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Abstract
In this paper, the authors employ Lyapunov stability theory, and theM-matrix,
H-matrix, and linear matrix inequality (LMI) techniques and variational methods to
obtain the LMI-based stochastically exponential robust stability criterion for discrete
and distributed time-delays Markovian jumping reaction-diffusion integro-differential
equations with uncertain parameters, whose background of physics and engineering
is bidirecional associative memory (BAM) neural networks. It is worth mentioning that
an LMI-based stability criterion can easily be computed by the Matlab toolbox which
has high efficiency and other advantages in large-scale engineering calculations.
Since using theM-matrix and H-matrix methods is not easy in obtaining the LMI
criterion conditions, the methods employed in this paper improve those of previous
related literature to some extent. Moreover, a numerical example is presented to
illustrate the effectiveness of the proposed methods.

Keywords: exponential stability; Laplace diffusion; distributed time-delays;
M-matrix; Lyapunov functional

1 Introduction and preliminaries
The time stability analysis of reaction-diffusion time-delays neural networks has attached
more and more interests ([–] and the references therein) due to the practical importance
and successful applications of neural networks in many areas, such as image processing,
combinatorial optimization, signal processing, pattern recognition. Generally, an impor-
tant precondition of the above applications is that the equilibrium of the neural networks
should be stable. Hence, the stability analysis of neural networks has always been an im-
portant research topic. Many methods have been proposed to reduce the conservatism
of the stability criteria, such as the model transformation method, the free-weighting-
matrix approach, constructing novel Lyapunov functionals method, the delay decomposi-
tion technique, and the weighting-matrix decomposition method. For example, by using a
Lyapunov functional, a modified stability condition for neural networks with discrete and
distributed delays has been obtained in []; by constructing a general Lyapunov functional
and convex combination approach, the stability criterion for neural networks with mixed
delays has been obtained in []; by partitioning the time delay and using the Jensen integral
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inequalities, the stability condition on delayed neural networks with both discrete and dis-
tributed delays has been obtained in [], by employing homomorphic mapping theory and
M-matrix theory, the stability criterion for neural networks with discrete and distributed
time-delays has been derived in []. However, the above methods seem to become less ef-
fective in studying the stability of reaction-diffusion integro-differential equations. Some
variational methods should be added (see, e.g., [, , ]). In the actual operations, diffusion
effects cannot be avoided in neural networks when electrons are moving in asymmetric
electromagnetic fields. Strictly speaking, all the neural networks models should have been
reaction-diffusion partial differential equations. Recently, Lyapunov functionals method
and the Poincaré inequality were employed to investigate the stability of discrete and dis-
tributed time-delays reaction-diffusion integro-differential equations in []. But it should
be noted that parameter uncertainties cannot be inevitable as usual. Besides, the neural
networks are often disturbed by environmental noise in the real world. The noise may in-
fluence the stability of the equilibrium and vary some structure parameters, which usually
correspond to the Markov process. Systems with Markovian jumping parameters are fre-
quently dominated by discrete-state homogeneous Markov processes, and each state of
the parameters represents a mode of the system. During the recent decade, bidirectional
associative memory (BAM) neural networks, neural networks with Markovian jumping
parameters, have been extensively studied ([–] and the references therein) due to the
fact that systems with Markovian jumping parameters are useful in modeling abrupt phe-
nomena, such as random failures, changing in the interconnections of subsystems, and op-
erating in different points of a nonlinear plant. So, in this paper, we are to employ Lyapunov
stability theory and the M-matrix, H-matrix, and linear matrix equality (LMI) techniques
and variational methods to investigate the stochastically robust exponential stability of a
class of discrete and distributed time-delays Markovian jumping reaction-diffusion un-
certain parameter integro-differential equations (BAM neural networks) as follows:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂u
∂t = ∇ · (� ◦ ∇u) – A(r(t))u + (C(r(t)) + �C(r(t)))f (v) + (E(r(t))

+ �E(r(t)))f (v(t – τ (t), x)) + (L(r(t)) + �L(r(t)))
∫ t

t–�
f (v(s, x)) ds,

t ≥ , x ∈ �,
∂v
∂t = ∇ · (� ◦ ∇v) – B(r(t))v + (D(r(t)) + �D(r(t)))g(u) + (H(r(t))

