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Abstract
In this paper, we consider the following two-point boundary value problem for
q-fractional p-Laplace difference equations. New results on the existence and
uniqueness of solutions for q-fractional boundary value problem are obtained. These
results extend the corresponding ones of ordinary differential equations of integer
order. Finally, an example is presented to illustrate the validity and practicability of our
main results.
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1 Introduction
Fractional q-difference (q-fractional difference) equations are regarded as the fractional
analog of q-difference equations. The topic of q-fractional equations has attracted the at-
tention of many researchers. The details of some recent development of the subject can be
found in [–], whereas the background material on q-fractional calculus can be found
in [, ]. The study of boundary value problems of fractional q-difference equations is
in its infancy.

In , Ferreira [] considered the existence of nontrivial solutions to the fractional
q-difference equation

Dα
q,+ x(t) = f

(
t, x(t)

)
,  ≤ t ≤ ,

x() = x() = ,

where  < α ≤  and f : [, ] ×R →R is a nonnegative continuous function.
In , El-Shahed and Al-Askar [] studied the existence of a positive solution for the

boundary value problem of the nonlinear factional q-difference equation

CDα
q,+ x(t) + a(t)f

(
t, x(t)

)
= ,  ≤ t ≤ ,  < α ≤ ,

x() = D
qx() = , γ Dqx() + βD

qx() = .

In , Liang and Zhang [] studied the existence and uniqueness of positive solutions
for the three-point boundary problem of fractional q-differences

CDα
q,+ x(t) + f

(
t, x(t)

)
= ,  ≤ t ≤ ,  < α ≤ ,

© 2015 Mardanov et al. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License
(http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in anymedium, pro-
vided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and
indicate if changes were made.

http://dx.doi.org/10.1186/s13662-015-0532-5
http://crossmark.crossref.org/dialog/?doi=10.1186/s13662-015-0532-5&domain=pdf
mailto:nazim.mahmudov@emu.edu.tr


Mardanov et al. Advances in Difference Equations  (2015) 2015:185 Page 2 of 13

x() = Dqx() = , Dqx() – βDqx(η) = ,

where  < βηα– < .
In , Zhao et al. [] studied the existence results for fractional q-difference equations

with nonlocal q-integral boundary conditions,

Dα
q,+ x(t) + f

(
t, x(t)

)
= ,  ≤ t ≤ ,  < α ≤ ,

x() = , x() = μx(η) = μ

∫ η



(η �q qs)β–

�q(β)
u(s) ds.

For some recent work on q-difference equations with p-Laplacian, we refer the reader
to [–].

In [], Aktuğlu and Özarslan dealt with the following Caputo q-fractional boundary
value problem involving the p-Laplacian operator:

Dq
(
ϕp

(CDα
q x(t)

))
= f

(
t, x(t)

)
,  < t < ,

Dk
qx() = , k = , , . . . , n – , x() = ax(), Dqx() = aDqx(),

where a, a �= , α > , and f ∈ C([, ] × R,R). Under some conditions, the authors ob-
tained the existence and uniqueness of the solution for the above boundary value problem
by using the Banach contraction mapping principle.

In [], Miao and Liang studied the following three-point boundary value problem with
p-Laplacian operator:

CDβ
q
(
ϕp

(CDα
q x(t)

))
= f

(
t, x(t)

)
,  < t < ,  < α < ,

x() = Dqx() = , Dqx() = , Dβ
q u() = ,

where  < βγ α– < . The authors proved the existence and uniqueness of a positive and
nondecreasing solution for the boundary value problems by using a fixed point theorem
in partially ordered sets.

In [], Yang investigated the following fractional q-difference boundary value problem
with p-Laplacian operator:

CDβ
q
(
ϕp

(CDα
q x(t)

))
= f

(
t, x(t)

)
,  < t < ,  < α < ,

x() = x() = , CDα
q x() = CDα

q x() = ,

where  < α,β ≤ . The existence results for the above boundary value problem were ob-
tained by using the upper and lower solutions method associated with the Schauder fixed
point theorem.

Very recently, in [], Yuan and Yang considered a class of four-point boundary value
problems of fractional q-difference equations with p-Laplacian operator

Dβ
q
(
ϕp

(
Dα

q x(t)
))

= f
(
t, x(t)

)
,  < t < ,  < α < ,

x() = , x() = axξ , Dα
q x() = , Dα

q x() = bDα
q x(η),
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where Dβ
q , Dα

q are the fractional q-derivative of the Riemann-Liouville type with  < α,
β ≤ . By applying the upper and lower solutions method associated with the Schauder
fixed point theorem, the existence results of at least one positive solution for the above
fractional q-difference boundary value problem with p-Laplacian operator are established.

