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Abstract
We study a nonlinear initial value Cauchy problem depending upon a complex
perturbation parameter ε whose coefficients depend holomorphically on (ε , t) near
the origin inC

2 and are bounded holomorphic on some horizontal strip inC w.r.t. the
space variable. In our previous contribution (Lastra and Malek in Parametric Gevrey
asymptotics for some nonlinear initial value Cauchy problems, arXiv:1403.2350), we
assumed the forcing term of the Cauchy problem to be analytic near 0. Presently, we
consider a family of forcing terms that are holomorphic on a common sector in time t
and on sectors w.r.t. the parameter ε whose union form a covering of some
neighborhood of 0 in C

∗, which are asked to share a common formal power series
asymptotic expansion of some Gevrey order as ε tends to 0. We construct a family of
actual holomorphic solutions to our Cauchy problem defined on the sector in time
and on the sectors in ε mentioned above. These solutions are achieved by means of a
version of the so-called accelero-summation method in the time variable and by
Fourier inverse transform in space. It appears that these functions share a common
formal asymptotic expansion in the perturbation parameter. Furthermore, this formal
series expansion can be written as a sum of two formal series with a corresponding
decomposition for the actual solutions which possess two different asymptotic
Gevrey orders, one stemming from the shape of the equation and the other
originating from the forcing terms. The special case of multisummability in ε is also
analyzed thoroughly. The proof leans on a version of the so-called Ramis-Sibuya
theorem which entails two distinct Gevrey orders. Finally, we give an application to
the study of parametric multi-level Gevrey solutions for some nonlinear initial value
Cauchy problems with holomorphic coefficients and forcing term in (ε , t) near 0 and
bounded holomorphic on a strip in the complex space variable.
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1 Introduction
We consider a family of parameter depending nonlinear initial value Cauchy problems of
the form

Q(∂z)
(
∂tudp (t, z, ε)

)
= c,(ε)

(
Q(∂z)udp (t, z, ε)

)(
Q(∂z)udp (t, z, ε)

)
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+ ε(δD–)(k+)–δD+t(δD–)(k+)∂
δD
t RD(∂z)udp (t, z, ε)

+
D–∑

l=

ε�l tdl∂
δl
t Rl(∂z)udp (t, z, ε)

+ c(t, z, ε)R(∂z)udp (t, z, ε) + cF (ε)f dp (t, z, ε) ()

for given vanishing initial data udp (, z, ε) ≡ , where D ≥  and δD, k, �l , dl , δl ,  ≤ l ≤
D –  are nonnegative integers and Q(X), Q(X), Q(X), Rl(X),  ≤ l ≤ D, are polynomi-
als belonging to C[X]. The coefficient c(t, z, ε) is a bounded holomorphic function on a
product D(, r) × Hβ × D(, ε), where D(, r) (resp. D(, ε)) denotes a disc centered at 
with small radius r >  (resp. ε > ) and Hβ = {z ∈ C/| Im(z)| < β} is some strip of width
β > . The coefficients c,(ε) and cF (ε) define bounded holomorphic functions on D(, ε)
vanishing at ε = . The forcing terms f dp (t, z, ε),  ≤ p ≤ ς – , form a family of bounded
holomorphic functions on products T × Hβ × Ep, where T is a small sector centered at
 contained in D(, r) and {Ep}≤p≤ς– is a set of bounded sectors with aperture slightly
larger than π/k covering some neighborhood of  in C

∗. We make assumptions in order
that all the functions ε �→ f dp (t, z, ε), seen as functions from Ep into the Banach space F of
bounded holomorphic functions on T × Hβ endowed with the supremum norm, share a
common asymptotic expansion f̂ (t, z, ε) =

∑
m≥ fm(t, z)εm/m! ∈ F�ε� of Gevrey order /k

on Ep, for some integer  ≤ k < k; see Lemma .
Our main purpose is the construction of actual holomorphic solutions udp (t, z, ε) to the

problem () on the domains T × Hβ × Ep and to analyze their asymptotic expansions as ε

tends to .
This work is a continuation of the study initiated in [] where the authors have studied

initial value problems with a quadratic nonlinearity of the form

Q(∂z)
(
∂tu(t, z, ε)

)
=

(
Q(∂z)u(t, z, ε)

)(
Q(∂z)u(t, z, ε)

)

+ ε(δD–)(k+)–δD+t(δD–)(k+)∂
δD
t RD(∂z)u(t, z, ε)

+
D–∑

l=

ε�l tdl∂
δl
t Rl(∂z)u(t, z, ε)

+ c(t, z, ε)R(∂z)u(t, z, ε) + f (t, z, ε) ()

for given vanishing initial data u(, z, ε) ≡ , where D, �l , dl , δl are positive integers and
Q(X), Q(X), Q(X), Rl(X),  ≤ l ≤ D, are polynomials with complex coefficients. Under
the assumption that the coefficients c(t, z, ε) and the forcing term f (t, z, ε) are bounded
holomorphic functions on D(, r)×Hβ ×D(, ε), one can build, using some Borel-Laplace
procedure and Fourier inverse transform, a family of holomorphic bounded functions
up(t, z, ε),  ≤ p ≤ ς – , solutions of (), defined on the products T × Hβ × Ep, where
Ep has an aperture slightly larger than π/k. Moreover, the functions ε �→ up(t, z, ε) share
a common formal power series û(t, z, ε) =

∑
m≥ hm(t, z)εm/m! as asymptotic expansion

of Gevrey order /k on Ep. In other words, up(t, z, ε) is the k-sum of û(t, z, ε) on Ep; see
Definition .

In this paper, we observe that the asymptotic expansion of the solutions udp (t, z, ε) of
() w.r.t. ε on Ep, defined as û(t, z, ε) =

∑
m≥ hm(t, z)εm/m! ∈ F�ε�, inherits a finer struc-

ture which involves the two Gevrey orders /k and /k. Namely, the order /k originates
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from () itself and its highest order term ε(δD–)(k+)–δD+t(δD–)(k+)∂
δD
t RD(∂z) as was the

case in the work [] mentioned above and the scale /k arises, as a new feature, from the
asymptotic expansion f̂ of the forcing terms f dp (t, z, ε). We can also describe conditions
for which udp (t, z, ε) is the (k, k)-sum of û(t, z, ε) on Ep for some  ≤ p ≤ ς – ; see Def-
inition . More specifically, we can present our two main statements and its application
as follows.

Main results Let k > k ≥  be integers. We choose a family {Ep}≤p≤ς– of bounded sec-
tors with aperture slightly larger than π/k which defines a good covering in C

∗ (see Defini-
tion ) and a set of adequate directions dp ∈R,  ≤ p ≤ ς –  for which the constraints ()
and () hold. We also take an open bounded sector T centered at  such that, for every
 ≤ p ≤ ς –, the product εt belongs to a sector with direction dp and aperture slightly larger
than π/k, for all ε ∈ Ep, all t ∈ T . We make the assumption that the coefficient c(t, z, ε)
can be written as a convergent series of the special form

c(t, z, ε) = c(ε)
∑

n≥

c,n(z, ε)(εt)n

on a domain D(, r)×Hβ ′ ×D(, ε), where Hβ ′ is a strip of width β ′, such that T ⊂ D(, r),
⋃

