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Abstract
This note is motivated by some papers treating the fractional hybrid differential
equations involving Riemann-Liouville differential operators of order 0 < α < 1. An
existence theorem for this equation is proved under mixed Lipschitz and
Carathéodory conditions. Some fundamental fractional differential inequalities which
are utilized to prove the existence of extremal solutions are also established.
Necessary tools are considered and the comparison principle is proved, which will be
useful for further study of qualitative behavior of solutions.
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1 Introduction
During the past decades, fractional differential equations have attracted many authors (see
[–]). The differential equations involving fractional derivatives in time, compared with
those of integer order in time, are more realistic to describe many phenomena in nature
(for instance, to describe the memory and hereditary properties of various materials and
processes), the study of such equations has become an object of extensive study during
recent years.

The quadratic perturbations of nonlinear differential equations have attracted much
attention. We call them fractional hybrid differential equations. There have been many
works on the theory of hybrid differential equations, and we refer the readers to the arti-
cles [–].

Dhage and Lakshmikantham [] discussed the following first order hybrid differential
equation:

⎧
⎨

⎩

d
dt [ x(t)

f (t,x(t)) ] = g(t, x(t)) a.e. t ∈ J = [, T],

x(t) = x ∈R,

where f ∈ C(J ×R,R\{}) and g ∈ C(J ×R,R). They established the existence, uniqueness
results and some fundamental differential inequalities for hybrid differential equations ini-
tiating the study of theory of such systems and proved utilizing the theory of inequalities,
its existence of extremal solutions and comparison results.
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Zhao et al. [] have discussed the following fractional hybrid differential equations in-
volving Riemann-Liouville differential operators:

⎧
⎨

⎩

Dq[ x(t)
f (t,x(t)) ] = g(t, x(t)) a.e. t ∈ J = [, T],

x() = ,

where f ∈ C(J ×R,R\{}) and g ∈ C(J ×R,R). The authors of [] established the existence
theorem for fractional hybrid differential equations and some fundamental differential
inequalities, they also established the existence of extremal solutions.

Benchohra et al. [] discussed the following boundary value problems for differential
equations with fractional order:

⎧
⎨

⎩

cDαy(t) = f (t, y(t)) for each t ∈ J = [, T],  < α < ,

ay() + by(T) = c,

where cDα is the Caputo fractional derivative, f : [, T] ×R→R is a continuous function,
a, b, c are real constants with a + b �= .

From the above works, we develop the theory of boundary fractional hybrid differential
equations involving Caputo differential operators of order  < α < . An existence theorem
for boundary fractional hybrid differential equations is proved under mixed Lipschitz and
Carathéodory conditions. Some fundamental fractional differential inequalities which are
utilized to prove the existence of extremal solutions are also established. Necessary tools
are considered and the comparison principle is proved, which will be useful for further
study of qualitative behavior of solutions.

2 Boundary value problems for hybrid differential equations with fractional
order

In this section, we introduce notations, definitions, and preliminary facts which are used
throughout this paper. By X = C(J ,R) we denote the Banach space of all continuous func-
tions from J = [, T] into R with the norm

‖y‖ = sup
{∣
∣y(t)

∣
∣, t ∈ J

}
,

and let C(J ×R,R) denote the class of functions g : J ×R →R such that
(i) the map t �→ g(t, x) is measurable for each x ∈R, and

(ii) the map x �→ g(t, x) is continuous for each t ∈ J .
The class C(J × R,R) is called the Carathéodory class of functions on J × R which are
Lebesgue integrable when bounded by a Lebesgue integrable function on J .

By L(J ;R) denote the space of Lebesgue integrable real-valued functions on J equipped
with the norm ‖ · ‖L defined by

‖x‖L =
∫ T



∣
∣x(s)

∣
∣ds.
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Definition . [] The fractional integral of the function h ∈ L([a, b],R+) of order α ∈
R+ is defined by

Iα
a h(t) =

∫ t

a

(t – s)α–

�(α)
h(s) ds,

where � is the gamma function.

Definition . [] For a function h given on the interval [a, b], the Caputo fractional-
order derivative of h, is defined by

(cDα
a+ h

)
(t) =


�(n – α)

∫ t

a
(t – s)n–α–h(n)(s) ds,

where n = [α] +  and [α] denotes the integer part of α.

In this paper we consider the boundary value problems for hybrid differential equations
with fractional order (BVPHDEF for short) involving Caputo differential operators of or-
der  < α < ,

⎧
⎨

⎩

Dα( x(t)
f (t,x(t)) ) = g(t, x(t)) a.e. t ∈ J = [, T],

a x()
f (,x()) + b x(T)

f (T ,x(T)) = c,
()

where f ∈ C(J ×R,R\{}), g ∈ C(J ×R,R) and a, b, c are real constants with a + b �= .
By a solution of BVPHDEF () we mean a function x ∈ C(J ,R) such that
(i) the function t �→ x

f (t,x) is continuous for each x ∈R, and
(ii) x satisfies the equations in ().

The theory of strict and nonstrict differential inequalities related to the ODEs and hybrid
differential equations is available in the literature (see [, ]). It is known that differential
inequalities are useful for proving the existence of extremal solutions of the ODEs and
hybrid differential equations defined on J .

3 Existence result
In this section, we prove the existence results for the boundary value problems for hybrid
differential equations with fractional order () on the closed and bounded interval J =
[, T] under mixed Lipschitz and Carathéodory conditions on the nonlinearities involved
in it.

We define the multiplication in X by

(xy)(t) = x(t)y(t) for x, y ∈ X.

