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Abstract
This paper concerns the boundary value problem of a class of fractional differential
equations involving the Riemann-Liouville fractional derivative with nonlocal integral
boundary conditions. By using the properties of the Green’s function and the
monotone iteration technique, one shows the existence of positive solutions and
constructs two successively iterative sequences to approximate the solutions,
especially numerically simulates the conclusion by an example.

Keywords: fractional differential equation; integral boundary condition; iterative
sequence

1 Introduction
In this paper, we investigate a class of nonlinear fractional differential equations with non-
local integral boundary value conditions of the form

⎧
⎪⎨

⎪⎩

Dα
+u(t) + f (t, u(t)) = ,  < t < ,

u() = u′() = u′′() = ,
u() = λIβ

+u(η) = λ
∫ η


(η–s)β–u(s)

�(β) ds,
(.)

where  < α ≤ ,  < η ≤ , λ, β > ,  ≤ λ�(α)ηα+β–

�(α+β) < , and Dα
+ is the standard Riemann-

Liouville differential operator.
It is well known that fractional order models are more realistic and practical than the

classical integer order models (see, e.g., [–]). As a result, many mathematicians show
strong interest in fractional differential equations and many wonderful results have been
obtained. The techniques of nonlinear analysis, as the main method to deal with the prob-
lems of nonlinear fractional differential equations, plays an essential role in the research
of this field, such as establishing the existence and the uniqueness or the multiplicity of
solutions to nonlinear fractional differential equations (see, e.g., [–] and the references
therein). Among these techniques, the monotone iteration scheme is an interesting and
effective way to investigate the existence of solutions to nonlinear fractional problems (see,
e.g., [–]).

Ahmad and Nieto [] studied the existence and the uniqueness of solutions to the fol-
lowing nonlinear fractional integro-differential equation:

{
Dα

+u(t) = f (t, u(t), (φu)(t), (ψu)(t)), t ∈ [, T],
Dα–

+ u(+) = , Dα–
+ u(+) = νIα–

+ u(η),
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where  < α ≤ ,  < η < T , ν is a constant, f : [, T] ×R×R×R→ R is continuous, and

(φx)(t) =
∫ t


γ (t, s)x(s) ds, (ψx)(t) =

∫ t


δ(t, s)x(s) ds

with γ and δ being continuous functions on [, T] × [, T]. In [], Ahmad and Agar-
wal considered the existence and the uniqueness of solutions to a class of Caputo type
fractional differential equation of order q ∈ (n – , n] with slit-strips type boundary condi-
tions

⎧
⎪⎨

⎪⎩

cDqu(t) = f (t, u(t)),  < t < ,
u() = u′() = · · · = u(n–)() = ,
u(η) = a

∫ ξ

 u(s) ds + b
∫ 
ζ

u(s) ds,

where  < ξ < η < ζ < , a and b are positive constants. In [], the authors considered a
nonlinear fractional boundary value problem on a half-line given by

{
Dα

+u(t) + f (t, u(t), Dα–
+ u(t)) = , t > ,

u() = , Dα–
+ u(∞) = βu(ξ ),

where  < α ≤ , ξ > . The positive extremal solutions and iterative schemes for approx-
imating them were obtained by applying a monotone iterative method.

Zhang et al. [] studied the existence of positive solutions to the following fractional
boundary value problem:

⎧
⎪⎨

⎪⎩

Dα
+u(t) + h(t)f (t, u(t)) = ,  < t < ,

u() = u′() = u′′() = ,
u() = λ

∫ η

 u(s) ds,
(.)

where  < α ≤ ,  < η ≤ ,  ≤ ληα

α
< . They got some results as regards the existence of

positive solutions by using the properties of the Green’s function, the boundedness of u,
and the fixed point index theory. Jiang et al. [] studied the fractional boundary value
problem (.); h(t)f (u(t)) and λ

∫ η

 u(s) ds were replaced by f (t, u(t)) and
∫ η

 u(s) ds, respec-
tively. The authors obtained the existence of positive solutions to the problem (.) by
using the monotone iterative method.

