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Abstract
In this paper, we discuss the existence of positive solution to singular fractional
differential equations involving Caputo fractional derivative. Necessary and sufficient
condition for the existence of C2[0, 1] positive solution is obtained by means of the
fixed point theorems on cones. In addition, the uniqueness results and the iterative
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1 Introduction
In this paper, we consider the following singular fractional differential equation:

{
cDα

+u(t) + f (t, u(t)) = ,  < t < ,
u() = u′() = u′′() = ,

(.)

where  < α ≤  is a real number, cDα
+ is the Caputo fractional derivative and f may be

singular at t = , .
Singular differential equation boundary value problems (BVP for short) arise from many

branches of applied mathematics and physics. The theory of singular boundary value
problems has become an important area of investigation in recent years. Differential equa-
tions of fractional order arise from many engineering and scientific disciplines as the
mathematical modeling of systems and processes in the fields of physics, chemistry, con-
trol theory, etc.; see [–] and the references therein. Recently, much attention has been
paid to the existence results of solutions for fractional differential equations, for example
[–].

In [], Bai and Qiu considered the existence of positive solution to problem (.), where
 < α ≤  is a real number, cDα

+ is the Caputo fractional derivative, f : (, ] × [,∞) →
[,∞) is continuous and singular at t = . The sufficient conditions for the existence of
positive solution to (.) were obtained by using the Krasnosel’skii fixed-point theorem
and the Leray-Schauder nonlinear alternative.
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In [], the authors investigated the existence of positive solution to the following bound-
ary value problem:

{
cDα

+u(t) + λf (t, u(t)) = ,  < t < ,
u() = u′() = u′′() = ,

(.)

where  < α ≤  is a real number, cDα
+ is the Caputo fractional derivative, λ is a positive

parameter, f may change sign and may be singular at t = , .
In recent years, many results dealing with necessary and sufficient conditions for the

existence of positive solutions to integer-order differential equations were obtained (for
example, [–]) with one of the following conditions:

(A) f ∈ C((, ) × [,∞), [,∞)), f (t, e(t)) > , t ∈ (, ), here e ∈ C([, ], [,∞)); there
exist constants  < λ ≤ λ <  such that for (t, x) ∈ (, ) × [,∞),

cλ f (t, x) ≤ f (t, cx) ≤ cλ f (t, x), ∀c ∈ (, ). (.)

(A) f ∈ C((, ) × [,∞), [,∞)); for each fixed t ∈ (, ), f (t, x) is increasing in x; there
exists  < α <  such that

f (t, rx) ≥ rαf (t, x), ∀ < r < , (t, x) ∈ (, ) × [,∞). (.)

(A) f ∈ C((, ) × [,∞), [,∞)); for each fixed t ∈ (, ), f (t, x) is increasing in x; for
all  < r < , there exists g(r) = m(r–α – ) such that

f (t, rx) ≥ r
(
 + g(r)

)
f (t, x), ∀(t, x) ∈ (, ) × [,∞),  < m ≤ ,  < α < . (.)

While there are a lot of works dealing with necessary and sufficient conditions for
integer-order differential equations, the results of fractional differential equations are rel-
atively scarce due to the difficulties caused by the singularity of nonlinearity. In [], the
authors considered the necessary and sufficient condition for the existence of C[, ] pos-
itive solution of singular sub-linear boundary value problems for a fractional differential
equation with condition (A).

Inspired by the previous works, in this paper we aim to establish necessary and sufficient
condition for the existence of C[, ] positive solutions to BVP (.). In this paper, by a
C[, ] positive solution to BVP (.), we mean a function u ∈ C′[, ] ∩ C[, ) which
satisfies u′′(–) exists, is positive on (, ] and satisfies (.).

Throughout this paper, we assume that the following condition holds.
(H) f ∈ C((, ) × [,∞), [,∞)), f (t, x) is increasing in x; there exists a function

η : [, ] → [, +∞) satisfying η(r) > r ( < r < ) such that

f (t, rx) ≥ η(r)f (t, x), ∀ < r < , (t, x) ∈ (, ) × [,∞). (.)

Remark . Inequality (.) is equivalent to

f (t, rx) ≤ f (t, x)
η(r–)

, ∀r > , (t, x) ∈ (, ) × [,∞). (.)
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Remark . Condition (H) includes conditions (A), (A) and (A) as special cases.