However, the theory of boundary value problems for nonlinear q-difference equations
is still in the initial stages and many aspects of this theory need to be explored. To the
best of our knowledge, the theory of boundary value problems for nonlinear q-difference
equations with p-Laplacian is yet to be developed.

Motivated by the previously mentioned works, we will consider the existence of solu-
tions of q-fractional p-Laplacian BVP with two-point boundary conditions. The main dif-
ficulty is that, for p �= , it is impossible for us to find a Green’s function in the equivalent
integral operator since the differential operator Dβ

q,+ϕp(Dα
q,+ ) is nonlinear.

This paper is concerned with the BVP

⎧
⎪⎨

⎪⎩

CDβ

q,+ϕp(CDα
q,+ x)(t) = f (t, x(t)), t ∈ [, ],

x() = γ x(),
CDα

q x() = η CDα
q,+ x(),

()

where ϕp(s) := |s|p–s, p > , ϕ–
p = ϕν , 

p + 
ν

= ,  < α,β ≤ ,  < α + β ≤ ,  < γ ,η < , by
using some known fixed point theorems.

To make this paper self-contained, below we recall some well-known facts on q-calculus
(see [, ] and references therein) and on fractional q-calculus.

In what follows, q is a real number satisfying  < q < . We define the q-derivative of a
real valued function f as

Dqf (t) =
f (t) – f (qt)

( – q)t
, Dqf () = lim

t→
Dqf (t).

Higher order q-derivatives are given by

D
qf (t) = f (t), Dn

qf (t) = DqDn–
q f (t), n ∈N.

The q-integral of a function f defined in the interval [, t] is given by

Iqf (t) =
∫ t


f (s) dqs =

∞∑

n=

t( – q)qnf
(
xqn),

provided the series converges. If  < a < b and f is defined on the interval [, b], then

∫ b

a
f (s) dqs =

∫ b


f (s) dqs –

∫ a


f (s) dqs.

Similarly, we have

I
q f (t) = f (t), In

q f (t) = IqIn–
q f (t), n ∈N.

Observe that the operators Iq and Dq are inverses of each other, in the sense that

DqIqf (t) = f (t), ()
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and if f is continuous at t = , then

IqDqf (t) = f (t) – f ().

In q-calculus, the product rule and integration by parts formula are

Dq(gh)(t) = Dqg(t)h(t) + g(qt)Dqh(t), ()
∫ x


f (t)Dqg(t) dqt =

[
f (t)g(t)

]x
 –

∫ x


Dqf (t)g(qt) dqt. ()

In the limit q →  the above results correspond to their counterparts in standard calculus.
A q-number denoted by [a]q is defined by

[a]q :=
 – qa

 – q
, a ∈R.

The q-shifted factorial is defined as

(a; q) = , (a; q)n =
n–∏

j=

(
 – aqj), n ∈N∪ {∞}.

The q-analog of the (x – y)n is

(x �q y) := ; (x �q y)n :=
n–∏

j=

(
x – yqj), n ∈N, x, y ∈ R,

(x �q y)α := xα

∞∏

j=

x – yqj

x – yqα+j , α ∈R.

The q-gamma function �q(x) is defined as

�q(x) =
( �q q)x–

( – q)x– , y ∈R\{, –, –, . . .},

and it satisfies [x]q�q(x) = �q(x + ).

Definition  Let f be a function defined on [, ]. The fractional q-integral of the
Riemann-Liouville type of order α ≥  is I

q f (t) = f (t) and

Iα
q,+ f (t) :=

∫ t



(t �q qs)α–

�q(α)
f (s) dqs, α > , t ∈ [, ].

The q-fractional integration possesses the semigroup property:

Iβ

q,+ Iα
q,+ f (t) = Iβ+α

q,+ f (t), α,β ∈R
+.

Further,

Iβ

q,+ xσ =
�q(σ + )

�q(β + σ + )
xβ+σ .
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Definition  The Caputo fractional q-derivative of order β >  is defined by

CDβ

q,+ f (t) = I
β�–β

q,+ D
β�
q,+ f (t),

where 
β� is the smallest integer greater than or equal to β .

