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Abstract
In this paper the nonlinear second-order neutral difference equation of the following
form: �(an�(xn – pnxn–1)) + qnf (xn–τ ) = 0 is considered. By suitable substitution the
above equation is transformed into a new one, which is a third-order non-neutral
difference equation. Using results obtained for the new equation, the asymptotic
properties of the neutral difference equation are studied. Some classification of
nonoscillatory solutions is presented, as well as an estimation of the solutions. Finally,
we present necessary and sufficient conditions for the existence of solutions to both
considered equations being asymptotically equivalent to the given sequences.
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1 Introduction
In this paper we consider the difference equation in the following form:

�
(
an�(xn – pnxn–)

)
+ qnf (xn–τ ) = , n ∈ Nmax{,τ }, ()

where � is the forward difference operator defined by �yn = yn+ – yn, (an), (pn), (qn) are
sequences of positive real numbers, τ is a nonnegative integer, and the function f : N →R.
Here R is the set of real numbers N = {, , . . .}, and Nk = {k, k + , k + , . . .}, k ∈N.

By a solution to () we mean a sequence (xn) which satisfies () for n sufficiently large.
We consider only solutions which are nontrivial for all large n. A solution to () is called
nonoscillatory if it is eventually positive or eventually negative. Otherwise it is called os-
cillatory.

Let us denote

yn+ = xn

n∏

i=


pi

. ()

This implies that xn – pnxn– = (�yn)
∏n

i= pi. Substitution of () transforms () into the
following:

�

(

an�

(

(�yn)
n∏

i=

pi

))

+ qnf

(

yn–τ+

n–τ∏

i=

pi

)

= . ()
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Setting

bn =
n∏

i=

pi ()

and assuming that

f (bn–τ z) = b∗
ng(z), ()

in (), we get the third-order nonlinear difference equation of the following form:

�
(
an�(bn�yn)

)
+ q∗

ng(yn+–τ ) = , n ∈Nmax{,τ }, ()

where

q∗
n = qnb∗

n. ()

By virtue of (), the positivity of terms of the sequence (pn) implies the positivity of
terms of the sequence (bn). Note that f (xy) = f (x)f (y) is satisfied for all power functions.
Hence, by () and (), if f (x) = xγ , where γ is a positive constant, then g = f and b∗

n = bγ
n–τ

for all n ∈ Nτ . If f is not a power function, in some cases we can find the function g
assumed by (). For example, for f (x) = xx– and bn ≡ b ∈ R we have b∗

n = 
 b and

g(x) = (b)xx.
Neutral type difference equations have been widely studied in the literature. Some recent

results on the asymptotic behavior of second-order neutral difference equations can be
found, for example, in [–]. The higher-order neutral difference equations were studied
in [–].

For results concerning the oscillatory and asymptotic behavior of the third-order dif-
ference equation we refer to [, ], for equations with quasi-differences to [–], and
to the references cited therein. Many results on the oscillation of second- and third-order
functional differential and difference equations can also be found in [].

The purpose of this paper is to study the asymptotic properties of the neutral difference
equation (). Transforming the considered equation into a new one, which is a third-order
difference equation of type (), we get various results concerning the asymptotic behavior
of solutions to this equation. These results are then used to establish some properties of
the solutions to (). In particular, we obtain necessary and sufficient conditions for the
existence of solutions asymptotically equivalent to the given sequences.

Fourth-order non-neutral difference equations with one quasi-difference, by the tech-
niques here used, were studied in [–]. Some generalizations of the results presented
in these papers were published in [, ]. Even so, there is not a full analogy to the results
since the Kneser type classification of the nonoscillatory solution is different for odd- or
even-order equations, and of neutral or non-neutral type as well.

Throughout the rest of our investigations, one or several of the following assumptions
will be imposed:

(H)
∞∑

i=


ai

= ∞;
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(H)
n∏

i=

pi = O(n);

(H) zf (z) >  for all z �= ;

(H) f : R→R is a continuous function.