≤p≤ς– Ep ⊂ D(, ε) and  < β ′ < β are given positive real numbers. The coefficients
c,n(z, ε), n ≥ , are supposed to be inverse Fourier transform of functions m �→ C,n(m, ε)
that belong to the Banach space E(β ,μ) (see Definition ) for some μ > max(deg(Q) + ,
deg(Q) + ) and depend holomorphically on ε in D(, ε) and c(ε) is a holomorphic func-
tion on D(, ε) vanishing at . Since we have in view our principal application (Theorem ),
we choose the forcing term f dp (t, z, ε) as a mk -Fourier-Laplace transform

f dp (t, z, ε) =
k

(π )/

∫ +∞

–∞

∫

Lγp

ψ
dp
k

(u, m, ε)e–( u
εt )k eizm du

u
dm,

where the inner integration is made along some half-line Lγp ⊂ Sdp and Sdp is an unbounded
sector with bisecting direction dp, with small aperture and where ψ

dp
k

(u, m, ε) is a holomor-
phic function w.r.t. u on Sdp , defined as an integral transform called acceleration operator
with indices mk and mk ,

ψ
dp
k

(u, m, ε) =
∫

L
γ p

ψ
dp
k

(h, m, ε)G(u, h)
dh
h

,

where G(u, h) is a kernel function with exponential decay of order κ = ( 
k

– 
k

)–; see ().
The integration path Lγ 

p
is a half-line in an unbounded sector Udp with bisecting direction

dp and ψ
dp
k

(h, m, ε) is a function with exponential growth of order k w.r.t. h on Udp ∪D(,ρ)
and exponential decay w.r.t. m on R, satisfying the bounds (). The function f dp (t, z, ε)
represents a bounded holomorphic function on T × Hβ ′ × Ep. Actually, it turns out that
f dp (t, z, ε) can be simply written as a mk -Fourier-Laplace transform of ψ

dp
k

(h, m, ε),

f dp (t, z, ε) =
k

(π )/

∫ +∞

–∞

∫

Lγp

ψ
dp
k

(u, m, ε)e–( u
εt )k eizm du

u
dm.

Our first result stated in Theorem  reads as follows. We make the assumption that the
integers δD, k, �l , dl, δl ,  ≤ l ≤ D –  satisfy the inequalities (), (), and (). The
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polynomials Q(X), Q(X), Q(X), and Rl(X),  ≤ l ≤ D, are submitted to the constraints
() on their degrees. We require the existence of constants rQ,Rl >  such that

∣
∣∣
∣

Q(im)
Rl(im)

∣
∣∣
∣ ≥ rQ,Rl

for all m ∈ R, all  ≤ l ≤ D (see ()) and, moreover, that the quotient Q(im)/RD(im) be-
longs to some suitable unbounded sector SQ,RD for all m ∈ R (see ()). Then, if the sup
norms of the coefficients c,(ε)/ε, c(ε)/ε, and cF (ε)/ε on D(, ε) are chosen small enough
and provided that the radii rQ,Rl ,  ≤ l ≤ D, are taken large enough, we can construct a
family of holomorphic bounded functions udp (t, z, ε),  ≤ p ≤ ς – , defined on the products
T × Hβ ′ × Ep, which solves the problem () with initial data udp (, z, ε) ≡ . Similarly to
the forcing term, udp (t, z, ε) can be written as a mk -Fourier-Laplace transform

udp (t, z, ε) =
k

(π )/

∫ +∞

–∞

∫

Lγp

ω
dp
k

(u, m, ε)e–( u
εt )k eizm du

u
dm,

where ω
dp
k

(u, m, ε) denotes a function with at most exponential growth of order k in u on
Sdp and exponential decay in m ∈R, satisfying (). The function ω

dp
k

(u, m, ε) is shown to
be the analytic continuation of a function Acc

dp
k,k

(ωdp
k

)(u, m, ε) defined only on a bounded
sector Sb

dp with aperture slightly larger than π/κ w.r.t. u, for all m ∈ R, with the help of an
acceleration operator with indices mk and mk ,

Acc
dp
k,k

(
ω
dp
k

)
(u, m, ε) =

∫

L
γ p

ω
dp
k

(h, m, ε)G(u, h)
dh
h

.

We show that, in general, ωdp
k

(h, m, ε) suffers an exponential growth of order larger than k

(and actually less than κ) w.r.t. h on Udp ∪ D(,ρ), and obeys the estimates (). At this
point udp (t, z, ε) cannot be merely expressed as a mk -Fourier-Laplace transform of ωdp

k
and

is obtained by a version of the so-called accelero-summation procedure, as described in [],
Chapter .

Our second main result, described in Theorem , asserts that the functions udp , seen as
maps from Ep intoF, for  ≤ p ≤ ς –, turn out to share on Ep a common formal power series
û(ε) =

∑
m≥ hmεm/m! ∈ F�ε� as asymptotic expansion of Gevrey order /k. The formal

series û(ε) formally solves () where the analytic forcing term f dp (t, z, ε) is replaced by its
asymptotic expansion f̂ (t, z, ε) ∈ F�ε� of Gevrey order /k (see Lemma ). Furthermore,
the functions udp and the formal series û have a fine structure which actually involves two
different Gevrey orders of asymptotics. Namely, udp and û can be written as sums

û(ε) = a(ε) + û(ε) + û(ε), udp (t, z, ε) = a(ε) + udp
 (ε) + udp

 (ε),

where a(ε) is a convergent series near ε =  with coefficients in F and û(ε) (resp. û(ε))
belongs to F�ε� and is the asymptotic expansion of Gevrey order /k (resp. /k) of the F-
valued function udp

 (ε) (resp. udp
 (ε)) on Ep. Besides, under a more restrictive assumption

on the covering {Ep}≤p≤ς– and the unbounded sectors {Udp}≤p≤ς– (see assumption ()
in Theorem ), one gets that udp (t, z, ε) is even the (k, k)-sum of û(ε) on some sector Ep ,
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with  ≤ p ≤ ς – , meaning that udp
 (ε) can be analytically continued on a larger sector

Sπ/k , containing Ep , with aperture slightly larger than π/k where it becomes the k-sum
of û(ε) and by construction udp

 (ε) is already the k-sum of û(ε) on Ep ; see Definition .
As an important application (Theorem ), we deal with the special case when the forcing

terms f dp (t, z, ε) themselves solve a linear partial differential equation with a similar shape
as (), see (), whose coefficients are holomorphic functions on D(, r) × Hβ × D(, ε).
When this holds, it turns out that udp (t, z, ε) and its asymptotic expansion û(t, z, ε) solves a
nonlinear singularly perturbed PDE with analytic coefficients and forcing term on D(, r)×
Hβ × D(, ε), see ().

We stress the fact that our application (Theorem ) relies on the factorization of some
nonlinear differential operator which is an approach that belongs to an active domain of
research in symbolic computation these last years, see for instance [–].

We mention that a similar result has been recently obtained by Tahara and Yamazawa,
see [], for the multisummability of formal series û(t, x) =

∑
n≥ un(x)tn ∈ O(CN )�t� with

entire coefficients on C
N , N ≥ , solutions of general non-homogeneous time depending

linear PDEs of the form

∂m
t u +

∑

j+|α|≤L

aj,α(t)∂ j
t ∂

α
x u = f (t, x)

for given initial data (∂ j
tu)(, x) = ϕj(x),  ≤ j ≤ m –  (where  ≤ m ≤ L), provided that

the coefficients aj,α(t) together with t �→ f (t, x) are analytic near  and that ϕj(x) with the
forcing term x �→ f (t, x) belong to a suitable class of entire functions of finite exponential
order onC

N . The different levels of multisummability are related to the slopes of a Newton
polygon attached to the main equation and analytic acceleration procedures as described
above are heavily used in their proof.