Next we recall some properties involving Riemann-Liouville q-fractional integral and
Caputo fractional q-derivative ([], Theorem .):

Iβ

q,+
CDβ

q,+ f (t) = f (t) –

β�–∑

k=

tk

�q(k + )
(
Dk

qf
)(

+)
, t ∈ (, a],β > ; ()

CDβ

q,+ Iβ

q,+ f (t) = f (t), t ∈ (, a],β > . ()

The following properties of the p-Laplacian operator will be used in the rest of the pa-
per.

(L) If  < p < , uv > ; ‖u‖,‖v‖ ≥ r > , then

∣
∣ϕp(u) – ϕp(v)

∣
∣ ≤ (p – )rp–|u – v|.

(L) If p > , |u|, |v| ≤ R, then

∣
∣ϕp(u) – ϕp(v)

∣
∣ ≤ (p – )Rp–|u – v|.

Next we present the fixed point theorems that will be used in the proofs of our main
results.

Theorem  (Banach fixed point theorem) Let (X, d) be a complete metric space, and let
� : X → X be a contraction mapping. Then � admits a unique fixed point X.

Theorem  Let E be a Banach space, C a closed, convex subset of E and U ⊂ C an open
subset with  ∈ U . Let F : U → C be a continuous function such that F(U) is contained in
a compact set. Then either

. F has a fixed point in U , or
. there exist u ∈ ∂U and λ ∈ (, ) with u = λF(u).

2 Main results
As mentioned before, we will discuss the existence (and uniqueness) of solutions for the
nonlinear q-fractional p-Laplacian BVP with two-point boundary conditions. In what fol-
lows we assume that  < p < , ν > .

Lemma  Given f ∈ C[, ], the unique solution of

⎧
⎪⎨

⎪⎩

CDβ

q,+ϕp(CDα
q,+ x)(t) = f (t), t ∈ [, ],

x() = γ x(),
CDα

q,+ x() = η CDα
q,+ x(),

()
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is

x(t) =


�q(α)

∫ t


(t �q qs)α–

× ϕν

(


�q(β)

∫ s


(s �q qτ )β–f (τ ) dτ +

ϕp(η)
 – ϕp(η)

Iβ

q,+ f ()
)

dqs

+
γ

 – γ

∫ 


( �q qs)α–

× ϕν

(


�q(β)

∫ s


(s �q qτ )β–f (τ ) dτ +

ϕp(η)
 – ϕp(η)

Iβ

q,+ f ()
)

dqs.

Proof Assume that x(t) satisfies (). Then from () we have

ϕp
(CDα

q,+ x(t)
)

= Iβ

q,+ f (t) + c, c ∈R.

From the boundary condition CDα
q,+ x() = η CDα

q,+ x(), one can see that

ϕp
(CDα

q,+ x()
)

= c, ϕp(η) = |η|p–η,

ϕp
(CDα

q,+ x()
)

= Iβ

q,+ f () + c,

ϕp
(
η CDα

q,+ x()
)

= ϕp(η)Iβ

q,+ f () + cϕp(η),

ϕp(η)Iβ

q,+ f () + cϕp(η) = c,

c =
ϕp(η)

 – ϕp(η)
Iβ

q,+ f ().

Thus

x(t) = Iα
q,+ϕν

(
Iβ

q,+ f (·) + c
)
(t) + c,

which together with the boundary value condition x() = γ x() yields

c = γ
(
Iα

q,+ϕν

(
Iβ

q,+ f () + c
)

+ c
)
,

c =
γ Iα

q,+ϕν(Iβ

q,+ f + c)()
 – γ

.

It follows that

x(t) = Iα
q,+ϕν

(
Iβ

q,+ f +
ϕp(η)

 – ϕp(η)
Iβ

q,+ f ()
)

(t)

+
γ

 – γ
Iα

q,+ϕν

(
Iβ

q,+ f + +
ϕp(η)

 – ϕp(η)
Iβ

q,+ f ()
)

().