Remark . The function η defined in (H) satisfies η() = , and η(r) ≤ , ∀r ∈ (, ).

Remark . If condition (H) holds, then there exists a strictly increasing function ϕ sat-
isfying ϕ(r) > r ( < r < ) such that

f (t, rx) ≥ ϕ(r)f (t, x), ∀ < r < , (t, x) ∈ (, ) × [,∞), (.)

without loss of generality, we may suppose that η is strictly increasing on (.].

Proof If there exist t ∈ (, ), x >  such that f (t, x) = . By the monotonicity of f and
(.), we have f (t, x) ≡ , ∀x ∈ [, +∞). Set

� =
{

t ∈ (, ) : ∃x >  such that f (t, x) = 
}

. (.)

For any r ∈ (, ), denote

Dr =
{

c : f (t, rx) ≥ cf (t, x), (t, x) ∈ (
(, )\�) × (,∞)

}
. (.)

It is clear that sup Dr exists. Let ψ(r) = sup Dr , then

f (t, rx) ≥ ψ(r)f (t, x), ∀(t, x) ∈ (, ) × [,∞), (.)

and r < η(r) ≤ ψ(r) ≤ . For any  < r < r <  and x ∈ [,∞), we have

f (t, rx) = f
(

t, r · r

r
x
)

≥ ψ(r)f
(

t,
r

r
x
)

≥ ψ(r)f (t, x). (.)

By the definition of ψ , we get ψ(r) ≥ ψ(r), therefore ψ is nondecreasing. Let ϕ(r) = ψ(r)+r
 .

It is clear that ϕ is strictly increasing on (, ), satisfies ϕ(r) > r and

f (t, rx) ≥ ϕ(r)f (t, x), ∀(t, x) ∈ (, ) × [,∞), r ∈ (, ). (.)

The proof is completed. �

2 Basic definitions and preliminaries
In this section, we present some preliminaries and lemmas that are useful to the proof of
the main results, we also present here some necessary definitions.

Definition . The Riemann-Liouville fractional integral Iα
+ and derivative Dα

+ are de-
fined by

Iα
+u(t) =


�(α)

∫ t


(t – s)α–u(s) ds (.)

and

Dα
+u(t) =


�(n – α)

(
d
dt

)(n) ∫ t


(t – s)n–α–u(s) ds, (.)
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where n = [α] + , [α] denotes the integer part of number α, provided that the right-hand
side is defined pointwise on (, +∞).

Definition . (see []) The Caputo fractional derivative of order α >  on [, ] is defined
via the above Riemann-Liouville fractional derivative by

cDα
+u(t) = Dα

+

[
u(t) –

n–∑
k=

u(k)()tk

]
, (.)

where n = [α] + .

Remark . (see Theorem . of []) If u(t) ∈ ACn[, ], then the Caputo fractional deriva-
tive of order α >  exists almost everywhere on [, ] and can be represented by

cDα
+u(t) =


�(n – α)

∫ t


(t – s)n–α–u(n)(s) ds, (.)

where n = [α] + , and

ACn[, ] =
{

y : [, ] →R and
dn–y
dtn– is absolutely continuous on [, ]

}
.

Lemma . (see Lemma . of []) Let α > , u ∈ L[, ] and Dα
+u ∈ L[, ], then the fol-

lowing equality holds:

Iα
+Dα

+u(t) = u(t) + ctα– + ctα– + · · · + cntα–n,

where ci ∈ R, i = , , . . . , n, n = [α] + .

Lemma . (see Lemma . of []) If α >  and y(t) ∈ L[, ], then the equality

Dα
+Iα

+y(t) = y(t)

holds almost everywhere on [, ].

Lemma . (see Property . of []) Let α > β > . If y(t) ∈ L[, ], then

Dβ
+Iα

+y(t) = Iα–β
+ y(t).

Lemma . If  < α ≤ , y ∈ L[, ] ∩ C(, ) and

lim
t→+

tα–
∫ 


( – s)α–y(ts) ds = , (.)

then the problem

{
cDα

+u(t) + y(t) = ,  < t < ,
u() = u′() = u′′() = ,

(.)
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has a unique solution

u(t) =
∫ 


G(t, s)y(s) ds, (.)

where

G(t, s) =


�(α)

{
(α – )t( – s)α–,  ≤ t ≤ s ≤ ,
(α – )t( – s)α– – (t – s)α–,  ≤ s ≤ t ≤ .