It is worthwhile noticing that the multisummable structure of formal solutions to linear
and nonlinear meromorphic ODEs has been discovered two decades ago, see for instance
[–], but in the framework of PDEs very few results are known. In the linear case in two
complex variables with constant coefficients, we mention the important contributions of
Balser et al. [] and Michalik [, ]. Their strategy consists in the construction of a mul-
tisummable formal solution written as a sum of formal series, each of them associated to a
root of the symbol attached to the PDE using the so-called Puiseux expansion for the roots
of polynomial with holomorphic coefficients. In the linear and nonlinear context of PDEs
that come from a perturbation of ordinary differential equations, we refer to the work of
Ouchi [, ], which is based on a Newton polygon approach and accelero-summation
technics as in []. Our result concerns more peculiarly multisummability and multiple
scale analysis in the complex parameter ε. Also from this point of view, only few advances
have been performed. Among them, we must mention two recent works by Suzuki and
Takei [] and Takei [], for WKB solutions of the Schrödinger equation

εψ ′′(z) =
(
z – εz)ψ(z)

which possesses  as fixed turning point and zε = ε– as movable turning point tending to
infinity as ε tends to .

In the sequel, we describe our main intermediate results and the sketch of the arguments
needed in their proofs. In a first part, we depart from an auxiliary parameter depending
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initial value differential and convolution equation which is regularly perturbed in its pa-
rameter ε; see (). This equation is formally constructed by making the change of variable
T = εt in () and by taking the Fourier transform w.r.t. the variable z (as done in our previ-
ous contribution []). We construct a formal power series Û(T , m, ε) =

∑
n≥ Un(m, ε)Tn

solution of () whose coefficients m �→ Un(m, ε) depend holomorphically on ε near 
and belong to a Banach space E(β ,μ) of continuous functions with exponential decay on R

introduced by Costin and Tanveer in [].
As a first step, we follow the strategy recently developed by Tahara and Yamazawa in [],

namely we multiply each side of () by the power Tk+ which transforms it into an equa-
tion () which involves only differential operators in T of irregular type at T =  of the
form Tβ∂T with β ≥ k +  due to the assumption () on the shape of (). Then we apply
a formal Borel transform of order k, which we call mk -Borel transform in Definition ,
to the formal series Û with respect to T , denoted by

ωk (τ , m, ε) =
∑

n≥

Un(m, ε)
τ n

�(n/k)
.

Then we show that ωk (τ , m, ε) formally solves a convolution equation in both variables τ

and m, see (). Under some size constraints on the sup norm of the coefficients c,(ε)/ε,
c(ε)/ε and cF (ε)/ε near , we show that ωk (τ , m, ε) is actually convergent for τ on some
fixed neighborhood of  and can be extended to a holomorphic function ωd

k
(τ , m, ε) on

unbounded sectors Ud centered at  with bisecting direction d and tiny aperture, provided
that the mk -Borel transform of the formal forcing term F(T , m, ε), denoted by ψk (τ , m, ε)
is convergent near τ =  and can be extended on Ud w.r.t. τ as a holomorphic function
ψd

k
(τ , m, ε) with exponential growth of order less than k. Besides, the function ωd

k
(τ , m, ε)

satisfies estimates of the form: there exist constants ν >  and �d >  with

∣
∣ωd

k (τ , m, ε)
∣
∣ ≤ �d

(
 + |m|)–μe–β|m| |τ |

 + |τ |k
eν|τ |κ

for all τ ∈ Ud , all m ∈R, all ε ∈ D(, ε); see Proposition . The proof leans on a fixed point
argument in a Banach space of holomorphic functions Fd

(ν,β ,μ,k,κ) studied in Section ..
Since the exponential growth order κ of ωd

k
is larger than k, we cannot take a mk -Laplace

transform of it in the direction d. We need to use a version of what is called an accelero-
summation procedure as described in [], Chapter , which is explained in Section ..

In a second step, we go back to our seminal convolution equation () and we multi-
ply each side by the power Tk+ which transforms it into (). Then we apply a mk -
Borel transform to the formal series Û w.r.t. T , denoted by ω̂k (τ , m, ε). We show that
ω̂k (τ , m, ε) formally solves a convolution equation in both variables τ and m, see (),
where the formal mk -Borel transform of the forcing term is set as ψ̂k (τ , m, ε). Now, we
observe that a version of the analytic acceleration transform with indices k and k con-
structed in Proposition  applied to ψd

k
(τ , m, ε), standing for ψd

k
(τ , m, ε), is the κ-sum

of ψ̂k (τ , m, ε) w.r.t. τ on some bounded sector Sb
d,κ with aperture slightly larger than π/κ ,

viewed as a function with values in E(β ,μ). Furthermore, ψd
k

(τ , m, ε) can be extended as
an analytic function on an unbounded sector Sd,κ with aperture slightly larger than π/κ
where it possesses an exponential growth of order less than k; see Lemma . In the sequel,
we focus on the solution ωd

k
(τ , m, ε) of the convolution problem () which is similar to
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() but with the formal forcing term ψ̂k (τ , m, ε) replaced by ψd
k

(τ , m, ε). Under some
size restriction on the sup norm of the coefficients c,(ε)/ε, c(ε)/ε, and cF (ε)/ε near ,
we show that ωd

k
(τ , m, ε) defines a bounded holomorphic function for τ on the bounded

sector Sb
d,κ and can be extended to a holomorphic function on unbounded sectors Sd with

direction d and tiny aperture, provided that Sd stays away from the roots of some polyno-
mial Pm(τ ) constructed with the help of Q(X) and RD(X) in (), see (). Moreover, the
function ωd

k
(τ , m, ε) satisfies estimates of the form: there exist constants ν ′ >  and υd > 

with

∣∣ωd
k (τ , m, ε)

∣∣ ≤ υd
(
 + |m|)–μe–β|m| |τ |

 + |τ |k
eν′|τ |k

for all τ ∈ Sd , all m ∈ R, all ε ∈ D(, ε); see Proposition . Again, the proof rests on a
fixed point argument in a Banach space of holomorphic functions Fd

(ν′ ,β ,μ,k) outlined in
Section .. In Proposition , we show that ωd

k
(τ , m, ε) actually coincides with the ana-

lytic acceleration transform with indices mk and mk applied to ωd
k

(τ , m, ε), denoted by
Accd

k,k (ωd
k

)(τ , m, ε), as long as τ lies in the bounded sector Sb
d,κ . As a result, some mk -

Laplace transform of the analytic continuation of Accd
k,k (ωd

k
)(τ , m, ε), set as Ud(T , m, ε),

can be considered for all T belonging to a sector Sd,θk ,h with bisecting direction d, aper-
ture θk slightly larger than π/k, and radius h > . Following the terminology of [], Sec-
tion ., Ud(T , m, ε) can be called the (mk , mk )-sum of the formal series Û(T , m, ε) in
the direction d. Additionally, Ud(T , m, ε) solves our primary convolution equation (),
where the formal forcing term F̂(T , m, ε) is interchanged with Fd(T , m, ε), which denotes
the (mk , mk )-sum of F̂ in the direction d.

In Theorem , we construct a family of actual bounded holomorphic solutions udp (t, z, ε),
 ≤ p ≤ ς – , of our original problem () on domains of the form T × Hβ ′ × Ep described
in the main results above. Namely, the functions udp (t, z, ε) (resp. f dp (t, z, ε)) are set as
Fourier inverse transforms of Udp ,

udp (t, z, ε) = F–(m �→ Udp (εt, m, ε)
)
(z), f dp (t, z, ε) = F–(m �→ Fdp (εt, m, ε)

)
(z),

where the definition of F– is pointed out in Proposition . One proves the crucial prop-
erty that the difference of any two neighboring functions udp+ (t, z, ε) – udp (t, z, ε) tends to
zero as ε →  on Ep+ ∩ Ep faster than a function with exponential decay of order k, uni-
formly w.r.t. t ∈ T , z ∈ Hβ ′ , with k = k when the intersection Udp+ ∩Udp is not empty and
with k = k, when this intersection is empty. The same estimates hold for the difference
f dp+ (t, z, ε) – f dp (t, z, ε).

