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Abstract
We investigate perturbed second order Euler type half-linear differential equations
with periodic coefficients and with the perturbations given by the finite sums of
periodic functions which do not need to have any common period. Our main interest
is to study the oscillatory properties of the equations in the case when the
coefficients give exactly the critical oscillation constant. We prove that any of the
considered equations is non-oscillatory in this case.
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1 Introduction
The aim of this paper is to contribute to the rapidly developing theory of conditionally
oscillatory half-linear differential equations. Our paper is organized to three sections. In
this section, we recall the notion of the so-called conditional oscillation and we give a his-
torical background of the topic. In the second section, the reader can find the considered
equations together with the description of the used methods (the Riccati and Prüfer trans-
formations). These methods lead to the equation for the Prüfer angle which is the main
tool in our investigation. Finally, in the last section, we state lemmas, results, corollaries,
and examples.

Let us begin with the concept of the conditional oscillation for half-linear differential
equations. We consider the equation

[
r(t)�

(
x′)]′ + γ c(t)�(x) = , �(x) = |x|p– sgn x, p > , (.)

where γ is a given real constant, coefficients r and c are continuous functions, and r is
positive. We say that (.) is conditionally oscillatory if there exists a positive constant �

such that (.) is oscillatory for γ > � and non-oscillatory for γ < �. Such a constant � is
called the critical (oscillation) constant of (.).

Now we collect the milestones in the theory of the conditional oscillation with respect
to the topic of our paper. It appears that appropriate half-linear equations for the study of
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the conditional oscillation are the Euler type equations, i.e., the equations written in the
form

[
r(t)�

(
x′)]′ +

γ s(t)
tp �(x) = .

The conditional oscillation (as well as many other areas in the oscillation theory) of
half-linear equations originates from the oscillation theory of linear differential equations.
The first result about the conditional oscillation of the considered differential equations
was obtained by Kneser in [], where the oscillation constant � = / was found for the
equation

x′′ +
γ

t x = . (.)

More than  years later, in [, ], the above result concerning (.) was extended for the
linear equations

[
r(t)x′]′ +

γ s(t)
t x =  (.)

with positive α-periodic coefficients r, s, where the critical constant is

� =
α



(∫ α



dτ

r(τ )

)–(∫ α


s(τ ) dτ

)–

. (.)

Next, in [], it was proved that (.) is non-oscillatory in the critical case γ = �. For other
related results, we refer to [–].

In the field of half-linear equations, the basic critical constant

� =
(

p – 
p

)p

(.)

for the equation

[
�

(
x′)]′ +

γ

tp �(x) = 

comes from [] (see also []). Then, in [–], the conditional oscillation was proved for
more general equations of the form

[
r(t)�

(
x′)]′ +

γ s(t)
tp �(x) = . (.)

Especially, the critical constant of (.) with positive α-periodic functions r, s was identi-
fied as (cf. (.), (.))

� =
(

α(p – )
p

)p(∫ α


r


–p (τ ) dτ

)–p(∫ α


s(τ ) dτ

)–

(.)

in []. For the literature and an overview of the theory concerning half-linear (differential)
equations, see [, ].



Hasil and Veselý Advances in Difference Equations  (2015) 2015:190 Page 3 of 17

Let us turn our attention to the perturbed Euler type equations. The linear case of such
equations with periodic coefficients is studied in [, ]. The half-linear case is treated in
[], where the equations

[
r(t)�

(
x′)]′ +

[
γ s(t) +

μd(t)
log t

]
�(x)

tp =  (.)

are analyzed for positive α-periodic coefficients r, s, and d. There it is proved that, in the
critical case γ = � (see (.)), (.) is oscillatory for

μ > � :=
αp



(
p – 

p

)p–(∫ α


r


–p (τ ) dτ

)–p(∫ α


d(τ ) dτ

)–

and non-oscillatory for μ < �. For further generalizations, we refer to [–] (see also
[]).

In this paper, we are interested in the case when the perturbation is also in the differential
term and both of the perturbations are sums of periodic functions. In contrast with the
situation common in the literature, the functions in the perturbations do not need to have
any common period and can change sign. We prove that all considered equations are non-
oscillatory in the critical case. According to the best of our knowledge, this result is new
also in the linear case (i.e., for p = ).