(.)

Proof Deduced from Lemma ., the solution of (.) satisfies

u(t) = u′()t – Iα
+y(t) + ctα– + ctα– + ctα–.

By direct calculation of u(), u′() and u′′(), there is c = c = c = . Consequently,

u(t) = u′()t –


�(α)

∫ t


(t – s)α–y(s) ds (.)

and

u′(t) = u′() –


�(α – )

∫ t


(t – s)α–y(s) ds. (.)

By u′() = , we have

u′() =


�(α – )

∫ 


( – s)α–y(s) ds. (.)

Therefore,

u(t) =
∫ 


G(t, s)y(s) ds.

On the other hand, for

u(t) =
∫ 


G(t, s)y(s) ds =

t
�(α – )

∫ 


( – s)α–y(s) ds –


�(α)

∫ t


(t – s)α–y(s) ds,

we have u() = u′() =  and u′() = 
�(α–)

∫ 
 ( – s)α–y(s) ds. From (.), we get

u′′() = lim
t→+

u′(t) – u′()
t

= lim
t→+

∫ t
 (t – s)α–y(s) ds

�(α – )t

= lim
t→+

tα–

�(α – )

∫ 


( – x)α–y(tx) dx = . (.)

By Definition . and Lemma ., we have u is a solution of problem (.). The proof is
completed. �

Remark . If α =  and y ∈ L[, ], then condition (.) holds naturally.
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Lemma . (see []) The function G(t, s) has the following properties:
() G(t, s) ≤ 

�(α–) t( – s)α–, ∀t, s ∈ [, ];
() G(t, s) ≤ 

�(α–) (α –  + s)( – s)α–, ∀t, s ∈ [, ];
() G(t, s) ≥ 

�(α) (α –  + s)t( – s)α–, ∀t, s ∈ [, ].

Lemma . Suppose that u is a positive solution of BVP (.), then there exist Lu, lu > 
such that

lut ≤ u(t) ≤ Lut, ∀t ∈ [, ]. (.)

Proof By Lemma ., u can be expressed by

u(t) =
∫ 


G(t, s)f

(
s, u(s)

)
ds. (.)

From () of Lemma ., we have

u(t) ≤ t
�(α – )

∫ 


( – s)α–f

(
s, u(s)

)
ds. (.)

By (), () of Lemma ., we get

u(t) ≥ t
�(α)

∫ 


(α –  + s)( – s)α–f

(
s, u(s)

)
ds (.)

and

u(t) ≤ 
�(α – )

∫ 


(α –  + s)( – s)α–f

(
s, u(s)

)
ds. (.)

Inequalities (.) and (.) imply u(t) ≥ t
α–‖u(t)‖.

Let

lu =
‖u(t)‖
α – 

, Lu =
∫ 

 ( – s)α–f (s, u(s)) ds
�(α – )

. (.)

Then (.) holds. The proof is completed. �

Lemma . Assume that g(x), {gn(x)}, h(x), {hn(x)} are Lebesgue integrable on [, ], satisfy

∣∣gn(x)
∣∣ ≤ hn(x), lim

n→∞ gn(x) = g(x), lim
n→∞ hn(x) = h(x), a.e. [, ] (.)

and

lim
n→∞

∫ 


hn(x) dx =

∫ 


h(x) dx, (.)

then

lim
n→∞

∫ 


gn(x) dx =

∫ 


g(x) dx. (.)
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Proof By |gn(x)| ≤ hn(x), a.e. [, ], we have

∣∣g(x)
∣∣ ≤ h(x), a.e. [, ]. (.)

Set

kn(x) = hn(x) + h(x) –
∣∣gn(x) – g(x)

∣∣, (.)

then kn(x) → h(x) (n → ∞) a.e. [, ]. By the Fatou lemma, we get

∫ 


h(x) dx =

∫ 


lim

n→∞ kn(x) dx ≤ lim inf
n→∞

∫ 


kn(x) dx

= 
∫ 


h(x) dx – lim sup

n→∞

∫ 



∣∣gn(x) – g(x)
∣∣dx, (.)

which implies

lim
n→∞

∫ 



∣∣gn(x) – g(x)
∣∣dx = . (.)