Clearly, X = C(J ;R) is a Banach algebra with respect to the above norm and multiplication
in it.

Theorem . [] Let S be a non-empty, closed convex and bounded subset of the Banach
algebra X, and let A : X → X and B : X → X be two operators such that

(a) A is Lipschitzian with a Lipschitz constant α,
(b) B is completely continuous,
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(c) x = AxBy �⇒ x ∈ S for all y ∈ S, and
(d) Mψ(r) < r, where M = ‖B(S)‖ = sup‖B(x)‖: x ∈ S;

then the operator equation AxBx = x has a solution in S.

We make the following assumptions:

(H) The function x �→ x
f (t,x) is increasing in R almost everywhere for t ∈ J .

(H) There exists a constant L >  such that

∣
∣f (t, x) – f (t, y)

∣
∣ ≤ L|x – y|

for all t ∈ J and x, y ∈ R.
(H) There exists a function h ∈ L(J ,R) such that

∣
∣g(t, x)

∣
∣ ≤ h(t) a.e. t ∈ J

for all x ∈R.

Lemma . Assume that hypothesis (H) holds and a, b, c are real constants with a + b �= .
Then, for any h ∈ L(J ;R), the function x ∈ C(J ;R) is a solution of the BVPHDEF

⎧
⎨

⎩

Dα( x(t)
f (t,x(t)) ) = h(t) a.e. t ∈ J = [, T],

a x()
f (,x()) + b x(T)

f (T ,x(T)) = c
()

if and only if x satisfies the hybrid integral equation

x(t) =
[
f
(
t, x(t)

)]
(


�(α)

∫ t


(t – s)α–h(s) ds

–


a + b

(
b

�(α)

∫ T


(T – s)α–h(s) ds – c

))

. ()

Proof Assume that x is a solution of problem (). By definition, x(t)
f (t,x(t)) is continuous. Ap-

plying the Caputo fractional operator of the order α, we obtain the first equation in ().
Again, substituting t =  and t = T in () we have

x()
f (, x())

=
–

a + b

(
b

�(α)

∫ T


(T – s)α–h(s) ds – c

)

,

x(T)
f (T , x(T))

=
(


�(α)

∫ T


(T – s)α–h(s) ds –


a + b

(
b

�(α)

∫ T


(T – s)α–h(s) ds – c

))

,

then

a
x()

f (, x())
+ b

x(T)
f (T , x(T))

=
–ab

(a + b)�(α)

∫ T


(T – s)α–h(s) ds +

ac
a + b

+
b

�(α)

∫ T


(T – s)α–h(s) ds

–
b

(a + b)�(α)

∫ T


(T – s)α–h(s) ds +

bc
a + b

,
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this implies that

a
x()

f (, x())
+ b

x(T)
f (T , x(T))

= c.

Conversely, Dα( x(t)
f (t,x(t)) ) = h(t), so we get x(t)

f (t,x(t)) = x()
f (,x()) + Iαh(t).

Then

b
x(T)

f (T , x(T))
= b

x()
f (, x())

+
b

�(α)

∫ T


(T – s)α–h(s) ds,

thus

a
x()

f (, x())
+ b

x(T)
f (T , x(T))

= (a + b)
x()

f (, x())
+

b
�(α)

∫ T


(T – s)α–h(s) ds

implies that

x()
f (, x())

=


a + b

(

c –
b

�(α)

∫ T


(T – s)α–h(s) ds

)

.

Consequently,

x(t) =
[
f
(
t, x(t)

)]
(


�(α)

∫ t


(t – s)α–h(s) ds

–


a + b

(
b

�(α)

∫ T


(T – s)α–h(s) ds – c

))

. �

Theorem . Assume that hypotheses (H)-(H) hold and a, b, c are real constants with
a + b �= . Further, if

L
(

Tα–‖h‖L

�(α)

(

 +
|b|

|a + b|
)

+
|c|

|a + b|
)

< , ()

then the hybrid fractional-order differential equation () has a solution defined on J .

Proof We define a subset S of X by

S =
{

x ∈ X/‖x‖ ≤ N
}

,

where N =
F(

Tα–‖h‖L
�(α) (+ |b|

|a+b| )+ |c|
|a+b| )

–L(
Tα–‖h‖L

�(α) (+ |b|
|a+b| )+ |c|

|a+b| )
and F = supt∈J |f (t, )|.

It is clear that S satisfies the hypothesis of Theorem .. By an application of Lemma .,
equation () is equivalent to the nonlinear hybrid integral equation

x(t) =
[
f
(
t, x(t)

)]
(


�(α)

∫ t


(t – s)α–g

(
s, x(s)

)
ds

–


a + b

(
b

�(α)

∫ T


(T – s)α–g

(
s, x(s)

)
ds – c

))

, t ∈ J . ()
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Define two operators A : X → X and B : S → X by

Ax(t) = f
(
t, x(t)

)
, t ∈ J ()

and

Bx(t) =


�(α)

∫ t


(t – s)α–g

(
s, x(s)

)
ds

–


a + b

(
b

�(α)

∫ T


(T – s)α–g

(
s, x(s)

)
ds – c

)

. ()

Then the hybrid integral equation () is transformed into the operator equation as

x(t) = Ax(t)Bx(t), t ∈ J . ()

We shall show that the operators A and B satisfy all the conditions of Theorem ..
Claim . Let x, y ∈ X, then by hypothesis (H),

∣
∣Ax(t) – Ay(t)

∣
∣ =

∣
∣f

(
t, x(t)

)
– f

(
t, y(t)