+ �H(r(t)))g(u(t – γ (t), x)) + (W (r(t)) + �W (r(t)))
∫ t

t–ρ
g(u(s, x)) ds,

t ≥ , x ∈ �,
u(s, x) = φ(s, x), v(s, x) = ψ(s, x), (s, x) ∈ [–τ , ] × �,
u(t, x) = v(t, x) =  ∈ Rn, (t, x) ∈ [, +∞) × ∂�,

(.)

where x ∈ �, and � is a bounded domain in Rm with a smooth boundary ∂� of
class C by � (see, e.g., []). u = u(t, x) = (u(t, x), u(t, x), . . . , un(t, x))T , v = v(t, x) =
(v(t, x), v(t, x), . . . , vn(t, x))T ∈ Rn, and ui(t, x) and vj(t, x) are state variables of the ith neu-
ron and the jth neuron at time t and in space variable x. f (v) = f (v(t, x)) = (f(v(t, x)), . . . ,
fn(vn(t, x)))T , g(u) = g(u(t, x)) = (g(u(t, x)), . . . , gn(un(t, x)))T , and fj(uj(t, x)), gj(uj(t, x)) are
neuron activation functions of the jth unit at time t and in space variable x. f (v(t –τ (t), x)) =
(f(v(t – τ(t), x)), . . . , fj(vj(t – τj(t), x)), . . . , fn(vn(t – τn(t), x)))T , g(u(t – γ (t), x)) = (g(u(t –
γ(t), x)), . . . , gj(uj(t –γj(t), x)), . . . , gn(un(t –γn(t), x)))T , τj(t) and γj(t) are discrete delays, and
� and ρ are distributed time-delays. τ is the constant, satisfying  ≤ max{τj(t),γj(t),�,ρ} ≤
τ for all j = , , . . . , n. � = �(t, x, u), � = �(t, x, v), and � ◦ ∇u = (�ik

∂ui
∂xk

)n×m, � ◦ ∇u =
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(�ik
∂ui
∂xk

)n×m are the Hadamard products of matrix � = (�ik)n×m and ∇u, and of matrix
� = (�ik)n×m and ∇u, respectively (see []). The smooth functions �ik = �ik(t, x, u) ≥ 
and �ik = �ik(t, x, v) ≥  are diffusion operators. (�∗,ϒ ,P) is the given probability space
where �∗ is the sample space, ϒ is the σ -algebra of the subset of the sample space, and P

is the probability measure defined on ϒ . Let S = {, , . . . , N} and the random form process
{r(t) : [, +∞) → S} be a homogeneous, finite-state Markovian process with right contin-
uous trajectories with generator � = (πij)N×N and transition probability from mode i at
time t to mode j at time t + �t, i, j ∈ S,

P
(
r(t + δ) = j | r(t) = i

)
=

{
πijδ + o(δ), j 
= i,
 + πijδ + o(δ), j = i,

where πij ≥  is the transition probability rate from i to j (j 
= i) and πii = –
∑N

j=,j 
=i πij, δ > ,
and limδ→ o(δ)/δ = .

Define the norm ‖ · ‖ for vector u ∈ Rn and matrix C = (cij)n×n as follows:

‖u‖ =

√
√
√
√

n∑

i=

u
i , ‖C‖ =

√

λmax
(
CCT

)
.

Denote |u| = (|u|, |u|, . . . , |un|)T for the vector u = (u, . . . , un)T ∈ Rn, and |C| = (|cij|)n×n

for the matrix C = (cij)n×n.

Definition . For symmetric matrices A, B, we denote A < B or B > A if matrix B – A is
a positive definite matrix. Particularly, A >  if a symmetric matrix A is a positive definite
matrix.

In this paper, we denote by λmaxC and λminC the maximum and minimum eigenvalue of
matrix C. For any mode r(t) = r ∈ S, we denote Ar = A(r(t)) for convenience. So do Br , Cr ,
Dr , Er , Hr , Lr , and Wr . In the real world, the parameter uncertainties are inevitable. We
assume that

�Cr ∈ [–C∗
r , C∗

r
]
, �Dr ∈ [–D∗

r , D∗
r
]
, �Er ∈ [–E∗

r , E∗
r
]
,

�Hr ∈ [–H∗
r , H∗

r
]
, �Lr ∈ [–L∗

r , L∗
r
]
, �Wr ∈ [–W ∗

r , W ∗
r
]
,

(.)

where C∗
r , D∗

r , E∗
r , H∗

r , L∗
r , W ∗

r are nonnegative matrices. Ar , Br are diagonal matrices.
There are positive definite diagonal matrices Ar , Br , Ar , and Br such that

 < Ar ≤ Ar ≤ Ar ,  < Br ≤ Br ≤ Br , r ∈ S. (.)