Thus

lim
n→∞

∫ 


gn(x) dx =

∫ 


g(x) dx. (.)

The proof is completed. �

3 Main result
Theorem . Suppose that (H) holds. Then the necessary and sufficient condition for BVP
(.) to have a C[, ] positive solution is

 <
∫ 


( – s)α–f (s, s) ds < +∞, (.a)

lim
t→+

tα–
∫ 


( – s)α–f (ts, ts) ds = , (.b)

lim
t→–

∫ 


( – s)α–f (ts, ts) ds =

∫ 


( – s)α–f (s, s) ds. (.c)

Proof (i) Necessity. Assume that u is a C[, ] positive solution of BVP (.). In the fol-
lowing, we will divide the rather long proof into three steps.

Step : By Lemma ., u can be expressed by

u(t) =
t

�(α – )

∫ 


( – s)α–f

(
s, u(s)

)
ds –


�(α)

∫ t


(t – s)α–f

(
s, u(s)

)
ds. (.)

For any t ∈ (, ), Lemma . implies

u′(t) =


�(α – )

∫ 


( – s)α–f

(
s, u(s)

)
ds –


�(α – )

∫ t


(t – s)α–f

(
s, u(s)

)
ds (.)
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and

u′′(t) = –


�(α – )

∫ t


(t – s)α–f

(
s, u(s)

)
ds

= –
tα–

�(α – )

∫ 


( – s)α–f

(
ts, u(ts)

)
ds. (.)

It is clear that u′(t) ≥ , and u′′(t) ≤ , ∀t ∈ (, ).
∀ε ∈ (, 

 ), t ∈ (, ), we deduce that

∫ –ε

ε

( – s)α–f
(
ts, u(ts)

)
ds ≤ –�(α – )t–αu′′(t). (.)

Let t → , noticing (H) and the existence of u′′(–), we have

∫ –ε

ε

( – s)α–f
(
s, u(s)

)
ds ≤ –�(α – )u′′(–)

, ∀ε ∈
(

,



)
. (.)

Thus
∫ 

 ( – s)α–f (s, u(s)) ds is well defined, that is, u′′() is well defined. By Lemma .,
we have

∫ 


( – s)α–f

(
s, u(s)

)
ds ≥

∫ 


( – s)α–f (s, lus) ds

≥
∫ 


( – s)α–f

(
s, min{, lu}s

)
ds

≥ η
(
min{, lu}

)∫ 


( – s)α–f (s, s) ds

≥ min{, lu}
∫ 


( – s)α–f (s, s) ds, (.)

which implies

∫ 


( – s)α–f (s, s) ds < +∞. (.)

On the other hand, we have

u(t) =
∫ 


G(t, s)f

(
s, u(s)

)
ds ≤ t

�(α – )

∫ 


( – s)α–f (s, Lus) ds

≤ t
�(α – )

∫ 


( – s)α–f

(
s, ( + Lu)s

)
ds

≤ t
�(α – )η([ + Lu]–)

∫ 


( – s)α–f (s, s) ds. (.)

Since u is a positive solution, then

∫ 


( – s)α–f (s, s) ds > . (.)

Inequalities (.) and (.) yield (.a) holds.
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Step : From u is a C[, ] positive solution, we get

lim
t→+

tα–
∫ 


( – s)α–f

(
ts, u(ts)

)
ds = –�(α – )u′′() =  (.)

and

lim
t→–

∫ 


( – s)α–f

(
ts, u(ts)

)
ds =

∫ 


( – s)α–f

(
s, u(s)

)
ds. (.)

Similar to (.) and (.), we have

f
(
s, u(s)

) ≥ min{, lu}f (s, s), ∀s ∈ (, ) (.)

and

f
(
s, u(s)

) ≤ 
η([ + Lu]–)

f (s, s), ∀s ∈ (, ). (.)

Then, for any t ∈ (, ), we have

∫ 


( – s)α–f

(
ts, u(ts)

)
ds ≥ min{, lu}

∫ 


( – s)α–f (ts, ts) ds (.)

and ∫ 


( – s)α–f

(
ts, u(ts)

)
ds ≤ 

η([ + Lu]–)

∫ 


( – s)α–f (ts, ts) ds. (.)