Concerning the conditional oscillation of Euler type linear and half-linear equations,
several results are known in the discrete case as well. We point out at least papers [–]
for difference equations and [, ] for dynamic equations on time scales. Note that, in
the critical case, any of the discrete (and the time scale) counterparts of the above men-
tioned results is not known even for equations with periodic coefficients.

2 Preliminaries
This section is devoted to the description of the considered equations, the correspond-
ing Riccati equations, and to the modified Prüfer angle which is the main method in our
processes. We also mention basic definitions and observations which will be essentially
applied later.

Throughout the paper, let p >  be arbitrarily given. We use the standard notation
Ra := [a,∞) and the symbol q denotes the number conjugated with p (i.e., p + q = pq).
We consider the Euler type half-linear equations expressed as

[
R– p

q (t)�
(
x′)]′ + S(t)

�(x)
tp = , �(x) = |x|p– sgn x, (.)

where R, S : Re → R (e stands for the base of the natural logarithm log) are continuous
functions such that R is positive and bounded and S is bounded. Note that the power
–p/q in the differential term does not mean any loss of generality (see also []).

Our main objective is to give a non-oscillation criterion for the half-linear differential
equations in the form

[(
r(t) +

r(t)
log t

)– p
q
�

(
x′)

]′
+

(
s(t) +

s(t)
log t

)
�(x)

tp = , (.)
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where r, r, s, s : Ra → R, a ≥ e, are continuous functions such that r is positive and
α-periodic, s is α-periodic, and

r(t) =
n∑

i=

Ri(t), s(t) =
n∑

i=

Si(t), t ≥ a, (.)

for arbitrarily given periodic continuous functions Ri and Si with periods αi and βi, re-
spectively. Of course, we can assume that all considered periods α, αi, βi are positive and
that some of functions Ri, Si are identically zero.

At this place, we recall the definition of mean values for continuous functions as a tool
that helps us to identify the critical case for studied equations. Let a continuous function
f : Ra → R be such that the limit

M(f ) := lim
t→∞


t

∫ b+t

b
f (s) ds

is finite and exists uniformly with respect to b ∈Ra. The number M(f ) is called the mean
value of f . It is seen that functions r, s given in (.) have mean values

M(r) =
n∑

i=

M(Ri), M(s) =
n∑

i=

M(Si). (.)

Concerning the presented results, we will assume that M(r), M(s) ≥ .
In fact, we study oscillatory properties of the equation

[(
r(t) +

∑m
i= Ri(t)
log t

)– p
q
�

(
x′)

]′
+

(
s(t) +

∑n
i= Si(t)
log t

)
�(x)

tp =  (.)

with periodic coefficients R, . . . , Rm, S, . . . , Sn onRa at infinity (i.e., value a is large enough)
when

∑m
i= M(Ri) ≥ ,

∑n
i= M(Si) ≥ . For simplicity, we will consider (.) only in the

critical case (see the below given Theorem . and [, –]) given by

[
M(r)

] p
q M(s) =


αp

(∫ a+α

a
r(τ ) dτ

) p
q
(∫ a+α

a
s(τ ) dτ

)
= q–p, (.)

M(s)
[
M(r)

] p
q +

p
qp+ M(r)

[
M(r)

]– =
q–p


, (.)

i.e.,

lim
t→∞

[

tp

(∫ a+t

a
s(τ ) dτ

)(∫ a+t

a
r(τ ) dτ

) p
q

+
p
∫ a+t

a r(τ ) dτ

qp+
∫ a+t

a r(τ ) dτ

]
=

q–p


.

Then (see the below given Theorem .), we formulate the general result about the oscil-
lation and non-oscillation of (.).

To study (.), we will consider the equation

[(
M(r) +

M(r)
log t

+


log t

)– p
q
�

(
x′)

]′
+

(
M(s) +

M(s)
log t

+


log t

)
�(x)

tp =  (.)
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with constant coefficients and we will also use the notations

r+
 := max

{
r(t); t ∈Ra

}
, r+

 := sup
{∣∣r(t)

∣
∣; t ∈ Ra

}
,

s+
 := max

{∣∣s(t)
∣
∣; t ∈Ra

}
, s+

 := sup
{∣∣s(t)

∣
∣; t ∈Ra

}
,

(.)

and

R+
i := max

{∣∣Ri(t)
∣∣; t ∈Ra

}
, S+

i := max
{∣∣Si(t)

∣∣; t ∈Ra
}

(.)

for each i.
As we have already mentioned above, the main method used in this paper is the modi-

fied Prüfer angle. To clarify this method, we need some basic properties of the half-linear
trigonometric functions. We denote

πp :=
π

p sin π
p

(.)

and consider the initial value problem

[
�

(
x′)]′ + (p – )�(x) = , x() = , x′() = . (.)