Section  is devoted to the study of the asymptotic behavior of udp (t, z, ε) as ε tends
to zero. Using the decay estimates on the differences of the functions udp and f dp , we
show the existence of a common asymptotic expansion û(ε) =

∑
m≥ hmεm/m! ∈ F�ε�

(resp. f̂ (ε) =
∑

m≥ fmεm/m! ∈ F�ε�) of Gevrey order /k for all functions udp (t, z, ε) (resp.
f dp (t, z, ε)) as ε tends to  on Ep. We obtain also a double scale asymptotics for udp as ex-
plained in the main results above. The key tool in proving the result is a version of the
Ramis-Sibuya theorem which entails two Gevrey asymptotics orders, described in Sec-
tion .. It is worthwhile noting that a similar version was recently brought into play by
Takei and Suzuki in [, ], in order to study parametric multisummability for the com-
plex Schrödinger equation.
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In the last section, we study the particular situation when the formal forcing term
F(T , m, ε) solves a linear differential and convolution initial value problem; see (). We
multiply each side of this equation by the power Tk+ which transforms it into (). Then
we show that the mk -Borel transform ψk (τ , m, ε) formally solves a convolution equation
in both variables τ and m; see (). Under a size control of the sup norm of the coeffi-
cients c(ε)/ε and cF(ε)/ε near , we show that ψk (τ , m, ε) is actually convergent near 
w.r.t. τ and can be holomorphically extended as a function ψ

dp
k

(τ , m, ε) on any unbounded
sectors Udp with direction dp and small aperture, provided that Udp stays away from the
roots of some polynomial Pm(τ ) constructed with the help of Q(X) and RD(X) in ().
Additionally, the function ψ

dp
k

(τ , m, ε) satisfies estimates of the form: there exists a con-
stant υ >  with

∣
∣ψ

dp
k

(τ , m, ε)
∣
∣ ≤ υ

(
 + |m|)–μe–β|m| |τ |

 + |τ |k
eν|τ |k

for all τ ∈ Udp , all m ∈ R, all ε ∈ D(, ε); see Proposition . The proof is once more
based upon a fixed point argument in a Banach space of holomorphic functions Fd

(ν,β ,μ,k,k)

defined in Section .. The latter properties on ψ
dp
k

(τ , m, ε) legitimize all the assumptions
made above on the forcing term F(T , m, ε). Now, we can take the mk -Laplace transform
Ldp

mk
(ψdp

k
)(T) of ψ

dp
k

(τ , m, ε) w.r.t. τ in the direction dp, which yields an analytic solution of
the initial linear equation () on some bounded sector Sdp ,θk ,h with aperture θk slightly
larger than π/k. Ldp

mk
(ψdp

k
)(T) coincides with the analytic (mk , mk )-sum Fdp (T , m, ε) of

F̂ in direction dp on the smaller sector Sdp ,θk ,h with aperture slightly larger than π/k. We
deduce consequently that the analytic forcing term f dp (t, z, ε) solves the linear PDE ()
with analytic coefficients on D(, r)×Hβ ′ ×D(, ε), for all t ∈ T , z ∈ Hβ ′ , ε ∈ Ep. In our last
main result (Theorem ), we see that the latter issue implies that udp (t, z, ε) itself solves a
nonlinear PDE () with analytic coefficients and forcing term on D(, r)×Hβ ′ ×D(, ε),
for all t ∈ T , z ∈ Hβ ′ , ε ∈ Ep.

The paper is organized as follows.
In Section , we define some weighted Banach spaces of continuous functions on

(D(,ρ) ∪ U) × R with exponential growths of different orders on unbounded sectors U
w.r.t. the first variable and exponential decay on R w.r.t. the second one. We study the con-
tinuity properties of several kind of linear and nonlinear operators acting on these spaces
that will be useful in Sections ., . and ..

In Section , we recall the definition and the main analytic and algebraic properties of
the mk-summability.

In Section ., we introduce an auxiliary differential and convolution problem () for
which we construct a formal solution.

In Section ., we show that the mk -Borel transform of this formal solution satisfies a
convolution problem () that we can uniquely solve within the Banach spaces described
in Section .

In Section ., we describe the properties of a variant of the formal and analytic accel-
eration operators associated to the mk-Borel and mk-Laplace transforms.

In Section ., we see that the mk -Borel transform of the formal solution of () satisfies
a convolution problem (). We show that its formal forcing term is κ-summable and
that its κ-sum is an acceleration of the mk -Borel transform of the above formal forcing
term. Then we construct an actual solution to the corresponding problem with the analytic



Lastra and Malek Advances in Difference Equations  (2015) 2015:200 Page 9 of 78

continuation of this κ-sum as non-homogeneous term, within the Banach spaces defined
in Section . We recognize that this actual solution is the analytic continuation of the
acceleration of the mk -Borel transform of the formal solution of (). Finally, we take its
mk -Laplace transform in order to get an actual solution of ().

In Section , with the help of Section , we build a family of actual holomorphic solutions
to our initial Cauchy problem (). We show that the difference of any two neighboring
solutions is exponentially flat for some integer order in ε (Theorem ).

In Section , we show that the actual solutions constructed in Section  share a common
formal series as Gevrey asymptotic expansion as ε tends to  on sectors (Theorem ). The
result is built on a version of the Ramis-Sibuya theorem with two Gevrey orders stated in
Section ..

In Section , we inspect the special case when the forcing term itself solves a linear PDE.
Then we notice that the solutions of () constructed in Section  actually solve a nonlinear
PDE with holomorphic coefficients and forcing term near the origin (Theorem ).

2 Banach spaces of functions with exponential growth and decay
The Banach spaces introduced in the next Section . (resp. Section .) will be crucial in
the construction of analytic solutions of a convolution problem investigated in the forth-
coming Section . (resp. Section .).

2.1 Banach spaces of functions with exponential growth κ and decay of
exponential order 1

We denote D(, r) the open disc centered at  with radius r >  in C and D̄(, r) its clo-
sure. Let Ud be an open unbounded sector in the direction d ∈ R centered at  in C. By
convention, the sectors we consider do not contain the origin in C.

Definition  Let ν,β ,μ >  and ρ >  be positive real numbers. Let k ≥ , κ ≥  be integers
and d ∈R. We denote Fd

(ν,β ,μ,k,κ) the vector space of continuous functions (τ , m) �→ h(τ , m)
on (D̄(,ρ) ∪ Ud) ×R, which are holomorphic with respect to τ on D(,ρ) ∪ Ud and such
that

∥∥h(τ , m)
∥∥

(ν,β ,μ,k,κ) = sup
τ∈D̄(,ρ)∪Ud ,m∈R

(
 + |m|)μ  + |τ |k

|τ | exp
(
β|m| – ν|τ |κ)∣∣h(τ , m)

∣∣

is finite. One can check that the normed space (Fd
(ν,β ,μ,k,κ),‖.‖(ν,β ,μ,k,κ)) is a Banach space.

Remark These norms are appropriate modifications of those introduced in the work [],
Section .

Throughout the whole subsection, we assume μ,β ,ν,ρ > , k,κ ≥ , and d ∈R are fixed.
In the next lemma, we check the continuity property under multiplication operation with
bounded functions.

Lemma  Let (τ , m) �→ a(τ , m) be a bounded continuous function on (D̄(,ρ)∪Ud)×R by
a constant C > . We assume that a(τ , m) is holomorphic with respect to τ on D(,ρ)∪Ud .
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Then we have

∥
∥a(τ , m)h(τ , m)

∥
∥

(ν,β ,μ,k,κ) ≤ C
∥
∥h(τ , m)

∥
∥

(ν,β ,μ,k,κ) ()

for all h(τ , m) ∈ Fd
(ν,β ,μ,k,κ).