Motivated by the works mentioned above, in this article we study the differential equa-
tions (.) by using the fixed point theorem for increasing operators on the order intervals.
We not only obtain the existence of positive solutions, but we also establish two iterative
sequences to approximate the solutions. It should be pointed out that our method is dif-
ferent from that in []. The first term of the iterative sequence may be taken as a constant
function or a simple function.

This paper is arranged as follows. Some lemmas needed below are listed in Section .
The existence of the positive solutions to the problem (.) is proved and two successively
iterative sequences to approximate the solutions are constructed in Section . Finally, in
Section , an example is given to numerically simulate our conclusion.
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2 Some lemmas
Lemma . Assume that y(t) ∈ C([, ]), then the solution to boundary value problem

⎧
⎪⎨

⎪⎩

Dα
+u(t) + y(t) = ,  < t < ,

u() = u′() = u′′() = ,
u() = λIβ

+u(η) = λ
∫ η


(η–s)β–u(s)

�(β) ds,
(.)

can be given by

u(t) =
∫ 


G(t, s)y(s) ds,

where

G(t, s) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

–P�(α+β)(t–s)α–+�(α+β)(–s)α–tα––�(α)λ(η–s)α+β–tα–

P�(α)�(α+β) ,  ≤ s ≤ t ≤ , s ≤ η,
�(α+β)(–s)α–tα––�(α)λ(η–s)α+β–tα–

P�(α)�(α+β) ,  ≤ t ≤ s ≤ η ≤ ,
–P�(α+β)(t–s)α–+�(α+β)(–s)α–tα–

P�(α)�(α+β) ,  ≤ η ≤ s ≤ t ≤ ,
�(α+β)(–s)α–tα–

P�(α)�(α+β) ,  ≤ t ≤ s ≤ , s ≥ η,

with P =  – λ�(α)
�(α+β)η

α+β–. G(t, s) is called the Green’s function of boundary value problem
(.). Obviously, G(t, s) is a continuous function on [, ] × [, ].

Proof It is shown in [, ] that problem (.) is equivalent to the following integral equa-
tion:

u(t) = –Iα
+ y(t) + Ctα– + Ctα– + Ctα– + Ctα–.

By u() = u′() = u′′() = , we obtain

u(t) = –Iα
+ y(t) + Ctα–.

It follows from u() = λIβ
+u(η), combined with

u() = –Iα
+ y() + C

and

λIβ
+u(η) = –λIα+β

+ y(η) + λC
�(α)

�(α + β)
ηα+β–,

that

C =


 – λ�(α)
�(α+β)η

α+β–

{
Iα

+ y() – λIα+β

+ y(η)
}

=:

P

{
Iα

+ y() – λIα+β

+ y(η)
}

.

Therefore, the solution to problem (.) is

u(t) = –


�(α)

∫ t


(t – s)α–y(s) ds +

tα–

P�(α)

∫ 


( – s)α–y(s) ds

–
λtα–

P�(α + β)

∫ η


(η – s)α+β–y(s) ds.
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For t ≤ η, one has

u(t) = –


�(α)

∫ t


(t – s)α–y(s) ds +

tα–

P�(α)

{∫ t


+

∫ η

t
+

∫ 

η

}

( – s)α–y(s) ds

–
λtα–

P�(α + β)

{∫ t


+

∫ η

t

}

(η – s)α+β–y(s) ds

=
∫ t



–P�(α + β)(t – s)α– + �(α + β)( – s)α–tα– – �(α)λ(η – s)α+β–tα–

P�(α)�(α + β)
y(s) ds

+
∫ η

t

�(α + β)( – s)α–tα– – �(α)λ(η – s)α+β–tα–

P�(α)�(α + β)
y(s) ds

+
∫ 

η

�(α + β)( – s)α–tα–

P�(α)�(α + β)
y(s) ds

=
∫ 


G(t, s)y(s) ds.