)∣
∣ ≤ L

∣
∣x(t) – y(t)

∣
∣ ≤ ‖x – y‖

for all t ∈ J . Taking supremum over t, we obtain

‖Ax – Ay‖ ≤ L‖x – y‖

for all x, y ∈ X.
Claim . We show that B is continuous in S.
Let (xn) be a sequence in S converging to a point x ∈ S. Then, by the Lebesgue dominated

convergence theorem,

lim
n→∞


�(α)

∫ t


(t – s)α–g

(
s, xn(s)

)
ds =


�(α)

∫ t


(t – s)α– lim

n→∞ g
(
s, xn(s)

)
ds

and

lim
n→∞

b
�(α)

∫ T


(T – s)α–g

(
s, xn(s)

)
ds =

b
�(α)

∫ T


(T – s)α– lim

n→∞ g
(
s, xn(s)

)
ds.

Then

lim
n→∞ Bxn(t) = lim

n→∞

[


�(α)

∫ t


(t – s)α–g

(
s, xn(s)

)
ds

–


a + b

(
b

�(α)

∫ T


(T – s)α–g

(
s, xn(s)

)
ds – c

)]

= lim
n→∞


�(α)

∫ t


(t – s)α–g

(
s, xn(s)

)
ds

– lim
n→∞


a + b

(
b

�(α)

∫ T


(T – s)α–g

(
s, x(s)

)
ds – c

)
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=


�(α)

∫ t


(t – s)α–g

(
s, x(s)

)
ds

–


a + b

(
b

�(α)

∫ T


(T – s)α–g

(
s, x(s)

)
ds – c

)

= Bx(t)

for all t ∈ J . This shows that B is a continuous operator on S.
Claim . B is a compact operator on S.
First, we show that B(S) is a uniformly bounded set in X.
Let x ∈ S. Then, by hypothesis (H), for all t ∈ J ,

∣
∣Bx(t)

∣
∣ ≤ 

�(α)

∫ t



∣
∣(t – s)α–g

(
s, x(s)

)∣
∣ds

+


a + b

(
b

�(α)

∫ T



∣
∣(T – s)α–g

(
s, x(s)

)∣
∣ds + |c|

)

≤ Tα–

�(α)

∫ t



∣
∣h(s)

∣
∣ds +

bTα–

|a + b|�(α)

∫ T



∣
∣h(s)

∣
∣ds +

|c|
|a + b|

≤ Tα–

�(α)
‖h‖L

(

 +
|b|

|a + b|
)

+
|c|

|a + b| .

Thus ‖Bx‖ ≤ Tα–

�(α) ‖h‖L ( + | b
a+b |) + |c|

|a+b| for all x ∈ S.
This shows that B is uniformly bounded on S.
Next, we show that B(S) is an equicontinuous set on X.
We set p(t) =

∫ t
 h(s) ds.

Let t, t ∈ J , then for any x ∈ S,

∣
∣Bx(t) – Bx(t)

∣
∣ =

∣
∣
∣
∣


�(α)

∫ t


(t – s)α–g

(
s, x(s)

)
ds –


�(α)

∫ t


(t – s)α–g

(
s, x(s)

)
ds

∣
∣
∣
∣

≤ Tα–

�(α)

∣
∣
∣
∣

∫ t

t

∣
∣g

(
s, x(s)

)∣
∣ds

∣
∣
∣
∣

≤ Tα–

�(α)
∣
∣p(t) – p(t)

∣
∣.

Since p is continuous on compact J , it is uniformly continuous. Hence

∀ε > ,∃η > : |t – t| < η �⇒ ∣
∣Bx(t) – Bx(t)

∣
∣ < ε

for all t, t ∈ J and for all x ∈ X.
This shows that B(S) is an equicontinuous set in X.
Then, by the Arzelá-Ascoli theorem, B is a continuous and compact operator on S.
Claim . The hypothesis (c) of Theorem . is satisfied.
Let x ∈ X and y ∈ S be arbitrary such that x = AxBy. Then

∣
∣x(t)

∣
∣ =

∣
∣Ax(t)

∣
∣
∣
∣By(t)

∣
∣

≤ ∣
∣f

(
t, x(t)

)∣
∣

∣
∣
∣
∣


�(α)

∫ t


(t – s)α–g

(
s, x(s)

)
ds
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–


a + b

(
b

�(α)

∫ T


(T – s)α–g

(
s, x(s)

)
ds – c

)∣
∣
∣
∣

≤ [∣
∣f

(
t, x(t)

)
– f (t, )

∣
∣ +

∣
∣f (t, )

∣
∣
]

×
(

Tα–

�(α)

∫ T


h(s) ds +

|b|Tα–

|a + b|�(α)

∫ T


h(s) ds +

|c|
|a + b|

)

≤ (
L
∣
∣x(t)

∣
∣ + F

)
(

Tα–

�(α)
‖h‖L

(

 +
|b|

|a + b|
)

+
|c|

|a + b|
)

,

and so

∣
∣x(t)

∣
∣ – L

(
Tα–

�(α)
‖h‖L

(

 +
|b|

|a + b|
)

+
|c|

|a + b|
)

∣
∣x(t)

∣
∣

≤ F

(
Tα–

�(α)
‖h‖L

(

 +
|b|

|a + b|
)

+
|c|

|a + b|
)

,

which implies

∣
∣x(t)

∣
∣ ≤ F( Tα–

�(α) ‖h‖L ( + |b|
|a+b| ) + |c|

|a+b| )

 – L( Tα–
�(α) ‖h‖L ( + |b|

|a+b| ) + |c|
|a+b| )

.