The odd πp-periodic extension of the solution of (.) is called the half-linear sine func-
tion and is usually denoted by sinp. The half-linear cosine function is defined as the deriva-
tive of the half-linear sine function and it is denoted by cosp. The needed properties of
the half-linear trigonometric functions for our purpose are the validity of the half-linear
Pythagorean identity

| sinp y|p + | cosp y|p = , y ∈R, (.)

and the boundedness of these functions given by (see (.))

| cosp y|p ≤ ,
∣
∣�(cosp y) sinp y

∣
∣ ≤ , | sinp y|p ≤ , y ∈ R.

For other properties, we refer, e.g., to [], Section ...
To introduce the notion of the modified half-linear Prüfer angle, we consider the concept

of the Riccati equation. Using the transformation

w(t) = R– p
q (t)�

(
x′(t)
x(t)

)
, (.)

where x is a non-trivial solution of (.), we directly obtain the so-called Riccati equation

w′ +
S(t)
tp + (p – )R(t)|w|q =  (.)

associated to (.).
Hence, we can introduce the modified half-linear Prüfer transformation as follows:

x(t) = ρ(t) sinp ϕ(t), x′(t) =
R(t)ρ(t)

t
cosp ϕ(t). (.)
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Our aim is to obtain an equation for the Prüfer angle ϕ. Therefore, we sketch its derivation
at this place. For more details, see []. Let us consider a solution w of (.). Using (.)
and (.), we have

v := tp–w = �

(
cosp ϕ

sinp ϕ

)
(.)

which, together with the fact that sinp is a solution of the initial value problem in (.),
leads to

v′ = ( – p)
[

 +
∣
∣∣∣
cosp ϕ

sinp ϕ

∣
∣∣∣

p]
ϕ′. (.)

Now we derive v′ using (.) and (.). We obtain

v′ =
[
tp–w

]′ = (p – )tp–w + tp–w′

=
p – 

t

[
v –

S(t)
p – 

– R(t)
∣∣
∣∣
cosp ϕ

sinp ϕ

∣∣
∣∣

p]
. (.)

Finally, using (.) and comparing (.) and (.), we have

( – p)
[

 +
∣
∣∣∣
cosp ϕ

sinp ϕ

∣
∣∣∣

p]
ϕ′ =

p – 
t

[
�

(
cosp ϕ

sinp ϕ

)
–

S(t)
p – 

– R(t)
∣
∣∣∣
cosp ϕ

sinp ϕ

∣
∣∣∣

p]

which gives (consider the Pythagorean identity (.)) the required equation

ϕ′(t) =

t

[
R(t)

∣∣cosp ϕ(t)
∣∣p – �

(
cosp ϕ(t)

)
sinp ϕ(t) + S(t)

| sinp ϕ(t)|p
p – 

]
(.)

associated to (.).
In particular, the Prüfer angle ϕ associated to (.) via (.) satisfies the equation

ϕ′(t) =

t

[(
r(t) +

r(t)
log t

)∣
∣cosp ϕ(t)

∣
∣p

– �
(
cosp ϕ(t)

)
sinp ϕ(t) +

(
s(t) +

s(t)
log t

) | sinp ϕ(t)|p
p – 

]
. (.)

The equation for the Prüfer angle ϕ associated to (.) is (see again (.))

ϕ′(t) =

t

[(
M(r) +

M(r)
log t

+


log t

)∣
∣cosp ϕ(t)

∣
∣p

– �
(
cosp ϕ(t)

)
sinp ϕ(t) +

(
M(s) +

M(s)
log t

+


log t

) | sinp ϕ(t)|p
p – 

]
. (.)

For any solution ϕ of (.) on Ra, we define the function ψ : Ra →R by the formula

ψ(t) :=
∫ t+

√
t

t

ϕ(τ )√
τ

dτ , t ≥ a. (.)
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This auxiliary function ψ will play an important role in the rest of our paper. Note that
(.) and (.) are special cases of (.). Thus, the above function ψ is introduced also
for solutions of (.) and (.).