For t ≥ η, one has

u(t) = –


�(α)

{∫ η


+

∫ t

η

}

(t – s)α–y(s) ds +
tα–

P�(α)

{∫ η


+

∫ t

η

+
∫ 

t

}

( – s)α–y(s) ds

–
λtα–

P�(α + β)

∫ η


(η – s)α+β–y(s) ds

=
∫ η



–P�(α + β)(t – s)α– + �(α + β)( – s)α–tα– – �(α)λ(η – s)α+β–tα–

P�(α)�(α + β)
y(s) ds

+
∫ t

η

–P�(α + β)(t – s)α– + �(α + β)( – s)α–tα–

P�(α)�(α + β)
y(s) ds

+
∫ 

t

�(α + β)( – s)α–tα–

P�(α)�(α + β)
y(s) ds

=
∫ 


G(t, s)y(s) ds.

The proof is finished. �

A careful analysis of the Green’s function allows us to deduce the following results.

Lemma . The Green’s function G(t, s) has the following properties:
() G(t, s) > , ∀t, s ∈ (, );
() G(, s) > , ∀s ∈ (, );
() G(t, s) ≤ (–s)α–tα–

P�(α) , ∀t, s ∈ (, );

() G(t, s) ≥ λtα–ηα+β–

P�(α+β) {( – s)α– – ( – s)α+β–}, ∀t, s ∈ (, ).

Proof Assume at first that  ≤ s ≤ t ≤ , s ≤ η,  ≤ λ�(α)ηα+β–

�(α+β) < , then we have

P�(α)�(α + β)G(t, s)

= –P�(α + β)(t – s)α– + �(α + β)( – s)α–tα– – �(α)λ(η – s)α+β–tα–
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= λ�(α)ηα+β–(t – s)α– +
{

–�(α + β)(t – s)α– + �(α + β)( – s)α–tα–}

– �(α)λ(η – s)α+β–tα–

≥ λ�(α)ηα+β–(t – s)α– – λ�(α)ηα+β–(t – s)α–

+ λ�(α)ηα+β–( – s)α–tα– – �(α)λ(η – s)α+β–tα–

= λ�(α)ηα+β–( – s)α–tα– – �(α)λ(η – s)α+β–tα–

≥ λ�(α)ηα+β–tα–{( – s)α– – ( – s)α+β–}

and

P�(α)�(α + β)G(t, s)

= –P�(α + β)(t – s)α– + �(α + β)( – s)α–tα– – �(α)λ(η – s)α+β–tα–

= λ�(α)ηα+β–(t – s)α– – �(α + β)(t – s)α– + �(α + β)( – s)α–tα–

– �(α)λ(η – s)α+β–tα–

≤ �(α + β)( – s)α–tα– – �(α)λ(η – s)α+β–tα–

≤ �(α + β)( – s)α–tα–.

For  ≤ t ≤ s ≤ η ≤ , we have

P�(α)�(α + β)G(t, s)

= �(α + β)( – s)α–tα– – �(α)λ(η – s)α+β–tα–

≥ λ�(α)ηα+β–( – s)α–tα– – �(α)λ(η – s)α+β–tα–

≥ λ�(α)ηα+β–tα–{( – s)α– – ( – s)α+β–}

and

P�(α)�(α + β)G(t, s)

= �(α + β)( – s)α–tα– – �(α)λ(η – s)α+β–tα–

≤ �(α + β)( – s)α–tα–.

For  ≤ η ≤ s ≤ t ≤ , we have

P�(α)�(α + β)G(t, s)

= –P�(α + β)(t – s)α– + �(α + β)( – s)α–tα–

= λ�(α)ηα+β–(t – s)α– – �(α + β)(t – s)α– + �(α + β)( – s)α–tα–

≥ λ�(α)ηα+β–(t – s)α– – λ�(α)ηα+β–(t – s)α–

+ λ�(α)ηα+β–( – s)α–tα–

≥ λ�(α)ηα+β–tα–{( – s)α– – ( – s)α+β–}
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and

P�(α)�(α + β)G(t, s)

= –P�(α + β)(t – s)α– + �(α + β)( – s)α–tα–

= λ�(α)ηα+β–(t – s)α– – �(α + β)(t – s)α– + �(α + β)( – s)α–tα–

≤ �(α + β)( – s)α–tα–.

