f (y) = ( +λt)
y
λ . Then

by (.), we get

∫
Zp

( + λt)
x+y
λ dμq(y) =

(q – ) + q–
log q log( + λt)


λ

q( + λt)

λ – 

( + λt)
x
λ =

∞∑
n=

Dn,q(x | λ)
tn

n!
, (.)
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where Dn,q(x | λ) are called the q-analogs of λ-Daehee polynomials. When x = , Dn,q(λ) =
Dn,q( | λ) are called the q-analogs of λ-Daehee numbers.

From (.), we can easily derive the following equation:

qnIq(fn) – Iq(f ) = (q – )
n–∑
l=

qlf (l) +
q – 
log q

n–∑
l=

f ′(l)ql, (.)

where fn(x) = f (x + n).
Thus, by (.), we get

qn
(q – ) + q–

log q log( + λt)

λ

q( + λt)

λ – 

( + λt)
n
λ

–
(q – ) + q–

log q log( + λt)

λ

q( + λt)

λ – 

= (q – )
n–∑
l=

ql( + λt)
l
λ +

q – 
log q

log( + λt)

λ

n–∑
l=

( + λt)
l
λ ql. (.)

By (.), we get

qn t

q( + λt)

λ – 

( + λt)
n
λ –

t

q( + λt)

λ – 

= t
n–∑
l=

ql( + λt)
l
λ . (.)

It is easy to see that

( + λt)
x
λ =

∞∑
l=

(x | λ)l
tl

l!
,

where (x | λ)l = x(x – λ) · · · (x – (l – )λ) (see [–]).
Now, we define the q-analogs of degenerate Bernoulli polynomials as follows:

t

q( + λt) 
λ – 

( + λt)
x
λ =

∞∑
n=

βn,q(x | λ)
tn

n!
. (.)

When x = , βn,q(λ) = βn,q( | λ) are called the q-analogs of degenerate Bernoulli num-
bers.

From (.) and (.), we have

∞∑
m=

{
qnβm,q(n | λ) – βm,q

} tm

m!
=

∞∑
m=

(
m

n–∑
l=

(l | λ)m–ql

)
tm

m!
. (.)

Therefore, by (.), we obtain the following theorem.
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Theorem . For m ∈N, we have

qnβm,q(n | λ) – βm,q

m
=

n–∑
l=

(l | λ)m–ql.

We observe that

t

(q – ) + q–
log q log( + λt)


λ

∫
Zp

( + λt)
x+y
λ dμq(y) =

t

q( + λt)

λ – 

( + λt)
x
λ

=
∞∑

n=

βn,q(x | λ)
tn

n!
. (.)

Now, we define the q-analogs of degenerate Bernoulli polynomials of the second kind
as follows:

t

(q – ) + q–
log q log( + λt)


λ

( + λt)
x
λ =

∞∑
n=

bn,q(x | λ)
tn

n!
. (.)

When x = , bn(λ) = bn( | λ) are called the q-analogs of degenerate Bernoulli numbers
of the second kind.

Indeed, we note that limλ→ bn,q(x | λ) = bn,q(x).
By (.), we easily get

∫
Zp

(x + y | λ)n dμq(y) = Dn,q(x | λ) (n ≥ ). (.)

From (.) and (.), we note that

t

(q – ) + q–
log q log( + λt)


λ

∫
Zp

( + λt)
x+y
λ dμq(y)

=

( ∞∑
l=

bl,q(λ)
tl

l!

)( ∞∑
m=

Dm,q(x | λ)
tm

m!

)

=
∞∑

n=

( n∑
l=

bl,q(λ)Dn–l,q(x | λ)
(

n
l

))
tn

n!
. (.)

Therefore, by (.) and (.), we obtain the following theorem.

Theorem . For n ≥ , we have

βn,q(x | λ) =
n∑

l=

(
n
l

)
bl,q(λ)Dn–l,q(x | λ).

As is well known, the Apostol-Bernoulli polynomials are defined by the generating func-
tion:

t
qet – 

ext =
∞∑

n=

Bn(x | q)
tn

n!
. (.)
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By (.) and (.), we get limλ→ βn,q(x | λ) = Bn(x | q) (n ≥ ).
From (.), we can derive the following equation:

eλt – 
(q – ) + q–

log q t

λ

ext

=
∞∑

n=

bn,q(x | λ)

n!


λn

(
eλt – 

)n

=
∞∑

m=

bm,q(x | λ)
∞∑

n=m
S(n, m)λn–m tn

n!

=
∞∑

n=

( n∑
m=

bm,q(x | λ)S(n, m)λn–m

)
tn

n!
. (.)

By replacing t by 
λ

(eλt – ) in (.), we get

∞∑
n=

βn,q(x | λ)

λn


n!

(
eλt – 

)n

=
eλt – 

(q – ) + q–
log q t


λ

∫
Zp

e(x+y)t dμq(y)

=

( ∞∑
k=

( k∑
m=

bm,q(λ)S(k, m)λk–m

)
tk

k!