There exist positive definite diagonal matrices F and G such that

∣
∣f (u) – f (v)

∣
∣≤ F|u – v|, ∣

∣g(u) – g(v)
∣
∣≤ G|u – v|, ∀u, v ∈ Rn. (.)

Throughout this paper, we assume that f () = g() =  ∈ Rn. Then u = , v =  is the null
solution for the system (.).
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Let u(t, x;φ,ψ , i), v(t, x;φ,ψ , i) denote the state trajectory from the initial condition
r() = i, u(t + θ , x;φ,ψ , i) = φ(θ , x), v(t + θ , x;φ,ψ , i) = ψ(θ , x) on –τ ≤ θ ≤  in
L
F

([–τ , ] × �; Rn). (Remark: t = .) Here, L
F

([–τ , ] × �; Rn) denotes the family of all
F-measurable C([–τ , ] × �; Rn)-value random variables ξ = {ξ (θ , x) : –τ ≤ θ ≤ , x ∈ �}
such that sup–τ≤θ≤ E‖ξ (θ )‖

 < ∞, where E{·} stands for the mathematical expectation
operator with respect to the given probability measure P.

Definition . The system (.) is said to be globally stochastically exponentially ro-
bust stability if for every initial condition φ,ψ ∈ L

F
([–τ , ] × �; Rn), r() = i, there

exist scalars c > , c > , β > , and γ >  such that for any solution u(t, x;φ,ψ , i),
v(t, x;φ,ψ , i),

E
(∥
∥u(t, x;φ,ψ , i)

∥
∥



)
+ E
(∥
∥v(t, x;φ,ψ , i)

∥
∥



)

≤ γ e–βt
[
c sup

–τ≤θ≤
E
(∥
∥φ(θ , x)

∥
∥



)
+ c sup

–τ≤θ≤
E
(∥
∥ψ(θ , x)

∥
∥



)]
,

t ≥ t, for all admissible uncertainties satisfying (.), where the norm ‖u‖ = (
∑n

i=
∫

�
u

i (t,
x) dx) 

 for u = (u(t, x), . . . , un(t, x))T ∈ Rn.

Definition . [] A matrix A = (aij)n×n is an H-matrix if its comparison matrix M(A) =
(mij)n×n is an M-matrix, where

mij =

{
|aii|, i = j,
–|aij|, i 
= j.

Lemma . [] A, B ∈ zn � {A = (aij)n×n ∈ Rn×n : aij ≤ , i 
= j}, if A is a M-matrix, A, B
satisfy aij ≤ bij, i, j = , , . . . , n, then B is a M-matrix.

Lemma . [] For given constants k and k satisfying k > k > , V (t) is a nonnegative
continuous function on [t – τ , t], if the following inequality holds:

D+V (t) ≤ kV (t) + kV (t),

where

D+V (t) = lim sup
�t→+

V (t + �t) – V (t)
�t

,

V (t) = lim sup
t–τ≤s≤t

V (s),

τ >  is a constant. Then, as t ≥ t, we have

V (t) ≤ V (t)e–λ(t–t),

where λ is the unique positive solution of the following equation:

λ = k – keλτ .
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Lemma . (Schur complement []) Given matrices Q(t), S(t), and R(t) with appropri-
ate dimensions, where Q(t) = Q(t)T , R(t) = R(t)T , then

(
Q(t) S(t)
ST (t) R(t)

)

> ,

if and only if

R(t) > , Q(t) – S(t)R–(t)ST (t) > ;

or

Q(t) > , R(t) – ST (t)Q–(t)ST (t) > ,

where Q(t), S(t), and R(t) are dependent on t.

2 Main result
Denote by λ the first eigenvalue of –� in Sobolev space W ,

 (�), where

λ = min

{∫

�

∣
∣∇η(x)

∣
∣ dx : η(x) ∈ W ,

 (�),
∫

�

∣
∣η(x)

∣
∣ dx = 

}

(see [, ] for details).

Lemma . Let Pr = diag(pr, pr, . . . , prn) be a positive definite matrix, αr >  with αrI ≤ Pr ,
and u, v be a solution of system (.). Then we have

{∫

�
uT Pr∇ · (� ◦ ∇u) dx ≤ –λαr�∗‖u‖

,
∫

�
vT Pr∇ · (� ◦ ∇v) dx ≤ –λαr�∗‖v‖

,

where I denotes the identity matrix, �∗ = minik inft,x,u �(t, x, u)ik ≥ , �∗ = minik inft,x,v �(t,
x, v)ik ≥ .