In the next proposition, we study the continuity property of some convolution operators
acting on the latter Banach spaces.

Proposition  Let χ > – be a real number. Let ν ≥ – be an integer. We assume that
 + χ + ν ≥ .

If κ ≥ k( ν
χ+ + ), then there exists a constant C >  (depending on ν , ν, χ) such that

∥∥
∥∥

∫ τk



(
τ k – s

)χ sν f
(
s/k , m

)
ds

∥∥
∥∥

(ν,β ,μ,k,κ)
≤ C

∥
∥f (τ , m)

∥
∥

(ν,β ,μ,k,κ) ()

for all f (τ , m) ∈ Fd
(ν,β ,μ,k,κ).

Proof Let f (τ , m) ∈ Fd
(ν,β ,μ,k,κ). By definition, we have

∥∥
∥∥

∫ τk



(
τ k – s

)χ sν f
(
s/k , m

)
ds

∥∥
∥∥

(ν,β ,μ,k,κ)

= sup
τ∈D̄(,ρ)∪Ud ,m∈R

(
 + |m|)μ  + |τ |k

|τ | exp
(
β|m| – ν|τ |κ)

×
∣∣
∣∣

∫ τk



{(
 + |m|)μeβ|m| exp

(
–ν|s|κ/k) + |s|

|s|/k f
(
s/k , m

)}
B(τ , s, m) ds

∣∣
∣∣, ()

where

B(τ , s, m) =


( + |m|)μ e–β|m| exp(ν|s|κ/k)
 + |s| |s|/k(τ k – s

)χ sν .

Therefore,

∥∥
∥∥

∫ τk



(
τ k – s

)χ sν f
(
s/k , m

)
ds

∥∥
∥∥

(ν,β ,μ,k,κ)
≤ C

∥
∥f (τ , m)

∥
∥

(ν,β ,μ,k,κ), ()

where

C = sup
τ∈D̄(,ρ)∪Ud

 + |τ |k

|τ | exp
(
–ν|τ |κ)

∫ |τ |k



exp(νhκ/k)
 + h h


k
(|τ |k – h

)χ hν dh

= sup
x≥

B(x), ()

where

B(x) =
 + x

x/k exp
(
–νxκ/k)

∫ x



exp(νhκ/k)
 + h h


k +ν (x – h)χ dh.
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We write B(x) = B(x) + B(x), where

B(x) =
 + x

x/k exp
(
–νxκ/k)

∫ x/



exp(νhκ/k)
 + h h


k +ν (x – h)χ dh,

B(x) =
 + x

x/k exp
(
–νxκ/k)

∫ x

x/

exp(νhκ/k)
 + h h


k +ν (x – h)χ dh.

Now, we study the function B(x). We first assume that – < χ < . In that case, we have
(x – h)χ ≤ (x/)χ for all  ≤ h ≤ x/ with x > . Since ν ≥ –, we deduce that

B(x) ≤  + x

x/k

(
x


)χ

e–νxκ/k
∫ x/



eνhκ/k

 + h h

k +ν dh

≤ (
 + x) 

/k( 
k + ν + )

(
x


)+χ+ν

exp

(
–ν

(
 –


κ/k

)
xκ/k

)
()

for all x > . Since κ ≥ k and  + χ + ν ≥ , we deduce that there exists a constant K > 
with

sup
x≥

B(x) ≤ K. ()

We assume now that χ ≥ . In this situation, we know that (x – h)χ ≤ xχ for all  ≤ h ≤
x/, with x ≥ . Hence, since ν ≥ –,

B(x) ≤ (
 + x) 

/k( 
k + ν + )

xχ (x/)ν+ exp

(
–ν

(
 –


κ/k

)
xκ/k

)
()

for all x ≥ . Again, we deduce that there exists a constant K. >  with

sup
x≥

B(x) ≤ K.. ()

In the next step, we focus on the function B(x). First, we observe that  + h ≥  + (x/)

for all x/ ≤ h ≤ x. Therefore, there exists a constant K >  such that

B(x) ≤  + x

 + ( x
 )


x/k exp

(
–νxκ/k)

∫ x

x/
exp

(
νhκ/k)h


k +ν (x – h)χ dh

≤ K


x/k exp
(
–νxκ/k)

∫ x


exp

(
νhκ/k)h


k +ν (x – h)χ dh ()

for all x > . It remains to study the function

B.(x) =
∫ x


exp

(
νhκ/k)h


k +ν (x – h)χ dh

for x ≥ . By the uniform expansion eνhκ/k =
∑

n≥(νhκ/k)n/n! on every compact interval
[, x], x ≥ , we can write

B.(x) =
∑

n≥

νn

n!

∫ x


h

nκ
k + 

k +ν (x – h)χ dh. ()
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Using the Beta integral formula (see [], Appendix B) and since χ > –, 
k + ν > –, we

can write

B.(x) =
∑

n≥

νn

n!
�(χ + )�( nκ

k + 
k + ν + )

�( nκ
k + 

k + ν + χ + )
x

nκ
k + 

k +ν+χ+ ()

for all x ≥ . Bearing in mind that

�(x)/�(x + a) ∼ /xa ()

as x → +∞, for any a >  (see for instance, [], Appendix B), from (), we get a constant
K. >  such that

B.(x) ≤ K.x

k +ν+χ+

∑

n≥


(n + )χ+n!

(
νxκ/k)n ()

for all x ≥ . Using again (), we know that /(n + )χ+ ∼ �(n + )/�(n + χ + ) as n →
+∞. Hence, from (), there exists a constant K. >  such that

B.(x) ≤ K.x

k +ν+χ+

∑

n≥


�(n + χ + )

(
νxκ/k)n ()

for all x ≥ .
Remembering the asymptotic properties of the generalized Mittag-Leffler function

(known as Wiman function in the literature) Eα,β(z) =
∑

n≥ zn/�(β + αn), for any α,β > 
(see [], Appendix B or [], expansion (), p.), we get from () a constant K. > 
such that

B.(x) ≤ K.x

k +ν+χ+x– κ

k (χ+)eνxκ/k
()

for all x ≥ . Under the assumption that ν + χ +  ≤ κ
k (χ + ) and gathering (), (), we

get a constant K. >  such that

sup
x≥

B(x) ≤ K.. ()

Finally, taking into account the estimates (), (), (), (), (), the inequality () follows.
�

Proposition  Let k,κ ≥  be integers such that κ ≥ k. Let Q(X), Q(X), R(X) ∈C[X] such
that

deg(R) ≥ deg(Q), deg(R) ≥ deg(Q), R(im) �=  ()

for all m ∈R. Assume that μ > max(deg(Q)+, deg(Q)+). Let m �→ b(m) be a continuous
function on R such that
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∣∣b(m)
∣∣ ≤ 

|R(im)|

for all m ∈R. Then there exists a constant C >  (depending on Q, Q, R, μ, k, κ , ν) such
that

∥
∥∥∥b(m)

∫ τk



(
τ k – s

) 
k

(∫ s



∫ +∞

–∞
Q

(
i(m – m)

)
f
(
(s – x)/k , m – m

)

× Q(im)g
(
x/k , m

) 
(s – x)x

dx dm

)
ds

∥
∥∥
∥

(ν,β ,μ,k,κ)

≤ C
∥
∥f (τ , m)

∥
∥

(ν,β ,μ,k,κ)

∥
∥g(τ , m)

∥
∥

(ν,β ,μ,k,κ) ()

for all f (τ , m), g(τ , m) ∈ Fd
(ν,β ,μ,k,κ).