The converse is clear. The proof is completed. �

We denote by C[, ] the Banach space of all continuous functions from [, ] to R en-
dowed with a topology of uniform convergence with the norm defined by

‖x‖ := max
{∣∣x(t)

∣∣ :  ≤ t ≤ 
}

.
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We use Lemma  to define an operator � : C[, ] → C[, ] by

(�x)(t) =


�q(α)

∫ t


(t �q qs)α–

× ϕν

(


�q(β)

∫ s


(s �q qτ )β–f (τ ) dτ +

ϕp(η)
 – ϕp(η)

Iβ

q,+ f ()
)

dqs

+
γ

 – γ


�q(α)

∫ 


( �q qs)α–

× ϕν

(


�q(β)

∫ s


(s �q qτ )β–f (τ ) dτ +

ϕp(η)
 – ϕp(η)

Iβ

q,+ f ()
)

dqs. ()

Observe that the problem () has a (unique) solution if and only if the operator equation
�x = y has a (unique) fixed point. In the sequel, we need the following operators:

(�x)(s) = ϕν

(


�q(β)

∫ s


(s �q qτ )β–f

(
τ , x(τ )

)
dτ

+
ϕp(η)

 – ϕp(η)


�q(β)

∫ 


( �q qτ )β–f

(
τ , x(τ )

)
dτ

)
,

(�h)(t) =


�q(α)

∫ t


(t �q qs)α–h(s) dqs

+
γ

 – γ


�q(α)

∫ 


( �q qs)α–h(s) dqs.

It is obvious that

� : C[, ] → C[, ], � : C[, ] → C[, ],

(�x)(t) = (� ◦ �)x(t).

Set

Br :=
{

x ∈ C[, ] : ‖x‖ < r
}

.

To state and prove the existence and uniqueness theorem we impose the following as-
sumptions.

(A) f : [, ] ×R→ R is a continuous function such that

∣∣f (t, x)
∣∣ ≤ a(t), a(t) ∈ C

(
[, ],R+)

,
∣∣f (t, x) – f (t, y)

∣∣ ≤ L|x – y|, t ∈ [, ], x, y ∈R.

(A) The following inequality holds:

� :=
ν – 
 – γ


�ν–

q (β + )�q(α + )


( – ηp–)ν– ‖a‖ν– < .

Lemma  Assume that the assumption (A) holds.
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(i) If ν > , then the operator � satisfies the following conditions:

∣
∣(�x)(t) – (�y)(t)

∣
∣ ≤ (ν – )Rν– 

�q(β + )


 – ηp– ‖x – y‖,

∣
∣(�x)(t)

∣
∣ ≤ Rν–,

where

R :=


�q(β + )


 – ηp– ‖a‖.

(ii) For any x ∈ C[, ] the function (�x)(t) is uniformly continuous on [, ].

Proof (i) Set

M := sup
≤s≤

∣∣f (s, )
∣∣, u(s) := Iβ

q,+ f
(
s, x(s)

)
+

ηp–

 – ηp– Iβ

q,+ f
(
, x()

)
,

v(s) := Iβ

q,+ f
(
s, y(s)

)
+

ηp–

 – ηp– Iβ

q,+ f
(
, y()

)
.

It is clear that

∣
∣u(s)

∣
∣ ≤ ∣

∣Iβ

q,+ f
(
s, x(s)

)∣∣ +
ηp–

 – ηp–

∣
∣Iβ

q,+ f
(
, x()

)∣∣

≤ 
�q(β)

∣
∣∣
∣

∫ s


(s �q qτ )β–f

(
τ , x(τ )

)
∣
∣∣
∣dqτ

+


�q(β)
ηp–

 – ηp–

∣
∣∣
∣

∫ 


( �q qτ )β–f

(
τ , x(τ )

)
∣
∣∣
∣dqτ

≤ 
�q(β)

‖a‖
∫ s


(s �q qτ )β– dqτ

+


�q(β)
ηp–

 – ηp– ‖a‖
∫ 


( �q qτ )β– dqτ

=


�q(β + )


 – ηp– ‖a‖ := R.

It follows that

∣∣(�x)(s)
∣∣ =

∣∣ϕν

(
u(s)

)∣∣ ≤ Rν–

and

∣
∣(�x)(t) – (�y)(t)

∣
∣

=
∣
∣ϕν

(
u(s)

)
– ϕp

(
v(s)

)∣∣

≤ (ν – )Rν–∣∣u(s) – v(s)
∣
∣

≤ (ν – )Rν– 
�q(β)

∣
∣∣
∣

∫ s


(s �q qτ )β–f

(
τ , x(τ )

)
dτ –

∫ s


(s �q qτ )β–f

(
τ , y(τ )

)
dτ

∣
∣∣
∣
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+ (ν – )Rν– 
�q(β)

ηp–

 – ηp–

×
∣
∣∣
∣

∫ 


( �q qτ )β–f

(
τ , x(τ )

)
dτ –

∫ 


( �q qτ )β–f

(
τ , y(τ )

)
dτ

∣
∣∣
∣

≤ (ν – )Rν– 
�q(β + )


 – ηp– ‖x – y‖.