Proof Since u, v is a solution of system (.), it follows by the Gauss formula and the Dirich-
let boundary condition that

∫

�

uT Pr
(∇ · (� ◦ ∇u)

)
dx

=
∫

�

uT Pr

( m∑

k=

∂

∂xk

(

�k
∂u

∂xk

)

, . . . ,
m∑

k=

∂

∂xk

(

�nk
∂un

∂xk

))T

dx

= –
m∑

k=

n∑

j=

∫

�

prj�jk

(
∂uj

∂xk

)

dx ≤ –λαr�∗‖u‖
.

Similarly, we can prove that
∫

�
vT Pr∇ · (� ◦ ∇v) dx ≤ –λαr�∗‖v‖

. Thus, the proof is
completed. �
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Throughout this paper, we define �, � , �̃, and �̃ as follows:

� =

α

[

λαr�∗I + PrAr – β‖Cr‖(λmaxF)I – Pr�Cr�CT
r Pr – G

– β‖Dr‖(λmaxG)I – β
∥
∥|Er|

∥
∥I

– Pr�Er�ET
r Pr – �β

∥
∥|Lr|

∥
∥I – �Pr�Lr�LT

r Pr –
N∑

j=

πrjPj

]

,

� =

α

[

λαr�∗I + PrBr – F – β‖Cr‖(λmaxF)I

– β‖Dr‖(λmaxG)I – Pr�Dr�DT
r Pr – β

∥
∥|Hr|

∥
∥I

– Pr�Hr�HT
r Pr – ρβ

∥
∥|Wr|

∥
∥I – ρPr�Wr�W T

r Pr –
N∑

j=

πrjPj

]

,

�̃ =

α

[

λαr�∗I + PrAr – β‖Cr‖(λmaxF)I – PrC∗
r C∗

r
T Pr – G – β‖Dr‖(λmaxG)I

– β
∥
∥|Er|

∥
∥I – PrE∗

r E∗
r

T Pr – �β
∥
∥|Lr|

∥
∥I – �PrL∗

r L∗
r

T Pr –
N∑

j=

πrjPj

]

,

�̃ =

α

[

λαr�∗I + PrBr – F – β‖Cr‖(λmaxF)I

– β‖Dr‖(λmaxG)I – PrD∗
r D∗

r
T Pr – β

∥
∥|Hr|

∥
∥I

– PrH∗
r H∗

r
T Pr – ρβ

∥
∥|Wr|

∥
∥I – ρPrW ∗

r W ∗
r

T Pr –
N∑

j=

πrjPj

]

.

Lemma . If the following two inequalities hold:

�̃ –
( + β)(τ + ) max{(λmaxF), (λmaxG)}

α
I > , ∀r ∈ S, (.)

and

�̃ –
( + β)(τ + ) max{(λmaxF), (λmaxG)}

α
I > , ∀r ∈ S, (.)

we have

� –
( + β)(τ + ) max{(λmaxF), (λmaxG)}

α
I > , ∀r ∈ S, (.)

and

� –
( + β)(τ + ) max{(λmaxF), (λmaxG)}

α
I > , ∀r ∈ S, (.)

where I denotes the identity matrix, and αr ,β ,α > .
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Proof Let

U =

α

(
PrC∗

r C∗
r

T Pr + PrE∗
r E∗

r
T Pr + �PrL∗

r L∗
r

T Pr
)
. (.)

Since C∗, E∗, L∗ all are nonnegative matrices, U is also a nonnegative matrix.
Then (�̃ + U – (+β)(τ+) max{(λmaxF),(λmaxG)}

α
I) is a positive diagonal matrix, and (�̃ –

(+β)(τ+) max{(λmaxF),(λmaxG)}
α

I) is a M-matrix.
Let

Q =

α

[
Pr�Cr�CT

r Pr + Pr�Er�ET
r Pr + �Pr�Lr�LT

r Pr
]
. (.)

It follows by (.) that |Qij| ≤ Uij for all i, j = , , . . . , n. Here, we denote matrices Q =
(Qij)n×n and U = (Uij)n×n. For convenience, we denote

�̂ = �̃ –
( + β)(τ + ) max{(λmaxF), (λmaxG)}

α
I,

� = � –
( + β)(τ + ) max{(λmaxF), (λmaxG)}

α
I.