Taking supremum over t,

‖x‖ ≤ F( Tα–

�(α) ‖h‖L ( + |b|
|a+b| ) + |c|

|a+b| )

 – L( Tα–
�(α) ‖h‖L ( + |b|

|a+b| ) + |c|
|a+b| )

= N .

Then x ∈ S and the hypothesis (c) of Theorem . is satisfied.
Finally, we have

M =
∥
∥B(S)

∥
∥ = sup

{‖Bx‖ : x ∈ S
} ≤ Tα–

�(α)
‖h‖L

(

 +
∣
∣
∣
∣

b
a + b

∣
∣
∣
∣

)

+
|c|

|a + b| ,

and so

αM ≤
(

Tα–

�(α)
‖h‖L

(

 +
∣
∣
∣
∣

b
a + b

∣
∣
∣
∣

)

+
|c|

|a + b|
)

< .

Thus, all the conditions of Theorem . are satisfied and hence the operator equation
AxBx = x has a solution in S. As a result, BVPHDEF () has a solution defined on J . This
completes the proof. �

4 Fractional hybrid differential inequalities
We discuss a fundamental result relative to strict inequalities for BVPHDEF ().

We begin with the definition of the class Cp([, T],R).

Definition . m ∈ Cp([, T],R) means that m ∈ C([, T],R) and tpm(t) ∈ C([, T],R).

Lemma . [] Let m ∈ Cp([, T],R). Suppose that for any t ∈ (, +∞) we have m(t) = 
and m(t) ≤  for  ≤ t ≤ t.
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Then it follows that

Dqm(t) ≥ .

Theorem . Assume that hypothesis (H) holds. Suppose that there exist functions y, z ∈
Cp([, T],R) such that

Dα

(
y(t)

f (t, y(t))

)

≤ g
(
t, y(t)

)
a.e. t ∈ J ()

and

Dα

(
z(t)

f (t, z(t))

)

≥ g
(
t, z(t)

)
a.e. t ∈ J , ()

 < t ≤ T , with one of the inequalities being strict. Then

y < z,

where y = t–αy(t)|t= and z = t–αz(t)|t= implies

y(t) < z(t)

for all t ∈ J .

Proof Suppose that inequality () holds. Assume that the claim is false. Then, since y < z

and t–αy(t) and t–αz(t) are continuous functions, there exists t such that  < t ≤ T with
y(t) = z(t) and y(t) < z(t),  ≤ t < t.

Define

Y (t) =
y(t)

f (t, y(t))
and Z(t) =

z(t)
f (t, z(t))

.

Then we have Y (t) = Z(t), and by virtue of hypothesis (H), we get Y (t) < Z(t) for all
 ≤ t < t.

Setting m(t) = Y (t) – Z(t),  ≤ t ≤ t, we find that m(t) < ,  ≤ t < t and m(t) =  with
m ∈ Cp([, T],R). Then, by Lemma ., we have Dqm(t) ≥ . By () and (), we obtain

g
(
t, y(t)

) ≥ DqY (t) ≥ DqZ(t) > g
(
t, z(t)

)
.

This is a contradiction with y(t) = z(t). Thus the conclusion of the theorem holds and the
proof is complete. �

Theorem . Assume that hypothesis (H) holds and a, b, c are real constants with
a + b �= . Suppose that there exist functions y, z ∈ Cp([, T],R) such that

Dα

(
y(t)

f (t, y(t))

)

≤ g
(
t, y(t)

)
a.e. t ∈ J ()
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and

Dα

(
z(t)

f (t, z(t))

)

≥ g
(
t, z(t)

)
a.e. t ∈ J , ()

one of the inequalities being strict, and if a > , b <  and y(T) < z(T), then

a
y()

f (, y())
+ b

y(T)
f (T , y(T))

< a
z()

f (, z())
+ b

z(T)
f (T , z(T))

()

implies

y(t) < z(t) ()

for all t ∈ J .

Proof We have a y()
f (,y()) + b y(T)

f (T ,y(T)) < a z()
f (,z()) + b z(T)

f (T ,z(T)) .
This implies a( y()

f (,y()) – z()
f (,z()) ) < b( z(T)

f (T ,z(T)) – y(T)
f (T ,y(T)) ).

Since b <  and y(T) < z(T) by hypothesis (H), then z(T)
f (T ,z(T)) – y(T)

f (T ,y(T)) > .
This shows that y()

f (,y()) – z()
f (,z()) <  since a > , and by hypothesis (H) we have y() <

z().
Hence the application of Theorem . yields that y(t) < z(t). �

Theorem . Assume that the conditions of Theorem . hold with inequalities () and
(). Suppose that there exists a real number M >  such that

g(t, x) – g(t, x) ≤ M
 + tα

(
x

f (t, x)
–

x

f (t, x)

)

a.e. t ∈ J ()

for all x, x ∈R with x ≥ x. Then

a
y()

f (, y())
+ b

y(T)
f (T , y(T))

< a
z()

f (, z())
+ b

z(T)
f (T , z(T))

implies, provided M ≤ �( + α),

y(t) < z(t)

for all t ∈ J .

Proof We set zε(t)
f (t,zε(t)) = z(t)

f (t,z(t)) + ε( + tα) for small ε >  and let Zε(t) = zε(t)
f (t,zε(t)) and Z(t) =

z(t)
f (t,z(t)) for t ∈ J .

So that we have

Zε(t) > Z(t) �⇒ zε(t) > z(t).