For  ≤ t ≤ s ≤ , s ≥ η, we have

P�(α)�(α + β)G(t, s)

= �(α + β)( – s)α–tα–

≥ λ�(α)ηα+β–tα–{( – s)α– – ( – s)α+β–}.

From the above, (), () are complete. Clearly, () and () are true. The proof is com-
pleted. �

From Lemma ., we illustrate the following lemma without proof.

Lemma . The Green’s function G(t, s) satisfies

tα–w(s) ≤ G(t, s) ≤ tα–w(s), ∀t, s ∈ (, ),

where

w(s) =
ληα+β–

P�(α + β)
{

( – s)α– – ( – s)α+β–}, w(s) =
( – s)α–

P�(α)
.

3 Main results
Let Banach space E = C([, ]) be endowed with the norm ‖u‖∞ = max≤t≤ |u(t)|. A closed
cone K ⊂ E by K = {u ∈ E : u � }, where  is the zero function, and the cone K is normal.

Set Ka = {u ∈ K : ‖u‖ ≤ a}. Define the operator T : Ka → E as

(Tu)(t) =
∫ 


G(t, s)f

(
s, u(s)

)
ds, t ∈ [, ]. (.)

It is not hard to see that the fixed points of operator T coincide with the solutions to the
problem (.).

Lemma . ([]) Let X be a Banach space ordered by a normal cone K ⊂ X. Assume
that T : [x, x] → X is a completely continuous increasing operator such that x � Tx,
x � Tx. Then T has a minimal fixed point x∗ and a maximal fixed point x∗ such that
x � x∗ � x∗ � x. Moreover, x∗ = limn→∞ Tnx, x∗ = limn→∞ Tnx, where {Tnx}∞n= is an
increasing sequence, {Tnx}∞n= is a decreasing sequence.

For the forthcoming analysis, we need the following assumptions:
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(A) f : [, ] × [, a] → [,∞) is continuous and f (t, ) �≡ ;
(A) there exists a nonnegative function j ∈ C[, ] ⊆ L[, ] such that |f (t, u)| ≤ j(t),

(t, u) ∈ [, ] × [, a];
(A) f (t, u) ≤ f (t, u), t ∈ [, ],  ≤ u ≤ u ≤ a.

Lemma . Assume that (A)-(A) hold, then the operator T defined in (.) is a completely
continuous increasing operator.

Proof Firstly, the operator T is continuous in view of the continuity of functions f (t, u(t))
and G(t, s).

Secondly, we will show that T(Ka) is bounded. Let

L =
∫ 


j(t) dt < ∞.

Then, for any u ∈ Ka, we have

∥
∥Tu(t)

∥
∥ = max

t∈[,]

∫ 


G(t, s)

∣
∣f

(
s, u(s)

)∣
∣ds ≤ L

P�(α)
, t ∈ [, ].

For each u ∈ Ka, one can show that

∣
∣(Tu)′(t)

∣
∣ =

∣
∣
∣
∣–


�(α – )

∫ t


(t – s)α–f

(
s, u(s)

)
ds

+
tα–

P�(α – )

∫ 


( – s)α–f

(
s, u(s)

)
ds

–
(α – )λtα–

P�(α + β)

∫ η


(η – s)α+β–f

(
s, u(s)

)
ds

∣
∣
∣
∣

≤ 
�(α – )

∫ t


(t – s)α–∣∣f

(
s, u(s)

)∣
∣ds

+
tα–

P�(α – )

∫ 


( – s)α–∣∣f

(
s, u(s)

)∣
∣ds

+
(α – )λtα–

P�(α + β)

∫ η


(η – s)α+β–∣∣f

(
s, u(s)

)∣
∣ds

≤ L
�(α – )

+
L

P�(α – )
+

(α – )λL
P�(α + β)

:= L.