Notice that, by virtue of (), the positivity of the sequence (bn) implies that conditions
(H) and (H) hold also for the function g .

The following definitions and theorems will be used in the sequel.
We say that the sequence (un) is asymptotically constant if this sequence has a nonzero

limit, and we say that it is an asymptotically zero sequence if the limit of this sequence
equals zero. We say that the sequence (un) is asymptotically equivalent to (vn) if ( un

vn
) has a

nonzero limit. In the present paper, we study the three types of solutions: asymptotically
zero solutions, asymptotically constant solutions, and unbounded solutions. It is called a
trichotomy of nonoscillatory solutions.

Definition  (Uniformly Cauchy subset []) A subset S of the Banach space B is said to
be uniformly Cauchy if for every ε >  there exists a positive integer N such that |xi –xj| < ε

whenever i, j > N for any (xn) ∈ B.

Lemma  (Arzela-Ascoli’s theorem []) Each bounded and uniformly Cauchy subset of
B is relatively compact.

Theorem  (Schauder theorem []) Let S be a nonempty, closed, and convex subset of
a Banach space B and T : S → S be a continuous mapping such that T(S) is a relatively
compact subset of B. Then T has at least one fixed point in S.

The following theorem of Stolz-Cesáro is a discrete analog of l’Hospital’s rule.

Theorem  (Stolz-Cesáro theorem []) Let (un), (vn) be two sequences of real numbers.
Assume that (vn) is a strictly monotone and divergent sequence, and the following limit
exists: limn→∞ �un

�vn
= g . Then

lim
n→∞

un

vn
= g.

We introduce the following notation:

Qn =
n–∑

k=


bk

k–∑

j=


aj

=
n–∑

j=


aj

n–∑

k=j+


bk

. ()

2 Existence of nonoscillatory solutions
In this section, we obtain necessary and sufficient conditions for the existence of nonoscil-
latory solutions to () with certain asymptotic properties. We start with the following lem-
mas.
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Lemma  Condition (H) implies that

∞∑

i=


bi

= ∞, ()

where (bn) is defined by ().

Proof Condition (H) implies that
∏n

i= pi ≤ Cn, where C is a positive constant. It follows
that

∏n
i= p–

i ≥ 
Cn . Using the notation of (), the above inequality takes the form 

bn
≥


Cn . Since the series

∑∞
n=


n diverges, condition () is satisfied. �

Remark  Condition (H) and () imply that

lim
n→∞ Qn = ∞, ()

where (Qn) is defined by ().

Lemma  Assume that (H), (H), and the following conditions:

(H∗) zg(z) >  for all z �= ;

(H∗) g : R →R is a continuous function;

are satisfied. Let (yn) be an eventually positive solution to (). Then exactly one of the fol-
lowing statements holds:

(i) yn > , �yn > , �(bn�yn) > ,

(ii) yn > , �yn < , �(bn�yn) > 

for all sufficiently large n.

Proof The proof is obvious and hence omitted. �

Lemma  Assume that (H)-(H) hold. If (xn) is an eventually positive solution to (), then
exactly one of the following cases holds:

(I)

lim
n→∞

xn

bn
= ;

(II) there exist positive constants C, C, and a positive integer n such that

Cbn ≤ xn ≤ CbnQn+ for n ≥ n, ()

where (bn) is defined by () and (Qn) is defined by ().

Proof Let (yn) be an eventually positive solution to (). Then, by Lemma , we have two
possibilities:

lim
n→∞ yn = ,

or there exists a positive constant C such that yn ≥ C.
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If limn→∞ yn = , then condition (I) is satisfied.
Assuming that yn+ ≥ C and using substitution (), we obtain

xn

n∏

i=

p–
i ≥ C.