Since g(t, x) – g(t, x) ≤ M
+tα ( x

f (t,x) – x
f (t,x) ) and Dα( z(t)

f (t,z(t)) ) ≥ g(t, z(t)) for all t ∈ J , one has

DαZε(t) = DαZ(t) + εDαtα

≥ g
(
t, z(t)

)
+ ε�(α + )
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≥ g
(
t, zε(t)

)
–

M
 + tα

(Zε – Z) + ε�( + α)

≥ g
(
t, zε(t)

)
+ ε

(
�( + α) – M

)

> g
(
t, zε(t)

)

provided M ≤ �( + α).
Also, we have zε() > z() ≥ y(). Hence, the application of Theorem . yields that y(t) <

zε(t) for all t ∈ J .
By the arbitrariness of ε > , taking the limits as ε → , we have y(t) ≤ z(t) for all t ∈ J .

This completes the proof. �

Remark . Let f (t, x) =  and g(t, x) = x. We can easily verify that f and g satisfy condition
().

5 Existence of maximal and minimal solutions
In this section, we shall prove the existence of maximal and minimal solutions for
BVPHDEF () on J = [, T]. We need the following definition in what follows.

Definition . A solution r of BVPHDEF () is said to be maximal if for any other solution
x to BVPHDEF () one has x(t) ≤ r(t) for all t ∈ J . Similarly, a solution ρ of BVPHDEF ()
is said to be minimal if ρ(t) ≤ x(t) for all t ∈ J , where x is any solution of BVPHDEF ()
on J .

We discuss the case of maximal solution only, as the case of minimal solution is similar
and can be obtained with the same arguments with appropriate modifications. Given an
arbitrarily small real number ε > , consider the following boundary value problem of
BVPHDEF of order  < α < :

⎧
⎨

⎩

Dα( x(t)
f (t,x(t)) ) = g(t, x(t)) + ε a.e. t ∈ J = [, T],

a x()
f (,x()) + b x(T)

f (T ,x(T)) = c + ε,
()

where f ∈ C(J ×R,R\{}) and C(J ×R,R).
An existence theorem for BVPHDEF () can be stated as follows.

Theorem . Assume that hypotheses (H)-(H) hold and a, b, c are real constants with
a + b �= . Suppose that inequality () holds. Then, for every small number ε > , BVPHDEF
() has a solution defined on J .

Proof By hypothesis, since

L
(

Tα–‖h‖L

�(α)

(

 +
|b|

|a + b|
)

+
|c|

|a + b|
)

< ,

there exists ε >  such that

L
(Tα–‖h‖L + ε T

α

�(α)

(

 +
|b|

|a + b|
)

+
|c| + ε

|a + b|
)

< 

for all  < ε ≤ ε. Now the rest of the proof is similar to Theorem .. �
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Our main existence theorem for maximal solution for BVPHDEF () is the following.

Theorem . Assume that hypotheses (H)-(H) hold with the conditions of Theorem .
and a, b, c are real constants with a + b �= . Furthermore, if condition () holds, then
BVPHDEF () has a maximal solution defined on J .

Proof Let {εn}∞ be a decreasing sequence of positive real numbers such that limn→∞ εn =
, where ε is a positive real number satisfying the inequality

L
(Tα–‖h‖L + ε

T
α

�(α)

(

 +
|b|

|a + b|
)

+
|c| + ε

|a + b|
)

< .

The number ε exists in view of inequality (). By Theorem ., there exists a solution
r(t, εn) defined on J of the BVPHDEF

⎧
⎨

⎩

Dα( x(t)
f (t,x(t)) ) = g(t, x(t)) + εn a.e. t ∈ J ,

a x()
f (,x()) + b x(T)

f (T ,x(T)) = c + εn.
()

Then any solution u of BVPHDEF () satisfies

Dα

(
u(t)

f (t, u(t))

)

≤ g
(
t, u(t)

)
,

and any solution of auxiliary problem () satisfies

Dα

(
r(t, εn)

f (t, r(t, εn))

)

= g
(
t, r(t, εn)

)
+ εn > g

(
t, r(t, εn)

)
,

where a u()
f (,u()) + b u(T)

f (T ,u(T)) = c ≤ c + εn = a r(,εn)
f (,r(,εn)) + b r(T ,εn)

f (T ,r(T ,εn)) . By Theorem ., we infer
that

u(t) ≤ r(t, εn) ()

for all t ∈ J and n ∈ IN .
Since

c + ε = a
r(, ε)

f (, r(, ε))
+ b

r(T , ε)
f (T , r(T , ε))

≤ a
r(, ε)

f (, r(, ε))
+ b

r(T , ε)
f (T , r(T , ε))

= c + ε,

then by Theorem ., we infer that r(t, ε) ≤ r(t, ε). Therefore, r(t, εn) is a decreasing se-
quence of positive real numbers, and the limit

r(t) = lim
n→∞ r(t, εn) ()

exists. We show that the convergence in () is uniform on J . To finish, it is enough to
prove that the sequence r(t, εn) is equicontinuous in C(J , R). Let t, t ∈ J with t < t be
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arbitrary. Then

∣
∣r(t, εn) – r(t, εn)

∣
∣ =

∣
∣
∣
∣

[
f
(
t, r(t, εn)

)]
(


�(α)

∫ t


(t – s)α–(g

(
s, r(s, εn)

)
+ εn

)
ds

–


a + b

(
b

�(α)

∫ T


(T – s)α–(g

(
s, r(s, εn)

)
+ εn

)
ds – c – εn

))

–
[
f
(
t, r(t, εn)

)]
(


�(α)

∫ t


(t – s)α–(g

(
s, r(s, εn)

)
+ εn

)
ds

–


a + b

(
b

�(α)

∫ T


(T – s)α–(g

(
s, r(s, εn)

)
+ εn

)
ds – c – εn

))∣
∣
∣
∣.