Proof Let f (τ , m), g(τ , m) ∈ Fd
(ν,β ,μ,k,κ). For any τ ∈ D̄(,ρ) ∪ Ud , the segment [, τ k] is such

that, for any s ∈ [, τ k], any x ∈ [, s], the expressions f ((s – x)/k , m – m) and g(x/k , m)
are well defined, provided that m, m ∈R. By definition, we can write

∥∥
∥∥b(m)

∫ τk



(
τ k – s

) 
k

(∫ s



∫ +∞

–∞
Q

(
i(m – m)

)
f
(
(s – x)/k , m – m

)

× Q(im)g
(
x/k , m

) 
(s – x)x

dx dm

)
ds

∥
∥∥∥

(ν,β ,μ,k,κ)

= sup
τ∈D̄(,ρ)∪Ud ,m∈R

(
 + |m|)μ  + |τ |k

|τ | exp
(
β|m| – ν|τ |κ)

×
∣
∣∣
∣

∫ τk



(
τ k – s

)/k
(∫ s



∫ +∞

–∞

{
(
 + |m – m|

)μeβ|m–m|  + |s – x|
|s – x|/k

× exp
(
–ν|s – x|κ/k)f

(
(s – x)/k , m – m

)
}

×
{
(
 + |m|

)μeβ|m|  + |x|
|x|/k exp

(
–ν|x|κ/k)g

(
x/k , m

)
}
C(s, x, m, m) dx dm

)
ds

∣
∣∣
∣,

where

C(s, x, m, m) =
exp(–β|m|) exp(–β|m – m|)

( + |m – m|)μ( + |m|)μ b(m)Q
(
i(m – m)

)
Q(im)

× |s – x|/k|x|/k

( + |s – x|)( + |x|)
exp

(
ν|s – x|κ/k) exp

(
ν|x|κ/k) 

(s – x)x
.

Now, we know that there exist Q,Q,R >  with

∣
∣Q

(
i(m – m)

)∣∣ ≤ Q
(
 + |m – m|

)deg(Q),
∣
∣Q(im)

∣
∣ ≤ Q

(
 + |m|

)deg(Q),
∣
∣R(im)

∣
∣ ≥ R

(
 + |m|)deg(R)

()

for all m, m ∈R. Therefore,
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∥∥
∥∥b(m)

∫ τk



(
τ k – s

) 
k

(∫ s



∫ +∞

–∞
Q

(
i(m – m)

)
f
(
(s – x)/k , m – m

)

× Q(im)g
(
x/k , m

) 
(s – x)x

dx dm

)
ds

∥∥
∥∥

(ν,β ,μ,k,κ)

≤ C
∥∥f (τ , m)

∥∥
(ν,β ,μ,k,κ)

∥∥g(τ , m)
∥∥

(ν,β ,μ,k,κ), ()

where

C = sup
τ∈D̄(,ρ)∪Ud ,m∈R

(
 + |m|)μ  + |τ |k

|τ | exp
(
β|m| – ν|τ |κ) 

R( + |m|)deg(R)

×
∫ |τ |k



(|τ |k – h
)/k

(∫ h



∫ +∞

–∞
exp(–β|m|) exp(–β|m – m|)

( + |m – m|)μ( + |m|)μ

×QQ
(
 + |m – m|

)deg(Q)( + |m|
)deg(Q) (h – x)/kx/k

( + (h – x))( + x)

× exp
(
ν(h – x)κ/k) exp

(
νxκ/k) 

(h – x)x
dx dm

)
dh. ()

Now, since κ ≥ k, we have

hκ/k ≥ (h – x)κ/k + xκ/k ()

for all h ≥ , all x ∈ [, h]. Indeed, let x = hu where u ∈ [, ]. Then the inequality () is
equivalent to show that

 ≥ ( – u)κ/k + uκ/k ()

for all u ∈ [, ]. Let ϕ(u) = ( – u)κ/k + uκ/k on [, ]. We have ϕ′(u) = κ
k (u

κ
k – – ( – u)

κ
k –).

Since κ ≥ k, the function ψ(z) = z
κ
k – is increasing on [, ], and therefore we find that

ϕ′(u) <  if  ≤ u < /, ϕ′(u) = , if u = / and ϕ′(u) >  if / < u ≤ . Since ϕ() = ϕ() = ,
we get that ϕ(u) ≤  for all u ∈ [, ]. Therefore, () holds and () is proved.

Using the triangular inequality |m| ≤ |m| + |m – m|, for all m, m ∈ R, we find that
C ≤ C.C. where

C. =
QQ

R
sup
m∈R

(
 + |m|)μ–deg(R)

×
∫ +∞

–∞


( + |m – m|)μ–deg(Q)( + |m|)μ–deg(Q) dm ()

which is finite whenever μ > max(deg(Q)+, deg(Q)+) under the assumption () using
the same estimates as in Lemma  of [] (see also Lemma . from []), and where

C. = sup
τ∈D̄(,ρ)∪Ud

 + |τ |k

|τ | exp
(
–ν|τ |κ)

×
∫ |τ |k



(|τ |k – h
)/k

exp
(
νhκ/k)

∫ h



(h – x)/kx/k

( + (h – x))( + x)


(h – x)x
dx dh. ()
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From () we find that C. ≤ C., where

C. = sup
x≥

 + x

x/k exp
(
–νxκ/k)

∫ x



(
x – h′)/k

exp
(
νh′κ/k)

×
(∫ h′




( + (h′ – x′))( + x′)



(h′ – x′)– 
k x′– 

k
dx′

)
dh′. ()

By the change of variable x′ = h′u, for u ∈ [, ], we can write

∫ h′




( + (h′ – x′))( + x′)



(h′ – x′)– 
k x′– 

k
dx′

=


h′– 
k

∫ 





( + h′( – u))( + h′u)( – u)– 
k u– 

k
du = Jk

(
h′). ()

Using a partial fraction decomposition, we can split Jk(h′) = J,k(h′) + J,k(h′), where

J,k
(
h′) =



h′– 
k (h′ + )

∫ 



 – u

( + h′( – u))( – u)– 
k u– 

k
du,

J,k
(
h′) =



h′– 
k (h′ + )

∫ 



u + 

( + h′u)( – u)– 
k u– 

k
du.

()

From now on, we assume that k ≥ . By construction of J,k(h′) and J,k(h′), we see that
there exists a constant jk >  such that

Jk
(
h′) ≤ jk

h′– 
k (h′ + )

()

for all h′ > . From () and (), we deduce that C. ≤ supx≥ C̃.(x), where

C̃.(x) =
(
 + x) exp

(
–νxκ/k)

∫ x



jk exp(νh′κ/k)

h′– 
k (h′ + )

dh′. ()

From L’Hospital rule, we know that

lim
x→+∞ C̃.(x) = lim

x→+∞
jk

x– 
k

(+x)

x+

ν κ
k x

κ
k –( + x) – x

which is finite if κ ≥ k and when k ≥ . Therefore, we get a constant C̃. >  such that

sup
x≥

C̃.(x) ≤ C̃.. ()

Taking into account the estimates for (), (), (), (), () and (), we obtain the
result ().

It remains to consider the case k = . In that case, we know from Corollary . of []
that there exists a constant j >  such that

J
(
h′) ≤ j

h′ + 
()
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for all h′ ≥ . From () and (), we deduce that C. ≤ supx≥ C̃..(x), where

C̃..(x) =
(
 + x) exp

(
–νxκ

)∫ x



j exp(νh′κ )
h′ + 

dh′. ()

From the L’Hospital rule, we know that

lim
x→+∞ C̃..(x) = lim

x→+∞
( + x)j

νκxκ–( + x) – x
,

which is finite whenever κ ≥ . Therefore, we get a constant C̃.. >  such that

sup
x≥

C̃..(x) ≤ C̃... ()

Taking into account the estimates for (), (), (), (), (), and (), we obtain the
result () for k = . �

Definition  Let β ,μ ∈ R. We denote E(β ,μ) the vector space of continuous functions
h : R →C such that

∥
∥h(m)

∥
∥

(β ,μ) = sup
m∈R

(
 + |m|)μ

exp
(
β|m|)∣∣h(m)

∣
∣

is finite. The space E(β ,μ) equipped with the norm ‖ · ‖(β ,μ) is a Banach space.