Thus, inequality Cbn ≤ xn from () is satisfied.
Next, we prove that in case (II) the inequality xn ≤ CbnQn+ is also satisfied. Since (H)

is satisfied for the function g , from the point of view of (), there exists n such that

�
(
an�(bn�yn)

)
<  for n ≥ n. ()

By Lemma , if (H) and (H) are satisfied, then there exists n ≥ n such that

 ≤
n–∑

i=n


bi

≤
n–∑

i=n


bi

i–∑

j=n


aj

for n ≥ n. ()

Summing inequality () from n to n – , we get

�(bn�yn) <
A

an
for n ≥ n,

where A = an�(bn�yn ) is a positive constant. Summing again, we have

bn�yn < A

n–∑

i=n


ai

+ A,

where A = max{, bn�yn} is a nonnegative constant. Therefore

�yn <
A

bn

n–∑

i=n


ai

+
A

bn
for n ≥ n + .

Summing again, we have

yn < A

n–∑

j=n


bj

j–∑

l=n


ai

+ A

n–∑

j=n


bj

+ A, n ≥ n + , ()

where A = yn is a positive constant.
By (), it is easy to see that each term on the right side of inequality () is less than

max{A, A, A}
n–∑

j=n


bj

j–∑

i=n


ai

.

From (), we get

yn ≤ C

n–∑

j=n


bj

j–∑

i=n


ai

for sufficiently large n,
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where C =  max{A, A, A}. Hence

yn+ ≤ C

n∑

j=n


bj

j–∑

i=n


ai

for sufficiently large n.

Using the substitutions () and (), we obtain

xn

bn
≤ C

n∑

j=n


bj

j–∑

i=n


ai

.

By (), we see that the required inequality is proved. �

As a consequence of Lemma  we obtain the following result.

Lemma  Assume that (H), (H), (H∗), and (H∗) hold. If (yn) is an eventually positive
solution to (), then

(I)

lim
n→∞ yn = ;

(II) there exist positive constants C and C such that

C ≤ yn ≤ CQn for large n.

Before we derive a necessary and sufficient condition for the existence of a solution to
() that is asymptotically equivalent to (bn), the following theorem needs to be proved.

Theorem  Let conditions (H), (H), (H∗), (H∗) be satisfied. Then a necessary condi-
tion for () to have an asymptotically constant solution is that

∞∑

i=


bi

∞∑

j=i


aj

∞∑

k=j

q∗
k < ∞. ()

Proof Let (yn) be an asymptotically constant solution to (). Then (yn) is a nonoscillatory
sequence. Without loss of generality, we assume that (yn) is an eventually positive solution.
By Lemma  it is of type (i) or type (ii). Each solution to type (i) tends to infinity. This
implies that (yn) is of type (ii).

Let us denote

lim
n→∞ yn = α > . ()

Then there exist positive constants C and C such that

C ≤ yn+–τ ≤ C for large n.

By (H∗) and (H∗), we see that there exists a positive constant

C = min
z∈[C,C]

{
g(z)

}
,
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which means that, for yn+–τ ∈ [C, C], we have

C ≤ g(yn+–τ ) for large n. ()

Let n be so large that () and (ii) are satisfied for n ≥ n. Next, we rewrite () in the form

–�
(
ai�(bi�yi)

)
= q∗

i g(yi+–τ ).

Multiplying the above equation by
∑i

j=n

aj

∑j
k=n


bk

and summing both sides of it from
i = n –  to n –  we obtain

–
n–∑

i=n–

( i∑

j=n


aj

j∑

k=n


bk

)

�
(
ai�(bi�yi)

)

=
n–∑

i=n–

q∗
i g(yi+–τ )

( i∑

j=n


aj

j∑

k=n


bk

)

. ()

By (), the following inequality holds:

n–∑

i=n–

q∗
i g(yi+–τ )

( i–∑

j=n


aj

j∑

k=n


bk

)

≥ C

n–∑

i=n–

q∗
i

( i∑

j=n


aj

j∑

k=n


bk

)

. ()

By the formula
∑n–

i=N yi�xi = xiyi|n–
i=N –

∑n–
i=N xi+�yi, we get

–
n–∑

i=n–

( i∑

j=n


aj

j∑

k=n


bk

)
(
�

(
ai�(bi�yi)

))