Thus

∣
∣r(t, εn) – r(t, εn)

∣
∣ =

∣
∣
∣
∣

[
f
(
t, r(t, εn)

)]
(


�(α)

∫ t


(t – s)α–(g

(
s, r(s, εn)

)
+ εn

)
)

ds

–
[
f
(
t, r(t, εn)

)]
(


�(α)

∫ t


(t – s)α–(g

(
s, r(s, εn)

)
+ εn

)
ds

)

–
(
f
(
t, r(t, εn)

)
– f

(
t, r(t, εn)

))

× 
a + b

(
b

�(α)

∫ T


(T – s)α–(g

(
s, r(s, εn)

)
+ εn

)
ds – c – εn

)∣
∣
∣
∣

≤
∣
∣
∣
∣

[
f
(
t, r(t, εn)

)]
(


�(α)

∫ t


(t – s)α–(g

(
s, r(s, εn)

)
+ εn

)
ds

)

–
[
f
(
t, r(t, εn)

)]
(


�(α)

∫ t


(t – s)α–(g

(
s, r(s, εn)

)
+ εn

)
ds

)∣
∣
∣
∣

+
∣
∣
∣
∣

(
f
(
t, r(t, εn)

)
– f

(
t, r(t, εn)

))

× 
a + b

(
b

�(α)

∫ T


(T – s)α–(g

(
s, r(s, εn)

)
+ εn

)
ds – c – εn

)∣
∣
∣
∣

+
∣
∣
∣
∣

[
f
(
t, r(t, εn)

)]
(


�(α)

∫ t


(t – s)α–(g

(
s, r(s, εn)

)
+ εn

)
ds

)

–
[
f
(
t, r(t, εn)

)]
(


�(α)

∫ t


(t – s)α–(g

(
s, r(s, εn)

)
+ εn

)
ds

)∣
∣
∣
∣

≤ ∣
∣f

(
t, r(t, εn)

)
– f

(
t, r(t, εn)

)∣
∣

×
[

(‖h‖L + εn)Tα

�(α + )
+

|b|(‖h‖L + εn)Tα

|a + b|�(α + )
+

|c| + εn

|a + b|
]

+ F
(‖h‖L + εn)

�(α + )
[∣
∣tα

 – tα
 – (t – t)α

∣
∣ + (t – t)α

]
,

where F = sup(t,x)∈J×[–N ,N] |f (t, x)|.
Since f is continuous on a compact set J × [–N , N], it is uniformly continuous there.

Hence,

∣
∣f

(
t, r(t, εn)

)
– f

(
t, r(t, εn)

)∣
∣ →  as t → t
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uniformly for all n ∈ N . Therefore, from the above inequality, it follows that

∣
∣r(t, εn) – r(t, εn)

∣
∣ →  as t → t

uniformly for all n ∈ N . Therefore,

r(t, εn) → r(t) as n → ∞ for all t ∈ J .

Next, we show that the function r(t) is a solution of BVPHDEF () defined on J . Now, since
r(t, εn) is a solution of BVPHDEF (), we have

r(t, εn) =
[
f
(
t, r(t, εn)

)]
(


�(α)

∫ t


(t – s)α–(g

(
s, r(s, εn)

)
+ εn

)
ds

–


a + b

(
b

�(α)

∫ T


(T – s)α–(g

(
s, r(s, εn)

)
+ εn

)
ds – c – εn

))

for all t ∈ J . Taking the limit as n → ∞ in the above equation yields

r(t) =
[
f
(
t, r(t)

)]
(


�(α)

∫ t


(t – s)α–g

(
s, r(s)

)
ds

–


a + b

(
b

�(α)

∫ T


(T – s)α–g

(
s, r(s)

)
ds – c

))

for all t ∈ J . Thus, the function r is a solution of BVPHDEF () on J . Finally, from inequality
() it follows that u(t) ≤ r(t) for all t ∈ J . Hence, BVPHDEF () has a maximal solution
on J . This completes the proof. �

6 Comparison theorems
The main problem of the differential inequalities is to estimate a bound for the solution
set for the differential inequality related to BVPHDEF (). In this section, we prove that the
maximal and minimal solutions serve as bounds for the solutions of the related differential
inequality to BVPHDEF () on J = [, T].

Theorem . Assume that hypotheses (H)-(H) and condition () hold and a, b, c are
real constants with a + b �= . Suppose that there exists a real number M >  such that

g(t, x) – g(t, x) ≤ M
 + tα

(
x

f (t, x)
–

x

f (t, x)

)

a.e. t ∈ J

for all x, x ∈ R with x ≥ x, where M ≤ �( + α). Furthermore, if there exists a function
u ∈ C(J ,R) such that

⎧
⎨

⎩

Dα( u(t)
f (t,u(t)) ) ≤ g(t, u(t)) a.e. t ∈ J ,

a u()
f (,u()) + b u(T)

f (T ,u(T)) ≤ c,
()

then

u(t) ≤ r(t) ()

for all t ∈ J , where r is a maximal solution of BVPHDEF () on J .
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Proof Let ε >  be arbitrarily small. By Theorem ., r(t, ε) is a maximal solution of
BVPHDEF () so that the limit

r(t) = lim
ε→

r(t, ε) ()

is uniform on J and the function r is a maximal solution of BVPHDEF () on J . Hence, we
obtain