(ii) We have

∣∣(�x)(t) – (�x)(t)
∣∣

=
∣∣ϕν

(
u(t)

)
– ϕp

(
u(t)

)∣∣

≤ (ν – )Rν–∣∣u(t) – u(t)
∣
∣

≤ (ν – )Rν– 
�q(β)

×
∣
∣∣
∣

∫ t


(t �q qτ )β–f

(
τ , x(τ )

)
dτ –

∫ t


(t �q qτ )β–f

(
τ , x(τ )

)
dτ

∣
∣∣
∣

= (ν – )Rν– 
�q(β)

×
∣∣∣
∣t

β


∫ 


( �q qs)β–f

(
ts, x(ts)

)
ds – tβ



∫ 


( �q qs)β–f

(
ts, x(ts)

)
ds

∣∣∣
∣

≤ (ν – )Rν– 
�q(β)

∣
∣∣
∣
(
tβ
 – tβ


)∫ 


( �q qs)β–f

(
ts, x(ts)

)
ds

∣
∣∣
∣

+ (ν – )Rν– 
�q(β)

∣∣
∣∣t

β


∫ 


( �q qs)β–(f

(
ts, x(ts)

)
– f

(
ts, x(ts)

))
ds

∣∣
∣∣.

It follows that (�x)(t) is uniformly continuous on [, ]. �

The first theorem that we state follows from the Banach fixed point theorem.

Theorem  Under the assumptions (A) and (A) the boundary value problem () has a
unique solution in C[, ].

Proof The idea of the proof is to show that � as defined in () admits a unique fixed
point in C[, ]. For x, y ∈ C[, ] and for each t ∈ [, ], from the definition of � and the
assumptions (A) and (A), we obtain

∣
∣(�x)(t) – (�y)(t)

∣
∣

=
∣
∣(� ◦ �)x(t) – (� ◦ �)y(t)

∣
∣

≤ 
�q(α)

∫ t


(t �q qs)α–∣∣(�x)(s) – (�y)(s)

∣
∣dqs

+
γ

 – γ


�q(α)

∫ 


( �q qs)α–∣∣(�x)(s) – (�y)(s)

∣
∣dqs

≤ 
 – γ


�q(α + )

‖�x – �y‖.
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Consequently, by Lemma  we have

∣∣(�x)(t) – (�y)(t)
∣∣ ≤ ν – 

 – γ


�ν–

q (β + )�q(α + )


( – ηp–)ν– ‖a‖ν–‖x – y‖.

Taking into account that, by our assumption (A), � < , we conclude that the operator
� is a contraction. Therefore, by the Banach contraction principle, the problem () has a
unique solution. This completes the proof of Theorem . �

For our next result, we use the Leray-Schauder alternative to ensure the existence of a
solution for ().

(A) f : [, ] ×R →R is a continuous function and there exist a function
l ∈ C([, ],R+) and nondecreasing functions ψ : R+ →R

+ such that

∣
∣f (s, x)

∣
∣ ≤ l(s)ψ

(|x|), (s, x) ∈ [, ] ×R.

(A) There exists a constant ω >  such that

ω >


 – γ


�ν–

q (β + )�q(α + )


( – ηp–)ν– ‖l‖ν–ψν–(ω).

Theorem  Under conditions (A) and (A), the boundary value problem () has at least
one solution in C[, ].

Proof Consider the operator � : C[, ] → C[, ] defined by (). It is easy to show that �

is continuous. We complete the proof in the following steps.
Step : � maps bounded sets into bounded sets in C[, ].
Indeed, for x ∈ Br from (A) and Lemma  (a(s) = l(s)ψ(r)) we have

∣
∣(�x)(t)

∣
∣ =

∣
∣(� ◦ �)x(t)

∣
∣

≤ 
�q(α)

∫ t


(t �q qs)α–∣∣�x(s)

∣∣dqs

+
γ

 – γ


�q(α)

∫ 


( �q qs)α–∣∣�x(s)

∣
∣dqs

≤ 
 – γ


�q(α + )

‖�x‖

≤ 
 – γ


�q(α + )

Rν–

≤ 
 – γ


�ν–

q (β + )�q(α + )