= –

( i∑

j=n


aj

j∑

k=n


bk

)
(
ai�(bi�yi)

)|n–
i=n–

+
n–∑

i=n–

(


ai+

i+∑

k=N


bk

)
(
ai+�(bi+�yi+)

)

<
n–∑

i=n–

( i+∑

k=n


bk

)
(
�(bi+�yi+)

)

=

( i+∑

k=n


bk

)

(bi+�yi+)|n–
i=n– –

n–∑

i=n–

(


bi+

)
(bi+�yi+)

< –
n–∑

i=n–

�yi+ = yn – yn+,

which tends to yn – α where α is defined by (). Since (yn) is a decreasing sequence we
have yn – α > . Set C = yn – α. From the above, (), and () we get

C

∞∑

i=n–

q∗
i

( i∑

j=n


aj

j∑

k=n


bk

)

< C.
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This means that

∞∑

i=

q∗
i

i∑

j=


aj

j∑

k=


bk

< ∞.

The above condition is equivalent to condition (). �

The next example shows that the condition () in Theorem  is not a necessary condi-
tion for () to have an asymptotically zero solution.

Example  Let us consider the following equation of the form ():

�yn +



yn = .

Here an ≡ , bn ≡ , q∗
n ≡ 

 , g(x) = x, and τ = . It is easy to see that condition () is not
satisfied, but the above equation has an asymptotically zero solution yn = 

n .

Sufficient conditions, under which, for every real constant, there exists a solution to the
higher-order difference equation with quasi-differences convergent to this constant are
obtained in Theorem . in []. Hence, for (), we have the following.

Theorem  Assume that (H), (H), (H∗), (H∗) hold and condition () is satisfied. Then
for every c ∈R there exists a solution x to () such that limn→∞ x(n) = c.

Corollary  Let conditions (H), (H), (H∗), (H∗) be satisfied. Then the condition

∞∑

i=


bi

∞∑

j=i


aj

∞∑

k=j

q∗
k = ∞ ()

implies that () has no asymptotically constant solution.

Proof This corollary follows directly from Theorem . �

Theorem  If conditions (H)-(H) are satisfied, then a necessary and sufficient condition
for () to have a solution (xn) asymptotically equivalent to the sequence (

∏n
i= pi) is the

condition

∞∑

i=

i∏

l=


pl

∞∑

j=i


aj

∞∑

k=j

qkb∗
k < ∞. ()

Proof Using the notation of (), (), and () in condition () the conclusion of this theo-
rem follows directly from Theorem  and Theorem . �

Remark  Let the assumptions of Theorem  be satisfied. If

lim
n→∞

n∏

i=

pi = ,
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then condition () is a necessary and sufficient condition for () to have an asymptotically
zero solution such that (xn) ∼ (

∏n
i= pi).

As a consequence of Theorem  we get the following result for the Emden-Fowler type
equation

�
(
an�(xn – pnxn–)

)
+ qnxγ

n–τ = , n ∈Nmax{,τ }, ()

where (an), (pn), (qn) are sequences of positive real numbers, τ is a nonnegative integer,
and γ is the ratio of odd positive integers.

Corollary  Let conditions (H) and (H) be satisfied. A necessary and sufficient condition
for () to have a solution (xn) asymptotically equivalent to the sequence (

∏n
i= pi) is the

condition

∞∑

i=

i∏

l=


pl

∞∑

j=i


aj

∞∑

k=j

qk

k–τ∏

l=

pγ

l < ∞. ()

Example  Consider the following equation:

�

((√
n + 

n
+

√
n + 
n + 

)
�

(
xn –

√
n + 

n
xn–

))

+


n(n + )(n + )(
√

n + ) x
n– = , n ∈N. ()

Here an =
√

n+
n +

√
n+
n+ , pn =

√
n+

n , qn = 
n(n+)(n+)(

√
n+) , γ = , and τ = . All assumptions

of Corollary  are satisfied. Hence () has at least one solution asymptotically equivalent
to the sequence (

∏n
i= pi) =

√
n + . In fact xn =

√
n +  +  is such solution.