)( ∞∑
l=

∫
Zp

(x + y)l dμq(y)
tl

l!

)

=
∞∑

n=

( n∑
k=

k∑
m=

(
n
k

)
bm,q(λ)S(k, m)λk–mBn–k,q(x)

)
tn

n!
, (.)

where Bn,q(x) are the q-Bernoulli polynomials which are given by the generating function:

(q – ) + q–
log q t

qet – 
ext =

∞∑
n=

Bn,q(x)
tn

n!
. (.)

On the other hand,

∞∑
m=

βm,q(x | λ)


λm


m!
(
eλt – 

)m =
∞∑

m=

βm,q(x | λ)λ–m
∞∑

n=m
S(n, m)λn tn

n!

=
∞∑

n=

( n∑
m=

βm,q(x | λ)λn–mS(n, m)

)
tn

n!
. (.)

Therefore, by (.) and (.), we obtain the following theorem.

Theorem . For n ≥ , we have

n∑
m=

βm,q(x | λ)λn–mS(n, m) =
n∑

k=

(
n
k

) k∑
m=

bm,q(λ)S(k, m)λk–mBn–k,q(x).
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From (.), we have

∞∑
n=

βn,q(x | λ)
tn

n!

=
t

(q – ) + q–
log q log( + λt)


λ

∫
Zp

( + λt)
x+y
λ dμq(y)

=

( ∞∑
l=

bl,q(λ)
tl

l!

)( ∞∑
m=

∫
Zp

(x + y | λ)m dμq(y)
tm

m!

)

=
∞∑

n=

( n∑
m=

(
n
m

)
bn–m,q(λ)

∫
Zp

(x + y | λ)m dμq(y)

)
tn

n!
. (.)

Note that

(x + y | λ)m = λm
m∑

l=

S(m, l)λ–l(x + y)l (.)

and
∫
Zp

(x + y)l dμq(y) = Bn,q(x) (n ≥ ). (.)

By (.), (.), and (.), we get

βn,q(x | λ)

=
n∑

m=

(
n
m

)
bn–m,q(λ)λm

m∑
l=

S(m, l)λ–l
∫
Zp

(x + y)l dμq(y)

=
n∑

m=

(
n
m

)
bn–m,q(λ)

m∑
l=

S(m, l)λm–lBl,q(x)

=
n∑

m=

m∑
l=

(
n
m

)
bn–m,q(λ)S(m, l)λm–lBl,q(x). (.)

Therefore, by (.), we obtain the following theorem.

Theorem . For n ≥ , we have

βn,q(x | λ) =
n∑

m=

m∑
l=

(
n
m

)
bn–m,q(λ)S(m, n)λm–lBl,q(x).

For k ∈ N, we define the q-analogs of degenerate Bernoulli polynomials of order k as
follows:

(
t

q( + λt)

λ – 

)k

( + λt)
x
λ =

∞∑
n=

β (k)
n,q(x | λ)

tn

n!
. (.)

When x = , βn,q(λ) = βn,q( | λ) are called the q-analogs of degenerate Bernoulli num-
bers of order k.
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From (.), we note that

∞∑
n=

lim
λ→

β (k)
n,q(x | λ)

tn

n!

= lim
λ→

(
t

q( + λt) 
λ – 

)k

( + λt)
x
λ

=
(

t
qet – 

)k

ext

=
∞∑

n=

B(k)
n (x | q)

tn

n!
, (.)

where B(k)
n (x | q) are called the higher-order Apostol-Bernoulli polynomials.

Thus, by (.), we get limλ→ β
(k)
n,q(x | λ) = B(k)

n (x | q) (n ≥ ).
For k ∈N, by (.), we get

(
t

(q – ) + q–
log q log( + λt)


λ

)k ∫
Zp

· · ·
∫
Zp

( + λt)
x+···+xk +x

λ dμq(x) · · · dμq(xk)

=
(

t

q( + λt)

λ – 

)k

( + λt)
x
λ

=
∞∑

n=

β (k)
n,q(x | λ)

tn

n!
. (.)

Now, we define the q-analogs of higher-order degenerate Bernoulli polynomials of the
second kind as follows:

(
t

(q – ) + q–
log q log( + λt)


λ

)k

( + λt)
x
λ =

∞∑
n=

b(k)
n,q(x | λ)

tn

n!
. (.)

When x = , b(k)
n,q(λ) = b(k)

n,q( | λ) are called the q-analogs of higher-order degener-
ate Bernoulli numbers of the second kind. Note that limλ→ b(k)

n,q(x | λ) = b(k)
n,q(x), and

limq→ b(k)
n,q(x) = b(k)

n (x).
From (.), we can derive the following equation:

(
t

(q – ) + q–
log q log( + λt)


λ

)k ∫
Zp

· · ·
∫
Zp

( + λt)
x+···+xk +x

λ dμq(x) · · · dμq(xk)

=

( ∞∑
m=

b(k)
m,q(λ)

tm

m!