Denote, in addition, Q̃ = 
α

[λαr�∗I + PrAr – β‖Cr‖(λmaxF)I – G – β‖Dr‖(λmaxG)I –
β‖|Er|‖I – �β‖|Lr|‖I –

∑N
j= πrjPj] – (+β)(τ+) max{(λmaxF),(λmaxG)}

α
I , and Q̃ = diag(Q̃, Q̃,

. . . , Q̃n) is a diagonal matrix. So the comparison matrix M(�) = (μij) of � is

μij =

{
–|Qij|, i 
= j,
Q̃i – Qii, i = j.

It is obvious that μij ≥ �̂ij for all i, j = , , . . . , n. From Lemma ., we know that M(�) is an
M-matrix. According to Definition ., � is a H-matrix with positive diagonal elements,
it is to say � > . Hence we have proved (.) by way of (.). Similarly, we can also derive
(.) from the condition (.). The proof is completed. �

Theorem . Assume that (.)-(.) hold. If, in addition, there exist a sequence of positive
definite diagonal matrices Pr (r ∈ S) and positive scalars β , αr (r ∈ S) such that the following
LMIs conditions hold:

⎛

⎜
⎜
⎜
⎜
⎜
⎝

Qr
√
α

PrC∗
r

√
α

PrE∗
r

√
�

α
PrL∗

r
√
α

(C∗
r )T Pr I  

√
α

(E∗
r )T Pr  I 

√
�

α
(L∗

r )T Pr   I

⎞

⎟
⎟
⎟
⎟
⎟
⎠

> , r ∈ S, (.)

⎛

⎜
⎜
⎜
⎜
⎜
⎝

Qr
√
α

PrD∗
r

√
α

PrH∗
r

√
ρ

α
PrW ∗

r
√
α

(D∗
r )T Pr I  

√
α

(H∗
r )T Pr  I 

√
ρ

α
(W ∗

r )T Pr   I

⎞

⎟
⎟
⎟
⎟
⎟
⎠

> , r ∈ S, (.)

αrI ≤ Pr , r ∈ S, (.)
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Pr ≤ βI, r ∈ S, (.)

then the system (.) is stochastically global exponential robust stability, where

Qr �

α

[

λαr�∗I + PrAr – β‖Cr‖(λmaxF)I – G – β‖Dr‖(λmaxG)I

– β
∥
∥|Er|

∥
∥I – �β

∥
∥|Lr|

∥
∥I –

N∑

j=

πrjPj

]

–
( + β)(τ + ) max{(λmaxF), (λmaxG)}

α
I,

Qr �

α

[

λαr�∗I + PrBr – β‖Cr‖(λmaxF)I – F – β‖Dr‖(λmaxG)I – β
∥
∥|Hr|

∥
∥I

– �β
∥
∥|Wr|

∥
∥I –

N∑

j=

πrjPj

]

–
( + β)(τ + ) max{(λmaxF), (λmaxG)}

α
I,

and α is a positive scalar with α < αr for all r ∈ S.

Proof Let Pr = diag(pr, . . . , prn) be a positive definite matrix for mode r ∈ S, we consider
the following Lyapunov-Krasovskii functional:

V (t) =
∫

�

(
uT (t, x)Pru(t, x) + vT (t, x)Prv(t, x)

)
dx, r ∈ S.

It follows from Lemma . that

∫

�

uT Pr∇ · (� ◦ ∇u) dx ≤ –λ

∫

�

uTαr�∗Iu dx, and
∫

�

vT Pr∇ · (� ◦ ∇v) dx ≤ –λ

∫

�

vTαr�∗Iv dx.
(.)

Obviously, we can get by (.)

∫

�

–uT PrAru dx ≤
∫

�

–uT PrAru dx, and
∫

�

–vT PrBrv dx ≤
∫

�

–vT PrBrv dx.
(.)