Example  Consider the following equation:

�(xn – xn–) +


 
 n+ 

 (n– + ) 


x


n– = , n ∈N. ()

Here an ≡ , pn ≡ , qn = 



 n+ 

 (n–+)



, γ = 
 , and τ = . It is easy to check that all as-

sumptions of Corollary  are satisfied. Hence, () has at least one solution asymptotically
equivalent to the sequence (

∏n
i= pi) ≡ . This means that () has an asymptotically con-

stant solution. In fact xn =  + 
n+ is one such solution.

Finally, we present a necessary and sufficient condition for the existence of an asymp-
totically (Qn) solution to (). We start with the following theorem.

Theorem  If conditions (H), (H), (H∗), (H∗) are satisfied and

g is a monotonic function, ()

then a necessary and sufficient condition for () to have a solution (yn) satisfying

lim
n→∞

yn

Qn
�=  ()
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is that

∞∑

i=

q∗
i
∣∣g(CQi+–τ )

∣∣ < ∞, ()

where C is some nonzero constant.

Proof Necessity. Let (yn) be a nonoscillatory solution to () which satisfies (). Without
loss of generality, we may assume that

lim
n→∞

yn

Qn
= β > .

Then there exist positive constants C and C such that

CQn ≤ yn ≤ CQn for large n.

Hence

CQn+–τ ≤ yn+–τ ≤ CQn+–τ for large n, say n ≥ n.

Thus, by (), we get

g(yn+–τ ) ≥ g(CQn+–τ ), ()

where C = C if the function g is nondecreasing and C = C if the function g is nonin-
creasing.

By (H∗), we see that g(CQn+–τ ) is positive. On the other hand, summing () from
n = n + τ to n – , by Lemma , we obtain

 < an�(bn�yn) = an�(bn�yn ) –
n–∑

i=n

q∗
i g(yi+–τ ) for n ≥ n.

This implies that

n–∑

i=n

q∗
i g(yi+–τ ) ≤ an�(bn�yn ) < ∞.

So, by (), we have

∞∑

i=n

q∗
i g(CQn+–τ ) < ∞.

Sufficiency. Let C be a given positive constant. Set

In =
[

C


Qn, CQn

]
.
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From the above, () and (H∗), there exists a maximum of the function g on interval In,
which we denote as the point CQn with C = C

 if the function g is nonincreasing and
C = C if the function g is nondecreasing. Thus we get

g(yn) ≤ g(CQn) for n ∈ In. ()

Assume that () holds for C = C. Then there exists a positive integer n such that

∞∑

i=n

q∗
i g(CQn+–τ ) ≤ C


. ()

Consider the Banach space B of all real sequences y = (yn) such that

‖y‖ = sup
n≥n

|yn|
Q

n
< ∞,

where n = n + τ – . We have

S =
{

(yn) ∈ B : yn =
C


for n < n, yn ∈ In for n ≥ n

}
.

It is easy to see that S is a bounded, convex and closed subset of B.
Now we define an operator T : S → B in the following way:

(Ty)n =

{ C
 Qn for n < n,

C
 Qn +

∑n–
k=n


bk

∑k–
j=n


aj

∑∞
i=j q∗

i g(yi+–τ ) for n ≥ n. ()

First we show that T(S) ⊂ S. Indeed, if y ∈ S it is clear from () that (Ty)n ≥ C
 Qn for

n ≥ . Furthermore, by (), we have

(Ty)n <
C


Qn +

n–∑

k=n


bk

k–∑

j=n


aj

∞∑

i=j

q∗
i g(yi+–τ )

<
C


Qn +

n–∑

k=


bk

k–∑

j=


aj

∞∑

i=n

q∗
i g(yi+–τ )

≤ C


Qn + Qn

∞∑

i=n

q∗
i g(CQn+–τ )

≤ C


Qn + Qn

C


= CQn.