3 Results
Now we complete necessary statements which we will use to prove the main result. We
begin with two known lemmas.

Lemma . If ϕ is a solution of (.) on Ra, then the function ψ : Ra → R defined by
(.) satisfies

∣∣ϕ(t + s) – ψ(t)
∣∣ ≤ C log t√

t
, t ≥ a, s ∈ [,

√
t],

for some C > .

Proof See [], Lemma .. �

Lemma . Let ϕ be a solution of (.) on Ra. Then there exist A, c >  such that the
function ψ : Ra →R defined in (.) satisfies the inequality

∣∣
∣∣ψ

′(t) –

t

[ | cosp ψ(t)|p√
t

∫ t+
√

t

t
R(τ ) dτ – �

(
cosp ψ(t)

)
sinp ψ(t)

+
| sinp ψ(t)|p
(p – )

√
t

∫ t+
√

t

t
S(τ ) dτ

]∣∣∣
∣ ≤ A

t+c

for all t > a.

Proof The lemma comes directly from [], Lemma .. �

Next, we will need the following results.

Lemma . Let ϕ be a solution of (.) on Ra. Then the function ψ : Ra → R defined in
(.) satisfies the inequality

ψ ′(t) ≥ 
t

[(
M(r) +

M(r)
log t

)∣
∣cosp ψ(t)

∣
∣p – �

(
cosp ψ(t)

)
sinp ψ(t)

+
(

M(s) +
M(s)
log t

) | sinp ψ(t)|p
p – 

+


log t

]
(.)

for all sufficiently large t.

Proof From Lemma ., we have

ψ ′(t) ≥ 
t

[ | cosp ψ(t)|p√
t

∫ t+
√

t

t

(
M(r) +

M(r)
log τ

+


log τ

)
dτ

– �
(
cosp ψ(t)

)
sinp ψ(t)
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+
| sinp ψ(t)|p
(p – )

√
t

∫ t+
√

t

t

(
M(s) +

M(s)
log τ

+


log τ

)
dτ –

A
tc

]

≥ 
t

[∣
∣cosp ψ(t)

∣
∣p

(
M(r) +

M(r)
log(t +

√
t)

+


log(t +
√

t)

)

– �
(
cosp ψ(t)

)
sinp ψ(t)

+
| sinp ψ(t)|p

p – 

(
M(s) +

M(s)
log(t +

√
t)

+


log(t +
√

t)

)
–

A
tc

]

for all t > a. Via the mean value theorem, one can directly compute

 ≤ lim sup
t→∞

log t
[
log(t +

√
t) – log t

] ≤ lim
t→∞ log t

 log t
t

√
t = . (.)

Thus, we have

∣
∣∣∣

M(r)
log(t +

√
t)

–
M(r)
log t

∣
∣∣∣ ≤ M(r)

log(t +
√

t) – log t
log t

≤ 
log t

, (.)

∣∣
∣∣

M(s)
log(t +

√
t)

–
M(s)
log t

∣∣
∣∣ ≤ M(s)

log(t +
√

t) – log t
log t

≤ p – 
log t

(.)

for all large t. From (.), it is seen that

max
{| sinp y|p, | cosp y|p} ≥ 


, y ∈R.

Hence, for large t, we have

| cosp y|p
log(t +

√
t)

+
| sinp y|p

(p – ) log(t +
√

t)
>


log t

, y ∈R. (.)

Altogether, using (.), (.), and (.), we obtain

ψ ′(t) ≥ 
t

[(
M(r) +

M(r)
log t

)∣∣cosp ψ(t)
∣∣p – �

(
cosp ψ(t)

)
sinp ψ(t)

+
(

M(s) +
M(s)
log t

) | sinp ψ(t)|p
p – 

+


log t
–


log t

–
A
tc

]

for large t, which gives (.). �

Lemma . Let ϕ be a solution of (.) on Ra. Then there exists B >  such that the
function ψ : Ra →R defined by (.) satisfies the inequality

ψ ′(t) ≤ 
t

[(
M(r) +

M(r)
log t

)∣
∣cosp ψ(t)

∣
∣p – �

(
cosp ψ(t)