Besides, we can derive the following inequalities by the assumptions on f , g , β , and Cr ,
Dr , Er , Hr , Lr , Wr :

∫

�

uT Pr(Cr + �Cr)f (v) dx

≤ 
∫

�

(‖u‖ · ‖Pr‖ · ‖Cr‖ · ∥∥f (v)
∥
∥ + uT Pr�Crf (v)

)
dx
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≤
∫

�

(
‖u‖ · β‖Cr‖ · ∥∥f (v)

∥
∥ + uT Pr�Crf (v)

)
dx

≤
∫

�

[
uT(β‖Cr‖(λmaxF)I + Pr�Cr�CT

r Pr
)
u

+ vT(F + β‖Cr‖(λmaxF)I
)
v
]

dx, (.)
∫

�

vT Pr(Dr + �Dr)g(u) dx

≤ 
∫

�

(‖v‖ · β‖Dr‖ · ∥∥g(u)
∥
∥ + vT Pr�Drg(u)

)
dx

≤
∫

�

[
uT(G + β‖Dr‖(λmaxG)I

)
u

+ vT(β‖Dr‖(λmaxG)I + Pr�Dr�DT
r Pr
)
v
]

dx, (.)
∫

�

uT Pr(Er + �Er)f
(
v
(
t – τ (t), x

))
dx

=
∫

�

(
uT PrErf

(
v
(
t – τ (t), x

))
+ uT Pr�Erf

(
v
(
t – τ (t), x

)))
dx

≤
∫

�

(
|u|Tβ|Er|

∣
∣f
(
v
(
t – τ (t), x

))∣
∣ + uT Pr�Erf

(
v
(
t – τ (t), x

)))
dx

≤
∫

�

(
β
(|u|T |Er|

∣
∣ET

r
∣
∣|u| + f T(v

(
t – τ (t), x

))
f
(
v
(
t – τ (t), x

)))

+ uT Pr�Er�ET
r Pru + f T(v

(
t – τ (t), x

))
f
(
v
(
t – τ (t), x

)))
dx

≤
∫

�

[
uT(β

∥
∥|Er|

∥
∥I + Pr�Er�ET

r Pr
)
u

+ vT(t – τ (t), x
)
( + β)Fv

(
t – τ (t), x

)]
dx, (.)

∫

�

vT Pr(Hr + �Hr)g
(
u
(
t – γ (t), x

))
dx

=
∫

�

(
vT PrHrg

(
u
(
t – γ (t), x

))
+ vT Pr�Hrg

(
u
(
t – γ (t), x

)))
dx

≤
∫

�

(
β
(|v|T |Hr||Hr|T |v| + gT(u

(
t – γ (t), x

))
g
(
u
(
t – γ (t), x

)))

+ vT Pr�Hr�HT
r Prv + gT(u

(
t – γ (t), x

))
g
(
u
(
t – γ (t), x

)))
dx

≤
∫

�

[
uT(t – γ (t), x

)
( + β)Gu

(
t – γ (t), x

)

+ vT(β
∥
∥|Hr|

∥
∥I + Pr�Hr�HT

r Pr
)
v
]

dx, (.)
∫

�

(

uT Pr(Lr + �Lr)
∫ t

t–�

f
(
v(s, x)

)
ds
)

dx

=
∫

�

(∫ t

t–�

uT PrLrf
(
v(s, x)

)
ds +

∫ t

t–�

uT Pr�Lrf
(
v(s, x)

)
ds
)

dx

≤
∫

�

[∫ t

t–�

(
β
(|u|T |Lr||Lr|T |u| + f T(v(s, x)

)
f
(
v(s, x)

)))
ds

+
∫ t

t–�

(
uT Pr�Lr�LT

r Pru + f T(v(s, x)
)
f
(
v(s, x)

))
ds
]

dx
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≤
∫

�

[

uT(�β
∥
∥|Lr|

∥
∥I + �Pr�Lr�LT

r Pr
)
u

+
∫ t

t–�

vT (s, x)( + β)Fv(s, x) ds
]

dx, (.)

∫

�

(

vT Pr(Wr + �Wr)
∫ t

t–ρ

g
(
u(s, x)

)
ds
)

dx

=
∫

�

(∫ t

t–ρ

vT PrWrg
(
u(s, x)

)
ds +

∫ t

t–ρ

vT Pr�Wrg
(
u(s, x)

)
ds
)

dx

≤
∫

�

[∫ t

t–ρ

β
(|v|T |Wr||Wr|T |v| + gT(u(s, x)

)
g
(
u(s, x)

))
ds

+
∫ t

t–ρ

(
vT Pr�Wr�W T

r Prv + gT(u(s, x)
)
g
(
u(s, x)

))
ds
]

dx

≤
∫

�

[

vT(ρβ
∥
∥|Wr|

∥
∥I + ρPr�Wr�W T

r Pr
)
v

+
∫ t

t–ρ

uT (s, x)( + β)Gu(s, x) ds
]

dx. (.)