( – ηp–)ν– ‖l‖ν–ψν–(r)

and the result follows.
Step : � maps bounded sets into equicontinuous sets of C[, ].
Let t, t ∈ [, ] with t < t and x ∈ Br . Then we can write

∣∣(�x)(t) – (�x)(t)
∣∣

=
∣
∣∣
∣


�q(α)

∫ t


(t �q qs)α–(�x)(s) dqs –


�q(α)

∫ t


(t �q qs)α–(�x)(s) dqs

∣
∣∣
∣
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=


�q(α)

∣
∣∣
∣t

α


∫ 


( �q qτ )α–(�x)(tτ ) dqτ – tα



∫ 


( �q qτ )α–(�x)(tτ ) dqτ

∣
∣∣
∣

≤ 
�q(α)

∣∣
∣∣
(
tα
 – tα


)∫ 


( �q qτ )α–(�x)(tτ ) dqτ

∣∣
∣∣

+


�q(α)
tα


∫ 


( �q qτ )α–∣∣(�x)(tτ ) – (�x)(tτ )

∣
∣dqτ := J .

By Lemma  the function (�x)(t) is uniformly continuous on [, ] and uniformly
bounded on Br , it follows that limt→t J = . Thus �(Br) is equicontinuous. It follows from
the Arzelá-Ascoli theorem that the operator � : C[, ] → C[, ] is compact.

Step : � has a fixed point in Bω .
Let x be a solution and x = λ�x,  < λ < . Using the arguments of the proof of bound-

edness of � , for  ≤ t ≤  we can write

∣
∣x(t)

∣
∣ =

∣
∣λ(�x)(t)

∣
∣

≤ 
 – γ


�ν–

q (β + )�q(α + )


( – ηp–)ν– ‖l‖ν–ψν–(‖x‖).

Consequently, in view of (A), there exists ω >  such that ‖x‖ �= ω. We observe that the
operator � : Bω → C[, ] is continuous and completely continuous. From the choice of
Bω , there is no x ∈ ∂Bω such that x = λ�x for some λ ∈ (, ). Consequently, we can apply
a nonlinear Leray-Schauder type alternative, to conclude that � has a fixed point x ∈ Bω

which is a solution of the problem (). This completes the proof of Theorem . �

3 Examples
Example  Consider a two-point boundary value problem of nonlinear fractional q-dif-
ference equations given by

CD/
q,+ϕ/

(CD/
q,+ x(t)

)
= tan– x(t) + sin t,

x() = γ x(), ()
CD/

q,+ x() = η CD/
q,+ x().

Corresponding to (), we get β = /, p = /, ν = , α = /, and f (t, x) = tan– x + sin t,
a(t) =  + π/. It is obvious that

∣
∣f (t, x)

∣
∣ ≤  +

π


,

∣
∣f (t, x) – f (t, y)

∣
∣ ≤ |x – y|.

We choose γ , η such that

� =
ν – 
 – γ


�ν–

q (β + )�q(α + )

(
 +

∣∣
∣∣

ϕp(η)
 – ϕp(η)

∣∣
∣∣

)ν–

‖a‖ν–

=


 – γ


�

q(π/)�q(/)

(


 – η/

)(
 +

π



)
< .

The above facts imply that the BVP () satisfies all assumptions of Theorem  and has a
unique solution.



Mardanov et al. Advances in Difference Equations  (2015) 2015:185 Page 12 of 13

Example  Consider () with a different right-hand side f (t, x):

CD/
q,+ϕ/

(CD/
q,+ x(t)

)
=

cos(t + )√
 + t

(∣∣x(t)
∣∣ +

|x(t)|
 + |x(t)| +




)
,

x() = γ x(), ()
CD/

q,+ x() = η CD/
q,+ x().

Choosing

f (t, x) =
cos(t + )√

 + t

(
|x| +

|x|
 + |x| +




)

one can see that

∣
∣f (t, x)

∣
∣ ≤ l(t)ψ

(|x|), (t, x) ∈ [, ] ×R,

with

l(t) =
cos(t + )√

 + t
, ψ

(|x|) = |x| +



.

We may choose γ , η such that

 < ρ :=


 – γ


�ν–

q (β + )�q(α + )


( – ηp–)ν– ‖l‖ν– <



.

Using this one can see that there is ω >  such that

ω > ρ

(
ω +




)

.

Thus all the conditions of Theorem  are satisfied. Hence there exists a solution of the
problem ().
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