)
sinp ψ(t)

+
(

M(s) +
M(s)
log t

) | sinp ψ(t)|p
p – 

+
B

log t

]

for all sufficiently large t.
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Proof From Lemma ., we know that the inequality

ψ ′(t) ≤ 
t

[ | cosp ψ(t)|p√
t

∫ t+
√

t

t

(
r(τ ) +

r(τ )
log τ

)
dτ – �

(
cosp ψ(t)

)
sinp ψ(t)

+
| sinp ψ(t)|p
(p – )

√
t

∫ t+
√

t

t

(
s(τ ) +

s(τ )
log τ

)
dτ +

A
tc

]

holds for all t > a. It means that it suffices to prove

∣∣
∣∣

√
t

∫ t+
√

t

t
r(τ ) dτ – M(r)

∣∣
∣∣ ≤ A√

t
,

∣∣
∣∣

√
t

∫ t+
√

t

t
s(τ ) dτ – M(s)

∣∣
∣∣ ≤ B√

t
, (.)

∣
∣∣
∣

√
t

∫ t+
√

t

t

r(τ )
log τ

dτ –
M(r)
log t

∣
∣∣
∣ ≤ A

log t
, (.)

and

∣∣
∣∣

√
t

∫ t+
√

t

t

s(τ )
log τ

dτ –
M(s)
log t

∣∣
∣∣ ≤ B

log t
(.)

for some A, B, A, B > , and for all large t.
Let f : R→R be an arbitrary continuous periodic function with period δ > . Let a given

number t be sufficiently large and l ∈N be such that
√

t ∈ [lδ, (l + )δ). We have

∣∣
∣∣

√
t

∫ t+
√

t

t
f (τ ) dτ – M(f )

∣∣
∣∣

≤
∣
∣∣
∣

√
t

∫ t+
√

t

t
f (τ ) dτ –

√
t

∫ t+lδ

t
f (τ ) dτ

∣
∣∣
∣ +

∣
∣∣
∣

√
t

∫ t+lδ

t
f (τ ) dτ – M(f )

∣
∣∣
∣

≤
∣∣
∣∣

√
t

∫ t+
√

t

t+lδ
f (τ ) dτ

∣∣
∣∣ +

∣∣
∣∣

√
t

∫ t+lδ

t
f (τ ) dτ –


lδ

∫ t+lδ

t
f (τ ) dτ

∣∣
∣∣

≤ δ maxt∈[,δ) |f (t)|√
t

+
(


lδ

–
√
t

)
lδM(f ) ≤ δ maxt∈[,δ) |f (t)| + δM(f )√

t
. (.)

Thus, (.) is valid for (see (.))

A = α
[
r+

 + M(r)
]
, B = α

[
s+

 + M(s)
]
.

Since (.) is true for any periodic continuous function f , we obtain (see (.), (.), (.))

∣
∣∣
∣

√
t

∫ t+
√

t

t
r(τ ) dτ – M(r)

∣
∣∣
∣

=

∣∣
∣∣
∣

√
t

∫ t+
√

t

t

n∑

i=

Ri(τ ) dτ – M

( n∑

i=

Ri

)∣∣
∣∣
∣

=

∣
∣∣
∣∣

n∑

i=

(
√
t

∫ t+
√

t

t
Ri(τ ) dτ – M(Ri)

)∣
∣∣
∣∣
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≤
n∑

i=

∣∣
∣∣

√
t

∫ t+
√

t

t
Ri(τ ) dτ – M(Ri)

∣∣
∣∣

≤
n∑

i=

αiR+
i + αiM(Ri)√

t
. (.)

Analogously,

∣∣
∣∣

√
t

∫ t+
√

t

t
s(τ ) dτ – M(s)

∣∣
∣∣ ≤

n∑

i=

βiS+
i + βiM(Si)√

t
. (.)