Moreover, we can conclude from the restrictions of α, β that

∫

�

(∫ t

t–ρ

uT (s, x)( + β)Gu(s, x) ds +
∫ t

t–�

vT (s, x)( + β)Fv(s, x) ds
)

dx

≤ ( + β)
∫

�

[∫ t

t–τ

(
uT (s, x)Gu(s, x) + vT (s, x)Fv(s, x) ds

)
]

dx

≤ ( + β) max{(λmaxF), (λmaxG)}
αr

×
∫

�

[∫ t

t–τ

(
uT (s, x)Pru(s, x) + vT (s, x)Prv(s, x) ds

)
]

dx

≤ ( + β)τ max{(λmaxF), (λmaxG)}
αr

sup
t–τ≤s≤t

V (s), (.)

and

∫

�

[
uT(t – γ (t), x

)
( + β)Gu

(
t – γ (t), x

)
+ vT(t – τ (t), x

)
( + β)Fv

(
t – τ (t), x

)]
dx

≤ ( + β) max{(λmaxF), (λmaxG)}
αr

sup
t–τ≤s≤t

V (s). (.)

Then we can conclude from (.)-(.) and the weak infinitesimal operator L that

LV (t) = lim
δ→+


δ

{

E

[∫

�

(
uT (t + δ, x)P

(
r(t + δ)

)
u(t + δ, x)

+ vT (t + δ, x)P
(
r(t + δ)

)
v(t + δ, x)

)
dx
∣
∣
∣r(t) = r

]

–
∫

�

(
uT (t, x)Pru(t, x) + vT (t, x)Prv(t, x)

)
dx
}
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= lim
δ→+

E[
∫

�
uT (t + δ, x)(Pr +

∑N
j= πrjPj)u(t + δ, x) dx –

∫

�
uT (t, x)Pru(t, x) dx]

δ

+ lim
δ→+

E[
∫

�
vT (t + δ, x)(Pr +

∑N
j= πrjPj)v(t + δ, x) dx –

∫

�
vT (t, x)Prv(t, x) dx]

δ

≤ – E

∫

�

[

uT

(

λαr�∗I + PrAr – β‖Cr‖(λmaxF)I – Pr�Cr�CT
r Pr – G

– β‖Dr‖(λmaxG)I – β
∥
∥|Er|

∥
∥I – Pr�Er�ET

r Pr – �β
∥
∥|Lr|

∥
∥I

– �Pr�Lr�LT
r Pr –

N∑

j=

πrjPj

)

u

+ vT

(

λαr�∗I + PrBr – F – β‖Cr‖(λmaxF)I

– β‖Dr‖(λmaxG)I – Pr�Dr�DT
r Pr – β

∥
∥|Hr|

∥
∥I

– Pr�Hr�HT
r Pr – ρβ

∥
∥|Wr|

∥
∥I – ρPr�Wr�W T

r Pr –
N∑

j=

πrjPj

)

v

+ ( + β)
(

uT(t – γ (t), x
)
Gu

(
t – γ (t), x

)
+ vT(t – τ (t), x

)
Fv
(
t – τ (t), x

)

+
∫ t

t–ρ

uT (s, x)Gu(s, x) ds +
∫ t

t–�

vT (s, x)Fv(s, x) ds
)]

dx

≤ – min
r∈S

{λmin�,λmin�}EV (t)

+
( + β)(τ + ) max{(λmaxF), (λmaxG)}

α
sup

t–τ≤s≤t
EV (s). (.)

Let �t >  be small enough, we can integrate (.) from t to t + �t as follows:

EV (t + �t) – EV (t)

≤
∫ t+�t

t

(

– min
r∈S

{λmin�,λmin�}EV (θ )

+
( + β)(τ + ) max{(λmaxF), (λmaxG)}

α
sup

θ–τ≤s≤θ

EV (s)
)

dθ . (.)

Hence,

D+
EV (t) ≤ – min

r∈S
{λmin�,λmin�}EV (t)

+
( + β)(τ + ) max{(λmaxF), (λmaxG)}

α
sup

t–τ≤s≤t
EV (s). (.)