Proposition  Let k,κ ≥  be integers such that κ ≥ k. Let Q(X), R(X) ∈ C[X] be polyno-
mials such that

deg(R) ≥ deg(Q), R(im) �=  ()

for all m ∈ R. Assume that μ > deg(Q) + . Let m �→ b(m) be a continuous function such
that

∣∣b(m)
∣∣ ≤ 

|R(im)|

for all m ∈R. Then there exists a constant C >  (depending on Q, R, μ, k, κ , ν) such that

∥∥
∥∥b(m)

∫ τk



(
τ k – s

) 
k

∫ +∞

–∞
f (m – m)Q(im)g

(
s/k , m

)
dm

ds
s

∥∥
∥∥

(ν,β ,μ,k,κ)

≤ C
∥∥f (m)

∥∥
(β ,μ)

∥∥g(τ , m)
∥∥

(ν,β ,μ,k,κ) ()

for all f (m) ∈ E(β ,μ), all g(τ , m) ∈ Fd
(ν,β ,μ,k,κ).

Proof The proof follows the same lines of arguments as those of Propositions  and . Let
f (m) ∈ E(β ,μ), g(τ , m) ∈ Fd

(ν,β ,μ,k,κ). We can write
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N :=
∥∥
∥∥b(m)

∫ τk



(
τ k – s

) 
k

∫ +∞

–∞
f (m – m)Q(im)g

(
s/k , m

)
dm

ds
s

∥∥
∥∥

(ν,β ,μ,k,κ)

= sup
τ∈D̄(,ρ)∪Ud ,m∈R

(
 + |m|)μ  + |τ |k

|τ | exp
(
β|m| – ν|τ |κ)

×
∣∣
∣∣b(m)

∫ τk



∫ +∞

–∞

{(
 + |m – m|

)μ
exp

(
β|m – m|

)
f (m – m)

}

×
{(

 + |m|
)μ

exp
(
β|m|

)
exp

(
–ν|s|κ/k) + |s|

|s|/k g
(
s/k , m

)}

×D(τ , s, m, m) dm ds
∣∣
∣∣, ()

where

D(τ , s, m, m) =
Q(im)e–β|m|e–β|m–m|

( + |m – m|)μ
(
 + |m|

)μ

exp(ν|s|κ/k)
 + |s| |s|/k(τ k – s

)/k 
s

.

Again, we know that there exist constants Q,R >  such that

∣
∣Q(im)

∣
∣ ≤ Q

(
 + |m|

)deg(Q),
∣
∣R(im)

∣
∣ ≥ R

(
 + |m|)deg(R)

for all m, m ∈R. By means of the triangular inequality |m| ≤ |m| + |m – m|, we find that

N ≤ C.C.
∥∥f (m)

∥∥
(β ,μ)

∥∥g(τ , m)
∥∥

(ν,β ,μ,k,κ), ()

where

C. = sup
τ∈D̄(,ρ)∪Ud

 + |τ |k

|τ | exp
(
–ν|τ |κ)

∫ |τ |k



exp(νhκ/k)
 + h h


k –(|τ |k – h

)/k dh

and

C. =
Q

R
sup
m∈R

(
 + |m|)μ–deg(R)

∫ +∞

–∞


( + |m – m|)μ( + |m|)μ–deg(Q) dm.

Under the hypothesis κ ≥ k and from the estimates (), (), and () in the special case
χ = /k and ν = –, we know that C. is finite.

From the estimates for (), we know that C. is finite under the assumption () pro-
vided that μ > deg(Q) + . Finally, gathering the latter bound estimates together with ()
yields the result (). �

In the next proposition, we recall from [], Proposition , that (E(β ,μ),‖·‖(β ,μ)) is a Banach
algebra for some noncommutative product � introduced below.

Proposition  Let Q(X), Q(X), R(X) ∈ C[X] be polynomials such that

deg(R) ≥ deg(Q), deg(R) ≥ deg(Q), R(im) �= , ()
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for all m ∈ R. Assume that μ > max(deg(Q) + , deg(Q) + ). Then there exists a constant
C >  (depending on Q, Q, R, μ) such that

∥
∥∥∥


R(im)

∫ +∞

–∞
Q

(
i(m – m)

)
f (m – m)Q(im)g(m) dm

∥
∥∥∥

(β ,μ)

≤ C
∥∥f (m)

∥∥
(β ,μ)

∥∥g(m)
∥∥

(β ,μ) ()

for all f (m), g(m) ∈ E(β ,μ). Therefore, (E(β ,μ),‖ · ‖(β ,μ)) becomes a Banach algebra for the
product � defined by

f � g(m) =


R(im)

∫ +∞

–∞
Q

(
i(m – m)

)
f (m – m)Q(im)g(m) dm.

As a particular case, when f , g ∈ E(β ,μ) with β >  and μ > , the classical convolution prod-
uct

f ∗ g(m) =
∫ +∞

–∞
f (m – m)g(m) dm

belongs to E(β ,μ).

2.2 Banach spaces of functions with exponential growth k and decay of
exponential order 1

In this subsection, we mainly recall some functional properties of the Banach spaces al-
ready introduced in the work [], Section . The Banach spaces we consider here coincide
with those introduced in [] except the fact that they are not depending on a complex pa-
rameter ε and that the functions living in these spaces are not holomorphic on a disc cen-
tered at  but only on a bounded sector centered at . For this reason, all the propositions
are given without proof except Proposition , which is an improved version of Proposi-
tions  and  of [].

We denote by Sb
d an open bounded sector centered at  in the direction d ∈R and S̄b

d its
closure. Let Sd be an open unbounded sector in the direction d. By convention, we recall,
the sectors we consider throughout the paper do not contain the origin in C.

Definition  Let ν,β ,μ >  be positive real numbers. Let k ≥  be an integer and let d ∈R.
We denote Fd

(ν,β ,μ,k) the vector space of continuous functions (τ , m) �→ h(τ , m) on (S̄b
d ∪

Sd) ×R, which are holomorphic with respect to τ on Sb
d ∪ Sd and such that

∥
∥h(τ , m)

∥
∥

(ν,β ,μ,k) = sup
τ∈S̄b

d∪Sd ,m∈R

(
 + |m|)μ  + |τ |k

|τ | exp
(
β|m| – ν|τ |k)∣∣h(τ , m)

∣
∣

is finite. One can check that the normed space (Fd
(ν,β ,μ,k),‖ · ‖(ν,β ,μ,k)) is a Banach space.

Throughout the whole subsection, we assume that μ,β ,ν >  and k ≥ , d ∈ R are fixed.
In the next lemma, we check the continuity property by multiplication operation with
bounded functions.
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Lemma  Let (τ , m) �→ a(τ , m) be a bounded continuous function on (S̄b
d ∪ Sd) ×R, which

is holomorphic with respect to τ on Sb
d ∪ Sd . Then we have

∥∥a(τ , m)h(τ , m)
∥∥

(ν,β ,μ,k) ≤
(

sup
τ∈S̄b

d∪Sd ,m∈R

∣∣a(τ , m)
∣∣
)∥∥h(τ , m)

∥∥
(ν,β ,μ,k) ()

for all h(τ , m) ∈ Fd
(ν,β ,μ,k).

In the next proposition, we study the continuity property of some convolution operators
acting on the latter Banach spaces.