Combining (.) with (.), we obtain (.b) holds.
Step : ∀{tn} ⊂ (, ) satisfies tn →  (n → ∞). Set

gn(s) = min{, lu}( – s)α–f (tns, tns), g(s) = min{, lu}( – s)α–f (s, s),

hn(s) = ( – s)α–f
(
tns, u(tns)

)
, h(s) = ( – s)α–f

(
s, u(s)

)
.

(.)

It is clear that {gn(s)}, g(s), {hn(x)}, h(x) are Lebesgue integrable on [, ], and

lim
n→∞ gn(x) = g(x), lim

n→∞ hn(x) = h(x), a.e. [, ]. (.)

From (.), we get

 ≤ gn(x) ≤ hn(x).

Equation (.) yields

lim
n→∞

∫ 


hn(s) ds =

∫ 


h(s) ds. (.)

By Lemma ., we have

lim
n→∞

∫ 


( – s)α–f (tns, tns) ds =

∫ 


( – s)α–f (s, s) ds. (.)

Then (.c) holds.
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(ii) Sufficiency. Let P = {u ∈ C[, ] : u ≥ }. Clearly P is a normal cone of C[, ]. Denote
e(t) = t, and

Pe = {u ∈ P : ∃Lu, lu >  such that lue ≤ u ≤ Lue}.

Set

Au(t) =
∫ 


G(t, s)f

(
s, u(s)

)
ds. (.)

For any u ∈ Pe, by (.a), (.), (.) and Lemma ., we have

Au(t) ≤ t
�(α – )

∫ 


( – s)α–f

(
s, u(s)

)
ds

≤ t
�(α – )η(( + Lu)–)

∫ 


( – s)α–f (s, s) ds (.)

and

Au(t) ≥ t
�(α)

∫ 


(α –  + s)( – s)α–f

(
s, u(s)

)
ds

≥ t
�(α)

min{, lu}
∫ 


(α – )( – s)α–f (s, s) ds, (.)

which implies A : Pe → Pe is well defined.
It is clear that e ∈ Pe, so there exist positive numbers Le >  > le >  such that lee ≤ Ae ≤

Lee. Noticing η(r) > r on (, ), we can choose a positive integer m large enough such that

(
η(le)

le

)m

>

le

,
(

η(L–
e )

L–
e

)m

> Le. (.)

Let

u = lm
e e, v = Lm

e e, un+ = Aun, vn+ = Avn, n = , , , . . . . (.)

It is easy to see that

(
le

Le

)m

v = u ≤ v =
(

Le

le

)m

u (.)

and

u = Au =
∫ 


G(t, s)f

(
s, lm

e e(s)
)

ds ≥ η(le)
∫ 


G(t, s)f

(
s, lm–

e e(s)
)

ds

≥ · · · ≥ ηm(le)
∫ 


G(t, s)f

(
s, e(s)

)
ds = ηm(le)Ae ≥ ηm(le)lee ≥ lm

e e = u. (.)

In a similar way, we can get v ≥ v. It follows from the increasing property of A that

u ≤ u ≤ · · · ≤ un ≤ · · · ≤ vn ≤ · · · ≤ v ≤ v. (.)
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Therefore, un ≥ u = ( le
Le

)mv ≥ ( le
Le

)mvn. Let

cn = sup{c > |un ≥ cvn}, n = , , . . . . (.)

Then un ≥ cnvn. Noticing (.), we have  ≥ cn+ ≥ cn. Thus, we can suppose that {cn}
converges to c∗. It is clear that  < c∗ ≤ , we now prove that c∗ = . In fact, if  < c∗ < ,
then

un+ = Aun ≥ A(cnvn) ≥ A
(

cn

c∗ c∗vn

)
≥ η

(
cn

c∗

)
η
(
c∗)A(vn) ≥ cn

c∗ η
(
c∗)vn+. (.)

Therefore cn+ ≥ cn
c∗ η(c∗). Let n → ∞, we have c∗ ≥ η(c∗), which contradicts (H). Hence

c∗ = .
For each natural number p, we have

 ≤ un+p – un ≤ vn – un ≤ vn – cnvn ≤ ( – cn)v,

 ≤ vn – vn+p ≤ vn – un ≤ ( – cn)v.
(.)