Using (.), we have

∣∣∣
∣

√
t

∫ t+
√

t

t

r(τ )
log τ

dτ –
M(r)
log t

∣∣∣
∣

≤
∣∣∣
∣

√
t

∫ t+
√

t

t

r(τ )
log τ

dτ –
√
t

∫ t+
√

t

t

r(τ )
log t

dτ

∣∣∣
∣ +

∣∣∣
∣

√
t

∫ t+
√

t

t

r(τ )
log t

dτ –
M(r)
log t

∣∣∣
∣

≤ r+
√
t

∫ t+
√

t

t

∣∣∣
∣


log τ

–


log t

∣∣∣
∣dτ +


log t

∣∣∣
∣

√
t

∫ t+
√

t

t
r(τ ) dτ – M(r)

∣∣∣
∣

≤ r+


[
log(t +

√
t) – log t

log t

]
+


log t

n∑

i=

αiR+
i + αiM(Ri)√

t
(.)

for large t. Considering (.), we obtain (.) from (.). Analogously, one can obtain (.)
applying (.). Hence, the proof is complete. �

Lemma . Equation (.) is non-oscillatory.

Proof The non-oscillation of (.) follows from [], Theorem . (see also []) and the
Sturmian half-linear comparison theorem (see, e.g., [], Theorem ..). More precisely,
from [], Theorem . it follows that the equation

[(
M(r) +

M(r)
log t

+
ε

[log t · log(log t)]

)– p
q
�

(
x′)

]′

+
(

M(s) +
M(s)
log t

+
ε

[log t · log(log t)]

)
�(x)

tp =  (.)

is non-oscillatory for any sufficiently small ε >  (it is described in []) and (.) is a
non-oscillatory majorant of (.). �

Lemma . For a solution ϕ of (.) on Ra, we have

lim sup
t→∞

ϕ(t) = lim sup
t→∞

ψ(t) < ∞, (.)

where ψ is introduced in (.).

Proof Lemma . says that any considered solution ϕ is bounded from above. Indeed, it
suffices to consider (.) and (.) when sinp ϕ(t) = . For details, we can refer, e.g., to
[], Section .., [, , ]. Finally, the equality in (.) follows from Lemma .. �
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Now we can prove the announced result.

Theorem . Equation (.) with (.) and (.) is non-oscillatory.

Proof We recall that the non-oscillation of (.) is equivalent to the boundedness of a
solution ϕ of (.) on Ra (see again each one of papers [, ] or []). In addition, a
solution ϕ of (.) on Ra is bounded if and only if lim supt→∞ ϕ(t) < ∞. It is seen from
the right-hand side of (.) when sinp ϕ(t) = .

Let sufficiently large T > a be given. Let us consider an arbitrary solution ϕ of (.) on
RT and the corresponding function ψ : RT →R given by (.). Lemma . ensures

ψ ′(t) ≤ 
t

[(
M(r) +

M(r)
log t

)∣∣cosp ψ(t)
∣∣p – �

(
cosp ψ(t)

)
sinp ψ(t)

+
(

M(s) +
M(s)
log t

) | sinp ψ(t)|p
p – 

+
B

log t

]
, t > T .

Thus, we have

ψ ′(t) <

t

[(
M(r) +

M(r)
log t

)∣∣cosp ψ(t)
∣∣p – �

(
cosp ψ(t)

)
sinp ψ(t)

+
(

M(s) +
M(s)
log t

) | sinp ψ(t)|p
p – 

+


log t

]
, t > T , (.)

because T can be chosen arbitrarily.
We consider the solution ϕ̃ of (.) given by the initial condition (see (.))

ϕ̃(T) = max
{
ϕ(T +

√
t); t ∈ [, T]

}
+ πp (.)

and the corresponding function ψ̃ given by (.). Considering the form of (.) and
(.), one can show that

ψ(T) < ψ̃(T). (.)

Lemma . says that (.) is valid for ϕ̃ and ψ̃ , i.e., we have

lim sup
t→∞

ϕ̃(t) = lim sup
t→∞

ψ̃(t) < ∞. (.)

Lemma . gives

ψ̃ ′(t) ≥ 
t

[(
M(r) +

M(r)
log t

)∣
∣cosp ψ̃(t)

∣
∣p – �

(
cosp ψ̃(t)

)
sinp ψ̃(t)

+
(

M(s) +
M(s)
log t

) | sinp ψ̃(t)|p
p – 

+


log t

]
, t > T . (.)

Considering (.), (.), (.), and (.), we obtain

lim sup
t→∞

ψ(t) ≤ lim sup
t→∞

ψ̃(t) < ∞.
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Indeed, it suffices to consider the case when ψ(t) = ψ̃(t) for any t > T . Using Lemma .,
we know that ϕ is bounded from above which implies the non-oscillation of (.). �

To illustrate our results, we mention examples. We remark that all given examples are
not generally solvable using any previously known non-oscillation criteria.