⎧
⎨

⎩

Dα( r(t,ε)
f (t,r(t,ε)) ) = g(t, r(t, ε)) + ε a.e. t ∈ J ,

a r(,ε)
f (,r(,ε)) + b r(T ,ε)

f (T ,r(T ,ε)) = c + ε.
()

From the above inequality it follows that

⎧
⎨

⎩

Dα( r(t,ε)
f (t,r(t,ε)) ) > g(t, r(t, ε)) a.e. t ∈ J ,

a r(,ε)
f (,r(,ε)) + b r(T ,ε)

f (T ,r(T ,ε)) = c + ε.
()

Now we apply Theorem . to inequalities () and () and conclude that u(t) < r(t, ε)
for all t ∈ J . This, in view of limit (), further implies that inequality () holds on J . This
completes the proof. �

Theorem . Assume that hypotheses (H)-(H) and condition () hold and a, b, c are
real constants with a + b �= . Suppose that there exists a real number M >  such that

g(t, x) – g(t, x) ≤ M
 + tα

(
x

f (t, x)
–

x

f (t, x)

)

a.e. t ∈ J

for all x, x ∈ R with x ≥ x, where M ≤ �( + α). Furthermore, if there exists a function
v ∈ C(J ,R) such that

⎧
⎨

⎩

Dα( v(t)
f (t,v(t)) ) ≥ g(t, v(t)) a.e. t ∈ J ,

a v()
f (,v()) + b v(T)

f (T ,v(T)) > c,

then

ρ(t) ≤ v(t)

for all t ∈ J , where ρ is a minimal solution of BVPHDEF () on J .

Note that Theorem . is useful to prove the boundedness and uniqueness of the solu-
tions for BVPHDEF () on J . A result in this direction is as follows.

Theorem . Assume that hypotheses (H)-(H) and condition () hold and a, b, c are
real constants with a + b �= . Suppose that there exists a real number M >  such that

g(t, x) – g(t, x) ≤ M
 + tα

(
x

f (t, x)
–

x

f (t, x)

)

a.e. t ∈ J
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for all x, x ∈R with x ≥ x, where M ≤ �( + α). If an identically zero function is the only
solution of the differential equation

Dαm(t) =
M

 + tα
m(t) a.e. t ∈ J , am() + bm(T) = , ()

then BVPHDEF () has a unique solution on J .

Proof By Theorem ., BVPHDEF () has a solution defined on J . Suppose that there are
two solutions u and u of BVPHDEF () existing on J with u > u. Define a function
m : J →R by

m(t) =
u(t)

f (t, u(t))
–

u(t)
f (t, u(t))

.

In view of hypothesis (H), we conclude that m(t) > . Then we have

Dαm(t) = Dα

[
u(t)

f (t, u(t))

]

– Dα

[
u(t)

f (t, u(t))

]

= g
(
t, u(t)

)
– g

(
t, u(t)

)

≤ M
 + tα

(
u

f (t, u(t))
–

u(t)
f (t, u(t))

)

=
M

 + tα
m(t)

for almost everywhere t ∈ J , and since m() = u()
f (,u()) – u()

f (,u()) and m(T) = u(T)
f (T ,u(T)) –

u(T)
f (T ,u(T)) and a u()

f (,u()) + b u(T)
f (T ,u(T)) = a u()

f (,u()) + b u(T)
f (T ,u(T)) , we have am() + bm(T) = .

Now, we apply Theorem . with f (t, x) =  and c =  to get that m(t) ≤  for all t ∈ J ,
where an identically zero function is the only solution of the differential equation ()
m(t) ≤  is a contradiction with m(t) > . Then we can get u = u. This completes the
proof. �

7 Existence of extremal solutions in vector segment
Sometimes it is desirable to have knowledge of the existence of extremal positive solutions
for BVPHDEF () on J . In this section, we shall prove the existence of maximal and mini-
mal positive solutions for BVPHDEF () between the given upper and lower solutions on
J = [, T]. We use a hybrid fixed point theorem of Dhage [] in ordered Banach spaces
for establishing our results. We need the following preliminaries in what follows. A non-
empty closed set K in a Banach algebra X is called a cone with vertex  if

(i) K + K ⊆ K ,
(ii) λK ⊆ K for λ ∈R, λ ≥ ,

(iii) (–K) ∩ K = , where  is the zero element of X ,
(iv) a cone K is called positive if K ◦ K ⊆ K , where ◦ is a multiplication composition

in X .
We introduce an order relation ≤ in X as follows. Let x, y ∈ X. Then x ≤ y if and only if

y–x ∈ K . A cone K is said to be normal if the norm ‖·‖ is semi-monotone increasing on K ,
that is, there is a constant N >  such that ‖x‖ ≤ N‖y‖ for all x, y ∈ K with x ≤ y. It is known
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that if the cone K is normal in X, then every order-bounded set in X is norm-bounded.
The details of cones and their properties appear in Heikkila and Lakshmikantham [].

Lemma . [] Let K be a positive cone in a real Banach algebra X and let u, u, v, v ∈ K
be such that u ≤ v and u ≤ v. Then uu ≤ vv.

For any a, b ∈ X, the order interval [a, b] is a set in X given by

[a, b] = {x ∈ X : a ≤ x ≤ b}.

Definition . A mapping Q : [a, b] → X is said to be nondecreasing or monotone in-
creasing if x ≤ y implies Qx ≤ Qy for all x, y ∈ [a, b].