Let k = minr∈S{λmin�,λmin�}, and k = (+β)(τ+) max{(λmaxF),(λmaxG)}
α

. Moreover, the condi-
tions (.) and (.) are satisfied owing to (.)-(.) and Schur complement theorem
(Lemma .), and we can conclude from Lemma . that k and k satisfy all the condi-
tions in Lemma .. Since k and k are independent of mode r ∈ S, it follows by Lemma .
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that

EV (t) ≤ EV ()e–λt , (.)

where λ is the unique positive solution of the equation λ = k – keλτ , and

EV () = lim sup
–τ≤s≤

EV (s) ≤ β
[

sup
–τ≤θ≤

E
(∥
∥φ(θ , x)

∥
∥



)
+ sup

–τ≤θ≤
E
(∥
∥ψ(θ , x)

∥
∥



)]
, (.)

where β = maxr∈S(λmaxPr).
Moreover, (.) and (.) yield

(
min
r∈S

αr

)
E

∫

�

(
uT u + vT v

)
dx ≤ EV (t)

≤ β
[

sup
–τ≤θ≤

E
(∥
∥φ(θ , x)

∥
∥



)
+ sup

–τ≤θ≤
E
(∥
∥ψ(θ , x)

∥
∥



)]
e–λt ,

from which one derives

E‖u‖
 + E‖v‖

 ≤ β

minr∈S αr
e–λt

[
sup

–τ≤θ≤
E
(∥
∥φ(θ , x)

∥
∥



)
+ sup

–τ≤θ≤
E
(∥
∥ψ(θ , x)

∥
∥



)]
,

t ≥ .

According to Definition ., we know that the system (.) is stochastically global expo-
nential robust stability. The proof is completed. �

Remark . In , [], Theorem . offered a stability criterion for the following neural
networks ([], ()) with discrete and distributed time-delays by way of M-matrix and
H-matrix methods:

ż(t) = –Cz(t) + Ag
(
z(t)
)

+ Bg
(
z
(
t – τ (t)

))
+ D

∫ t

t–σ

g
(
z(s)
)

ds.

However, using the M-matrix and H-matrix methods is not easy in obtaining the LMI
criterion conditions. Motivated by some methods of [], we employ the Schur complement
technique to derive the LMI-based stability criterion - Theorem ..

3 Example
Consider two modes for the Markovian jumping system (.).

For Mode ,

A =

(
. 
 .

)

, B =

(
. 
 .

)

,

C =

(
. .
. .

)

= D = E = H = L = W,

C∗
 = E∗

 = L∗
 =

(
. .
. .

)

, D∗
 = H∗

 = W ∗
 =

(
. .
. .

)

.
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For Mode ,

A =

(
. 
 

)

, B =

(
. 
 .

)

,

C =

(
. .
. .

)

= D = E = H = L = W,

C∗
 = E∗

 = L∗
 =

(
. .
. .

)

, D∗
 = H∗

 = W ∗
 =

(
. .
. .

)

.

Let u = (u, u)T , v = (v, v)T ∈ R, x = (x, x) ∈ (, ) × (, ) ⊂ R, and then λ =
.π = . (see [], Remark .). Assume that � = ., ρ = ., τ = ., and

F =

(
. 
 .

)

, G =

(
. 
 .

)

,

� =

(
. .
. .

)

, � =

(
. .
. .

)

.

So �∗ = ., �∗ = .. Let π = –., π = .; π = ., π = –.. Let α = , then
we use the Matlab LMI toolbox to solve the linear matrices inequalities (.)-(.), and
then the feasibility data follows:

P =

(
. 

 .

)

, P =

(
. 

 .

)

,

and α = ., α = ., β = .. Hence, α =  < α and α =  < α. According
to Theorem ., we know that the system (.) is stochastically global exponential robust
stability (see Figures -).

Figure 1 Computer simulations of the state u1(t, x).
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Figure 2 Computer simulations of the state u2(t, x).

Figure 3 Computer simulations of the state v1(t, x).

4 Conclusions
LMI-based stability criterion can easily be computed by the Matlab toolbox which has
a high efficiency and other advantages in large-scale engineering calculations. In this
paper, we employ Lyapunov stability theory, the M-matrix, H-matrix and linear matrix
equality (LMI) techniques and variational methods to obtain the LMI-based stochasti-
cally exponential robust stability criterion for discrete and distributed time-delays Marko-
vian jumping reaction-diffusion integro-differential equations with uncertain parameters,
whose background of physics and engineering is BAM neural networks. Since using the
M-matrix and H-matrix methods is not easy in obtaining the LMI criterion conditions,
the methods employed in this paper improve those of previous related literature to some
extent. Moreover, a numerical example in Section  is presented to illustrate the effective-
ness of the proposed methods.
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Figure 4 Computer simulations of the state v2(t, x).
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