Example  Immediately, Theorem . gives the non-oscillation of several equations. For
example, the equations

[(
 +

sin t
p

+
q + sin(

√
t)

p log t

)– p
q
�

(
x′)

]′
+

(
q–p + sin(t)

)�(x)
tp = ,

[(
 + arctan(sin t)

)– p
q �

(
x′)]′ + q–p

(
 +

πq| sin t|
 log t

)
�(x)

tp = 

are non-oscillatory.

Theorem . implies new results in many special cases. We obtain a new result even
for linear equations with constant and periodic coefficients which is formulated as the
corollary below.

Corollary . Let f , g be periodic and continuous functions such that M(f ), M(g) ≥  and
M(f ) + M(g) = . The equation

[(
 +

f (t)
log t

)–

x′
]′

+


t

(
 +

g(t)
log t

)
x =  (.)

is non-oscillatory.

Example  Let a ∈ (, ) and �,σ >  be arbitrary. For the linear equations

[
x′

 + (a + sin� t)/log t

]′
+

 + ( – a + sinσ t)/ log t
t x = ,

[
x′

 + (a + sin� t)/log t

]′
+

 + ( – a + cosσ t)/ log t
t x = ,

[
x′

 + (a + cos� t)/log t

]′
+

 + ( – a + sinσ t)/ log t
t x = ,

[
x′

 + (a + cos� t)/log t

]′
+

 + ( – a + cosσ t)/ log t
t x = ,

we can apply Corollary .. Thus, the above equations are non-oscillatory.

Now we mention two relevant results.

Theorem . Let c : Ra →R be a continuous function, for which mean value M(c–q) exists
and for which

 < inf
t∈Ra

c(t) ≤ sup
t∈Ra

c(t) < ∞,
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and let d : Ra → R be a continuous function having mean value M(d). Let us consider the
equation

[
c(t)�

(
x′)]′ +

d(t)
tp �(x) =  (.)

and denote

� := q–p[M
(
c–q)]–p.

The following statements hold.
(i) Equation (.) is oscillatory if M(d) > �.

(ii) Equation (.) is non-oscillatory if M(d) < �.

Proof See [], Theorem . �

Theorem . Let c be a positive α-periodic continuous function, let d be an α-periodic
continuous function, and let c, d : Ra → R be arbitrary continuous functions for which
mean values M(c), M(|c|), M(d), M(|d|) exist. Let us consider the equation

[(
c(t) +

c(t)
log t

)– p
q
�

(
x′)

]′
+

(
d(t) +

d(t)
log t

)
�(x)

tp =  (.)

and denote

� := qp–M(d)
[
M(c)

] p
q + q–pM(c)

[
M(c)

]–.

Let

c(t) +
c(t)
log t

> , t ≥ a, qpM(d)
[
M(c)

] p
q = .

The following statements hold.
(i) Equation (.) is oscillatory if � > .

(ii) Equation (.) is non-oscillatory if � < .

Proof See [], Theorem ., where it suffices to put n = . �

Combining Theorems . and ., we obtain the following one.

Theorem . The following statements hold.
(i) If [M(r)]

p
q M(s) > q–p, then (.) is oscillatory.

(ii) If [M(r)]
p
q M(s) < q–p, then (.) is non-oscillatory.

(iii) If [M(r)]
p
q M(s) = q–p and

M(s)
[
M(r)

] p
q +

p
qp+ M(r)

[
M(r)

]– >
q–p


,

then (.) is oscillatory.
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(iv) If [M(r)]
p
q M(s) = q–p and

M(s)
[
M(r)

] p
q +

p
qp+ M(r)

[
M(r)

]– <
q–p


,

then (.) is non-oscillatory.

Proof The theorem follows immediately from Theorem . (parts (i), (ii)) and Theo-
rem . (parts (iii), (iv)). It suffices to consider the identities p –  = p/q, ( – q)(–p/q) = .

�

Applying Theorem ., we can improve Theorem . and Corollary . into the following
more convenient forms. We give illustrating examples as well.