Thus T maps S into itself.
Next we prove that T is continuous. Let (y(m)) be a sequence in S such that y(m) → y as

m → ∞. Because S is closed, y ∈ S. Now, we get

∣
∣(Ty(m))

n – (Ty)n
∣
∣ ≤ Qn

∞∑

i=n

q∗
i
∣
∣g

(
y(m)

i+–τ

)
– g(yi+–τ )

∣
∣,
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and therefore

∥
∥(

Ty(m))
n – (Ty)n

∥
∥ ≤ 

Qn

∞∑

i=n

q∗
i
∣
∣g

(
y(m)

i+–τ

)
– g(yi+–τ )

∣
∣.

By (), (), and (), it implies that

∥
∥(

Ty(m))
n – (Ty)n

∥
∥ ≤ 

Qn

∞∑

i=n

q∗
i g(CQi+–τ ) → .

We see that T is a continuous mapping.
Finally, we need to show that T(S) is uniformly Cauchy. To see this, we have to show

that, given any ε > , there exists an integer n such that for m > n > n; we have

∣
∣∣
∣
(Ty)m

Q
m

–
(Ty)n

Q
n

∣
∣∣
∣ < ε

for any y ∈ S. Indeed, we have

∣∣∣
∣
(Ty)m

Q
m

–
(Ty)n

Q
n

∣∣∣
∣ ≤ 

Qn

∞∑

i=

q∗
i g(yi+–τ ) ≤ C

Qn
→ .

Therefore, by Theorem , there exists y ∈ S such that yn = (Ty)n for n ≥ n. It is easy to see
that (yn) is a solution to ().

Furthermore, by Stolz’s theorem (see Theorem ) and (), we have

lim
n→∞

yn

Qn
= lim

n→∞
�yn

�Qn
= lim

n→∞
bn�yn
∑n–

j=

aj

= lim
n→∞

�(bn�yn)
�(

∑n–
j=


aj

)

= lim
n→∞ an�(bn�yn).

Thus

lim
n→∞

yn

Qn
≤ lim

n→∞

(
C


+
∞∑

i=n

q∗
i g(yi+–τ )

)

≤ lim
n→∞

(
C


+
∞∑

i=n

q∗
i g(CQi+–τ )

)

=
C


.

This completes the proof. �

Remark  Note that if the sequences ( 
an

) and ( 
bn

) are both polynomial sequences, then
(Qn) is a polynomial sequence, too.

For example, let 
an

= n and 
bn

= n. Hence (Qn), defined by (), takes the following form:

Qn =
n–∑

k=

k
k–∑

j=

j =



n–∑

k=

(
k – k) =

(n – )


+

(n – )


–

(n – )


–

n – 


.

So, (Qn) is a quartic polynomial.
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Now, let 
an

≡  and 
bn

≡ . This means that an ≡  and bn ≡ . Hence Qn = 
 n – 

 n + 
is a quadratic polynomial. Obviously, by virtue of (), this case holds only if pn ≡ .

Theorem  Let conditions (H)-(H) be satisfied and

f is a monotonic function.

Then a necessary and sufficient condition for () to have a solution (xn) which is asymptot-
ically equivalent to the sequence (Qn+

∏n
i= pi) is the convergence of the series

∞∑

i=

qi

∣
∣∣∣
∣
Cf

(

Qi+–τ

i∏

j=

pj

)∣
∣∣∣
∣
, ()

where C is some nonzero constant.

Proof Using the notation of (), (), and () in condition () the conclusion of this theo-
rem follows directly from Theorem . �

Note that for particular cases of (), if ( 
an

) is a polynomial sequence and pn ≡ , from
Theorem  we get the existence of asymptotically polynomial solutions.

Example  In Example  () is considered. In this equation an ≡  and pn ≡ . All as-
sumptions of Theorem  are satisfied. Hence () has an asymptotically (Qn) solution,
where Qn = 

 n – 
 n + . It means that () has an asymptotically polynomial solution.

Some results concerning asymptotically polynomial solutions to difference equations
can be found, for example, in [–].
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