Since P is normal, then

‖un+p – un‖ → , ‖vn – vn+p‖ → , n → ∞, (.)

which implies {un}, {vn} are Cauchy sequences. There exist u∗, v∗ such that un → u∗,
vn → v∗. From (.), we get un ≤ u∗ ≤ v∗ ≤ vn. By (.), we have ‖u∗ – v∗‖ → . Then
u∗ = v∗ is a fixed point of A.

Equations (.b) and (.) yield

lim
t→+

tα–
∫ 


( – s)α–f

(
ts, u∗(ts)

)
ds = . (.)

Then

lim
t→+

tα–
∫ 


( – s)α–f

(
ts, u∗(ts)

)
ds = . (.)

By Lemma ., u∗ is a positive solution of BVP (.).
Noticing (.), (.) and (.a), it is clear that u∗ ∈ C′[, ]∩C(, ). Again from (.b)

and (.), we get u′′∗(+) = u′′∗() = . By (.c), (.) and Lemma ., we have (.) holds,
which implies u′′∗(–) exists. Therefore, u∗ is a C[, ] positive solution of BVP (.). The
proof is completed. �

Theorem . Suppose that (.a), (.b), (.c) and (H) hold. Then:
(i) BVP (.) has a unique C[, ] positive solution u∗ ∈ Pe.

(ii) For any initial value ω ∈ Pe, the sequence of functions defined by

ωn =
∫ 


G(t, s)f

(
s,ωn–(s)

)
ds, n = , , . . . (.)

converges uniformly to u∗ on [, ].
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Proof (i) It follows from Theorem . that BVP (.) has a C[, ] positive solution u∗ ∈ Pe.
Let v be another C[, ] positive solution of BVP (.). Lemma . implies v ∈ Pe. So there
exist two positive numbers  < lv <  < Lv such that

lve(t) ≤ v(t) ≤ Lve(t), t ∈ [, ]. (.)

Let m defined by (.) be large enough such that lv > lm
e and Lv < Lm

e . Then

u ≤ v ≤ v. (.)

It is clear that A is an increasing operator and Av = v, therefore

un ≤ v ≤ vn, n = , , . . . . (.)

Let n → ∞, we get v = u∗. So the C[, ] positive solution of BVP (.) is unique.
(ii) For any initial value ω ∈ Pe, there exist two positive numbers  < lω <  < Lω such

that

lω e(t) ≤ ω(t) ≤ Lω e(t), t ∈ [, ]. (.)

Let m defined by (.) be large enough such that lω > lm
e and Lω < Lm

e . Then

u ≤ ω ≤ v. (.)

Notice that A is an increasing operator, we have

un ≤ ωn ≤ vn, n = , , . . . . (.)

Let n → ∞, then ωn = u∗. It follows from (.), (.) and (.) that ωn converges uni-
formly to the unique positive solution u∗ on [, ]. The proof is completed. �

4 Example
Example . Consider the following problem:

{
Dα

+u(t) + f (t, u(t)) = , t ∈ (, ),  < α < ,
u() = u′() = u′′() = ,

(.)

where

f (t, x) = t–σ xβ , σ ,β ∈ (, ).

Obviously, assumption (H) holds. By Theorem ., we have that the necessary and suf-
ficient condition for the existence of a C[, ] positive solution to BVP (.) is

β – σ + α > .
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Example . Consider the following problem:

{
Dα

+u(t) + a(t)f (u(t)) = , t ∈ (, ),  < α < ,
u() = u′() = u′′() = ,

(.)

where a ∈ C((, ), [,∞)),

f (x) =

{
xβ + x, x ∈ [, ],  < β < ,
xβ , x ∈ (, +∞).

Let

η(r) =
rβ + r


,

then assumption (H) holds. Noticing

xβ ≤ f (x) ≤ xβ , x ∈ [, +∞),

by Theorem . and Lemma ., we have that the necessary and sufficient condition for
the existence of a C[, ] positive solution of BVP (.) is

 <
∫ 


a(s)sβ( – s)α– ds < +∞,

lim
t→+

tα+β–
∫ 


a(ts)sβ( – s)α– ds = ,

lim
t→–

∫ 


a(ts)sβ( – s)α– ds =

∫ 


a(s)sβ( – s)α– ds.
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