Theorem . Equation (.) is non-oscillatory if and only if

lim
t→∞

[
t

αp

(∫ a+α

a
r(τ ) dτ

) p
q
(∫ a+α

a
s(τ ) dτ

)
– q–pt

+

tp

(∫ a+t

a

n∑

i=

Si(τ ) dτ

)(∫ a+t

a
r(τ ) dτ

) p
q

+
p
∫ a+t

a
∑m

i= Ri(τ ) dτ

qp+
∫ a+t

a r(τ ) dτ

]

≤ q–p


.

Proof It suffices to consider Theorems . and .. �

Example  Let a, b, c, d > , a, a, a, b 	= , p = /. Let us consider the half-linear equa-
tion

[


√
a + c(cos(at) sin(at) + cos(at) + sin(at))/log t

· x′
√|x′|

]′

+
(

b + d
[

cos(bt) sin(bt)
log t

]) x
√

t|x| = . (.)

Theorem . guarantees the oscillation of (.) if ab > /; and its non-oscillation if
ab < /. We put ab = /. Since

M
(
cos(αt) sin(αt)

)
= M

(
cos(αt)

)
= M

(
sin(αt)

)
= , α 	= ,

and

M
([

cos(αt) sin(αt)
]) =




, α 	= ,

we obtain the oscillation of (.) for ad > / and the non-oscillation in the opposite
case ad ≤ /.

Corollary . Let f , g be periodic and continuous functions such that M(f ), M(g) ≥ .
Equation (.) is oscillatory if and only if M(f ) + M(g) > .
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Example  Using Corollary . (and Theorem .), we can generalize Example . For any
a, a, b, b > , and �,σ > , the linear equations

[
x′

a + (b + sin� t)/log t

]′
+

a + (b + sinσ t)/ log t
t x = ,

[
x′

a + (b + sin� t)/log t

]′
+

a + (b + cosσ t)/ log t
t x = ,

[
x′

a + (b + cos� t)/log t

]′
+

a + (b + sinσ t)/ log t
t x = ,

[
x′

a + (b + cos� t)/log t

]′
+

a + (b + cosσ t)/ log t
t x = 

are oscillatory for aa >  and non-oscillatory for aa < . In the limiting case aa = ,
one can easily rewrite the considered equations in the form of (.), where M(f ) = b/a

and M(g) = ab. Therefore, in the case aa = , the above equations are oscillatory if and
only if b > a( – ab).

If we know that an equation is conditionally oscillatory, then we can use it as a testing
equation for many other equations. For example, using the Sturmian comparison theorem
(see [], Theorem ..), we can proceed for perturbed Euler type half-linear equations
as follows. Let us consider

[
r

– p
q

 (t)�
(
x′)]′ + s(t)

�(x)
tp + g(t)�(x) =  (.)

and

[[
r(t) + f (t)

]– p
q �

(
x′)]′ + s(t)

�(x)
tp = , (.)

where f , g are arbitrary continuous functions and r, s are α-periodic continuous func-
tions such that r, f are positive and M(r) = , M(s) = q–p.

Equation (.) is non-oscillatory if there exist βi-periodic continuous functions Si, i ∈
{, . . . , n}, such that

M

( n∑

i=

Si

)

= ,
n∑

i=

Si(t) > , t ∈R, (.)

and

lim sup
t→∞

g(t)tp log t
∑n

i= Si(t)
<

q–p


. (.)

Equation (.) is oscillatory if the functions Si satisfy (.) and

lim inf
t→∞

g(t)tp log t
∑n

i= Si(t)
>

q–p


. (.)
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Indeed, from inequality (.), we obtain ε >  with the property that

g(t) <
(

q–p


– ε

)∑n
i= Si(t)

tp log t

for all sufficiently large t. Thus, it suffices to use Theorem . and the Sturmian comparison
theorem. Analogously, we get the statement concerning inequality (.).

Similarly, (.) is non-oscillatory if there exist αi-periodic continuous functions Ri for
i ∈ {, . . . , m} such that

M

( m∑

i=

Ri

)

= ,
m∑

i=

Ri(t) > , t ∈R, (.)

and we have

lim sup
t→∞

f (t) log t
∑m

i= Ri(t)
<

q

p
.

On the other hand, if the functions Ri satisfy (.) and

lim inf
t→∞

f (t) log t
∑m

i= Ri(t)
>

q

p
,

then (.) is oscillatory.
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