We use the following fixed point theorems of Dhage [] for proving the existence of
extremal solutions for problem () under certain monotonicity conditions.

Lemma . [] Let K be a cone in a Banach algebra X and let a, b ∈ X be such that a ≤ b.
Suppose that A, B : [a, b] → K are two nondecreasing operators such that

(a) A is Lipschitzian with a Lipschitz constant α,
(b) B is complete,
(c) AxBx ∈ [a, b] for each x ∈ [a, b].

Further, if the cone K is positive and normal, then the operator equation AxBx = x
has the least and the greatest positive solution in [a, b], whenever αM < , where M =
‖B([a, b])‖ = sup{‖Bx‖ : x ∈ [a, b]}.

We equip the space C(J , R) with the order relation ≤ with the help of cone K defined by

K =
{

x ∈ C(J , R) : x(t) ≥ ,∀t ∈ J
}

. ()

It is well known that the cone K is positive and normal in C(J , R). We need the following
definitions in what follows.

Definition . A function a ∈ C(J , R) is called a lower solution of BVPHDEF () de-
fined on J if it satisfies (). Similarly, a function a ∈ C(J , R) is called an upper solution
of BVPHDEF () defined on J if it satisfies (). A solution to BVPHDEF () is a lower as
well as an upper solution for BVPHDEF () defined on J and vice versa.

We consider the following set of assumptions:

(B) f : J ×R→R
+ – , g : J ×R→R

+.
(B) BVPHDEF () has a lower solution a and an upper solution b defined on J with a ≤ b.
(B) The function x → x

f (t,x) is increasing in the interval [mint∈J a(t), maxt∈J b(t)] almost
everywhere for t ∈ J .

(B) The functions f (t, x) and g(t, x) are nondecreasing in x almost everywhere for t ∈ J .
(B) There exists a function k ∈ L(J ,R) such that g(t, b(t)) ≤ k(t).

We remark that hypothesis (B) holds in particular if f is continuous and g is L-
Carathéodory on J ×R.
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Theorem . Suppose that assumptions (H) and (B)-(B) hold and a, b, c are real con-
stants with a + b �= . Furthermore, if

L
(

Tα–‖h‖L

�(α)

(

 +
|b|

|a + b|
)

+
|c|

|a + b|
)

<  and
b

a + b
≤ , ()

then BVPHDEF () has a minimal and a maximal positive solution defined on J .

Proof Now, BVPHDEF () is equivalent to integral equation () defined on J . Let X =
C(J , R). Define two operators A and B on X by () and (), respectively. Then the inte-
gral equation () is transformed into an operator equation Ax(t)Bx(t) = x(t) in the Banach
algebra X. Notice that hypothesis (B) implies A, B : [a, b] → K . Since the cone K in X is
normal, [a, b] is a norm-bounded set in X. Now it is shown, as in the proof of Theorem .,
that A is a Lipschitzian with the Lipschitz constant L and B is a completely continuous op-
erator on [a, b]. Again, hypothesis (B) implies that A and B are nondecreasing on [a, b].
To see this, let x, y ∈ [a, b] be such that x ≤ y. Then, by hypothesis (B),

Ax(t) = f
(
t, x(t)

) ≤ f
(
t, y(t)

)
= Ay(t)

for all t ∈ J . Similarly, we have

Bx(t) =


�(α)

∫ t


(t – s)α–g

(
s, x(s)

)
ds

–


a + b

(
b

�(α)

∫ T


(T – s)α–g

(
s, x(s)

)
ds – c

)

≤ 
�(α)

∫ t


(t – s)α–g

(
s, y(s)

)
ds

–


a + b

(
b

�(α)

∫ T


(T – s)α–g

(
s, y(s)

)
ds – c

)

= By(t)

for all t ∈ J . So A and B are nondecreasing operators on [a, b]. Lemma . and hypothesis
(B) together imply that

a(t) ≤ f
(
t, a(t)

)
[


�(α)

∫ t


(t – s)α–g

(
s, x(s)

)
ds

–


a + b

(
b

�(α)

∫ T


(T – s)α–g

(
s, x(s)

)
ds – c

)]

≤ f
(
t, x(t)

)
[


�(α)

∫ t


(t – s)α–g

(
s, x(s)

)
ds

–


a + b

(
b

�(α)

∫ T


(T – s)α–g

(
s, x(s)

)
ds – c

)]

≤ f
(
t, b(t)

)
[


�(α)

∫ t


(t – s)α–g

(
s, x(s)

)
ds

–


a + b

(
b

�(α)

∫ T


(T – s)α–g

(
s, x(s)

)
ds – c

)]

≤ b(t)



Hilal and Kajouni Advances in Difference Equations  (2015) 2015:183 Page 19 of 19

for all t ∈ J and x ∈ [a, b]. As a result a(t) ≤ Ax(t)Bx(t) ≤ b(t) for all t ∈ J and x ∈ [a, b].
Hence, AxBx ∈ [a, b] for all x ∈ [a, b]. Again,

M =
∥
∥B

(
[a, b]

)∥
∥ = sup

{‖Bx‖ : x ∈ [a, b]
} ≤ L

(
Tα–‖h‖L

�(α)

(

 +
|b|

|a + b|
)

+
|c|

|a + b|
)

,

and so αM ≤ L( Tα–‖h‖L
�(α) ( + |b|

|a+b| ) + |c|
|a+b| ) < . Now, we apply Lemma . to the opera-

tor equation AxBx = x to yield that BVPHDEF () has a minimal and a maximal positive
solution in [a, b] defined on J . This completes the proof. �
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