)( ∞∑
l=

∫
Zp

· · ·
∫
Zp

(x + · · · + xk | λ)l dμq(x) · · · dμq(xk)
tl

l!

)

=
∞∑

n=

( n∑
l=

(
n
l

)
b(k)

n–l,q(λ)
∫
Zp

· · ·
∫
Zp

(x + · · · + xk + x | λ)l dμq(x) · · · dμq(xk)

)
tn

n!
.

(.)
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It is easy to show that

∫
Zp

· · ·
∫
Zp

e(x+···+xk +x)t dμq(x) · · · dμq(xk)

=
(q –  + q–

log q t
qet – 

)k

ext

=
∞∑

n=

B(k)
n,q(x)

tn

n!
, (.)

where B(k)
n,q(x) are called the q-Bernoulli polynomials of order k.

Thus, by (.), we get

∫
Zp

· · ·
∫
Zp

(x + · · · + xk + x | λ)l dμq(x) · · · dμq(xk)

= λl
l∑

m=

λ–mS(l, m)
∫
Zp

· · ·
∫
Zp

(x + · · · + xk + x)m dμq(x) · · ·dμq(xk)

=
l∑

m=

λl–mS(l, m)B(k)
m,q(x). (.)

Therefore, by (.), (.), and (.), we obtain the following theorem.

Theorem . For n ≥ , we have

β (k)
n,q(x | λ) =

n∑
l=

l∑
m=

(
n
l

)
b(k)

n–l,q(λ)λl–mS(l, m)B(k)
m,q(x).

Remark We define the q-analogs of λ-Daehee polynomials of order k as follows:

(q –  + q–
log q log( + λt)


λ

q( + λt)

λ – 

)k

( + λt)
x
λ =

∞∑
n=

D(k)
n,q(x | λ)

tn

n!
. (.)

From (.), we have

∫
Zp

· · ·
∫
Zp

( + λt)
x+···+xk +x

λ dμq(x) · · · dμq(xk) =
∞∑

n=

D(k)
n,q(x | λ)

tn

n!
. (.)

Thus, by (.), we get

D(k)
n,q(x | λ) =

∫
Zp

· · ·
∫
Zp

(x + · · · + xk + x | λ)n dμq(x) · · ·dμq(xk) (n ≥ ). (.)

From (.), (.), and (.), we have

β (k)
n,q(x | λ) =

n∑
l=

(
n
l

)
b(k)

n–l,q(λ)D(k)
l,q (x | λ). (.)
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From (.), we can derive the following equation:

∫
Zp

( – λt)– x+y
λ dμq(y) =

(q – ) + q–
log q log( – λt)– 

λ

q( – λt)– 
λ – 

( – λt)– x
λ

=
∞∑

n=

Dn,q(x | –λ)
tn

n!
. (.)

Note that Dn( – x | λ) = (–)nDn(x | –λ) (n ≥ ).
By (.), we get

∫
Zp

〈x + y|λ〉n dμq(y) = Dn,q(x | –λ) (n ≥ ), (.)

where 〈x|λ〉n = x(x + λ) · · · (x + (n – )λ).
Note that

〈x + y|λ〉n = λn
(

x + y
λ

)(
x + y

λ
+ 

)
· · ·

(
x + y

λ
+ n – 

)

=
n∑

l=

∣∣S(n, l)
∣∣(x + y)lλn–l. (.)

From (.) and (.), we have

Dn,q(x | –λ) =
n∑

l=

∣∣S(n, l)
∣∣λn–l

∫
Zp

(x + y)l dμq(y)

=
n∑

l=

∣∣S(n, l)
∣∣λn–lBl,q(x). (.)

By (.), we get

t

(q – ) + q–
log q log( – λt)– 

λ

∫
Zp

( – λt)– x+y
λ dμq(y)

=
t

q( – λt)– 
λ – 

( – λt)– x
λ

=
∞∑

n=

βn,q(x | –λ)
tn

n!
. (.)

By (.), we get

t

(q – ) + q–
log q log( – λt)– 

λ

∫
Zp

( – λt)– x+y
λ dμq(y)

=

( ∞∑
m=

bm,q(–λ)
tm

m!

)( ∞∑
l=

∫
Zp

〈x + y|λ〉l dμq(y)
tl

l!

)

=
∞∑

n=

( n∑
l=

(
n
l

)
bn–l,q(–λ)

∫
Zp

〈x + y|λ〉l dμq(y)

)
tn

n!
. (.)
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Therefore, by (.), (.), (.), and (.), we get

βn,q(x | –λ)

=
n∑

l=

(
n
l

)
bn–l,q(–λ)Dl,q(x | –λ)

=
n∑

l=

l∑
m=

(
n
l

)∣∣S(l, m)
∣∣λl–mBm,q(x)bn–l,q(–λ). (.)
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