Therefore, for any t, t ∈ [, ] with t < t, we have

∣
∣(Tu)(t) – (Tu)(t)

∣
∣ ≤

∫ t

t

∣
∣(Tu)′(s)

∣
∣ds ≤ L(t – t),

that is, T(Ka) is equicontinuous.
The Arzela-Ascoli theorem implies that the operator T : Ka → E is completely contin-

uous.
The assumption (A) provides that the operator T : Ka → E is an increasing operator.
The proof is completed. �
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Theorem . Assume that (A)-(A) hold, and
∫ 


w(s)f (s, ) ds ≥ ,

∫ 


w(s)f

(
s, asα–)ds ≤ a, s ∈ [, ],

then the problem (.) has two positive solutions u∗, v∗ satisfying  < u∗ ≤ v∗ ≤ a. Moreover,
there exist a non-decreasing iterative sequence {un}∞n= with

lim
n→∞ un = u∗, u = , un+ = Tun, n = , , , . . . ,

and a non-increasing iterative sequence {vn}∞n= with

lim
n→∞ vn = v∗, v = atα–, vn+ = Tvn, n = , , , . . . , t ∈ [, ].

Proof We only need to prove that Tu ≥ u and Tv ≤ v:

Tu =
∫ 


G(t, s)f (s, u) ds =

∫ 


G(t, s)f (s, ) ds

≥ tα–
∫ 


w(s)f (s, ) ds ≥  = u, t ∈ [, ],

implies u ≥ u, which combined with (A) gives

u = Tu =
∫ 


G(t, s)f (s, u) ds

≥
∫ 


G(t, s)f (s, u) ds = u, t ∈ [, ].

Similarly, we have

v = Tv =
∫ 


G(t, s)f (s, v) ds

≤ tα–
∫ 


w(s)f

(
s, atα–)ds

≤ atα– = v, t ∈ [, ].

By induction, one can prove that un+ ≥ un and vn+ ≤ un.
Lemma . shows that the operator T has a minimal fixed point u∗ and a maximal fixed

point v∗ satisfying  ≤ u∗ ≤ v∗ ≤ a.
From (A), we find that the zero function is not the solution to the problem (.). Thus

 < u∗ ≤ v∗ ≤ a. The proof is finished. �

Remark . The iterative sequences in Theorem . starting with a simple function is
helpful for calculating.

4 An example
Consider the following boundary value problem:

{
D/

+ u(t) + t + . + sin t
 – u(t) + u(t) = ,  < t < ,

u() = u′() = u′′() = , u() = I/
+ u( 

 ),
(.)
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where α = 
 , β = 

 , η = 
 , λ = ,  ≤ λ�(α)ηα+β–

�(α+β) ≈ . < , and

f
(
t, u(t)

)
= t +

sin t


+ . – u(t) + u(t).

We take a =  for calculating conveniently. Then the assumptions (A)-(A) hold, and

f (t, ) = . + t +
sin t


,

f
(
t, t/) =

sin t


+ t/ + ..

A simple calculation leads to

w(s) = .
{

( – s)/ – ( – s)},

w(s) = .( – s)/,
∫ 


w(s)f (s, ) ds ≈ . ≥ ,

∫ 


w(s)f

(
s, asα–)ds ≈ . ≤ .

By Theorem ., the problem (.) has two nontrivial solutions u∗, v∗ with  < u∗ ≤ v∗ ≤
, and the two monotone iterative sequences {un}∞n= and {vn}∞n= can be taken as

u = , un+ = Tun, v = tα–, vn+ = Tvn, n = , , , . . . .

Using MATLAB, the iterative sequences are computed and are depicted in Figure  and
Figure .

Figure 1 The non-decreasing sequence {un(t)}4
n=0 in the interval [0, 1].
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Figure 2 The non-increasing sequence {vn(t)}5
n=0 in the interval [0, 1].
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