Proposition  Let γ ≥  and χ > – be real numbers. Let ν ≥ – be an integer. We
consider a holomorphic function aγ,k(τ ) on Sb

d ∪ Sd , continuous on S̄b
d ∪ Sd , such that

∣∣aγ,k(τ )
∣∣ ≤ 

( + |τ |k)γ

for all τ ∈ Sb
d ∪ Sd .

If  + χ + ν ≥  and γ ≥ ν, then there exists a constant C >  (depending on ν , ν, χ,
γ) such that

∥∥
∥∥aγ,k(τ )

∫ τk



(
τ k – s

)χ sν f
(
s/k , m

)
ds

∥∥
∥∥

(ν,β ,μ,k)
≤ C

∥
∥f (τ , m)

∥
∥

(ν,β ,μ,k) ()

for all f (τ , m) ∈ Fd
(ν,β ,μ,k).

Proof The proof follows similar arguments to those in Proposition . Indeed, let f (τ , m) ∈
Fd

(ν,β ,μ,k). By definition, we have

∥
∥∥
∥aγ,k(τ )

∫ τk



(
τ k – s

)χ sν f
(
s/k , m

)
ds

∥
∥∥
∥

(ν,β ,μ,k)

= sup
τ∈S̄b

d∪Sd ,m∈R

(
 + |m|)μ  + |τ |k

|τ | exp
(
β|m| – ν|τ |k)

×
∣∣
∣∣aγ,k(τ )

∫ τk



{(
 + |m|)μeβ|m| exp

(
–ν|s|) + |s|

|s|/k f
(
s/k , m

)}

×F (τ , s, m) ds
∣
∣∣
∣, ()

where

F (τ , s, m) =


( + |m|)μ e–β|m| exp(ν|s|)
 + |s| |s|/k(τ k – s

)χ sν .

Therefore,

∥
∥∥
∥aγ,k(τ )

∫ τk



(
τ k – s

)χ sν f
(
s/k , m

)
ds

∥
∥∥
∥

(ν,β ,μ,k)
≤ C

∥∥f (τ , m)
∥∥

(ν,β ,μ,k), ()
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where

C = sup
τ∈S̄b

d∪Sd

 + |τ |k

|τ | exp
(
–ν|τ |k) 

( + |τ |k)γ

∫ |τ |k



exp(νh)
 + h h


k
(|τ |k – h

)χ hν dh

= sup
x≥

F(x),

where

F(x) =
 + x

x/k exp(–νx)


( + x)γ

∫ x



exp(νh)
 + h h


k +ν (x – h)χ dh.

We write F(x) = F(x) + F(x), where

F(x) =
 + x

x/k exp(–νx)


( + x)γ

∫ x/



exp(νh)
 + h h


k +ν (x – h)χ dh,

F(x) =
 + x

x/k exp(–νx)


( + x)γ

∫ x

x/

exp(νh)
 + h h


k +ν (x – h)χ dh.

Now, we study the function F(x). We first assume that – < χ < . In that case, we have
(x – h)χ ≤ (x/)χ for all  ≤ h ≤ x/ with x > . We deduce that

F(x) ≤  + x

x/k

(
x


)χ

e–νx 
( + x)γ

∫ x/



eνh

 + h h

k +ν dh

≤ (
 + x) 

/k( 
k + ν + )

(
x


)+χ+ν 
( + x)γ

exp

(
–

νx


)
()

for all x > . Bearing in mind that  +χ +ν ≥  and since  + x ≥  for all x ≥ , we deduce
that there exists a constant K >  with

sup
x≥

F(x) ≤ K. ()

We assume now that χ ≥ . In this situation, we know that (x – h)χ ≤ xχ for all  ≤ h ≤
x/, with x ≥ . Hence,

F(x) ≤ (
 + x) 

/k( 
k + ν + )

xχ (x/)ν+ 
( + x)γ

exp

(
–

νx


)
()

for all x ≥ . Again, we deduce that there exists a constant K. >  with

sup
x≥

F(x) ≤ K.. ()

In the next step, we focus on the function F(x). First, we observe that  + h ≥  + (x/)

for all x/ ≤ h ≤ x. Therefore, there exists a constant K >  such that

F(x) ≤  + x

 + ( x
 )


x/k exp(–νx)


( + x)γ

∫ x

x/
exp(νh)h


k +ν (x – h)χ dh

≤ K


x/k


( + x)γ
exp(–νx)

∫ x


exp(νh)h


k +ν (x – h)χ dh ()
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for all x > . Now, from the estimates (), we know that there exists a constant K. > 
such that

F.(x) =
∫ x


exp(νh)h


k +ν (x – h)χ dh ≤ K.x


k +ν eνx ()

for all x ≥ . From () we get the existence of a constant F̃ >  with

sup
x∈[,]

F(x) ≤ F̃. ()

On the other hand, we also have  + x ≥ x for all x ≥ . Since γ ≥ ν and due to () with
(), we get a constant F̌ >  with

sup
x≥

F(x) ≤ F̌. ()

Gathering the estimates (), (), (), (), and (), we finally obtain (). �

The next two propositions are already stated as Propositions  and  in [].

Proposition  Let k ≥  be an integer. Let Q(X), Q(X), R(X) ∈C[X] such that

deg(R) ≥ deg(Q), deg(R) ≥ deg(Q), R(im) �=  ()

for all m ∈R. Assume that μ > max(deg(Q)+, deg(Q)+). Let m �→ b(m) be a continuous
function on R such that

∣∣b(m)
∣∣ ≤ 

|R(im)|

for all m ∈ R. Then there exists a constant C >  (depending on Q, Q, R, μ, k, ν) such
that

∥
∥∥
∥b(m)

∫ τk



(
τ k – s

) 
k

(∫ s



∫ +∞

–∞
Q

(
i(m – m)

)
f
(
(s – x)/k , m – m

)

× Q(im)g
(
x/k , m

) 
(s – x)x

dx dm

)
ds

∥
∥∥
∥

(ν,β ,μ,k)

≤ C
∥
∥f (τ , m)

∥
∥

(ν,β ,μ,k)

∥
∥g(τ , m)

∥
∥

(ν,β ,μ,k) ()

for all f (τ , m), g(τ , m) ∈ Fd
(ν,β ,μ,k).

Proposition  Let k ≥  be an integer. Let Q(X), R(X) ∈C[X] be polynomials such that

deg(R) ≥ deg(Q), R(im) �=  ()

for all m ∈ R. Assume that μ > deg(Q) + . Let m �→ b(m) be a continuous function such
that

∣
∣b(m)

∣
∣ ≤ 

|R(im)|
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for all m ∈R. Then there exists a constant C >  (depending on Q, R, μ, k, ν) such that

∥
∥∥
∥b(m)

∫ τk



(
τ k – s

) 
k

∫ +∞

–∞
f (m – m)Q(im)g

(
s/k , m

)
dm

ds
s

∥
∥∥
∥

(ν,β ,μ,k)

≤ C
∥
∥f (m)

∥
∥

(β ,μ)

∥
∥g(τ , m)

∥
∥

(ν,β ,μ,k) ()

for all f (m) ∈ E(β ,μ), all g(τ , m) ∈ Fd
(ν,β ,μ,k).

3 Laplace transform, asymptotic expansions and Fourier transform
We recall the definition of k-Borel summability of formal series with coefficients in a Ba-
nach space which is a slightly modified version of the one given in [], Section ., that
was introduced in []. All the properties stated in this section are already contained in our
previous work [].

Definition  Let k ≥  be an integer. Let mk(n) be the sequence defined by

mk(n) = �

(
n
k

)
=

∫ +∞


t

n
k –e–t dt

for all n ≥ . A formal series

X̂(T) =
∞∑

n=

anTn ∈ TE�T �

with coefficients in a Banach space (E,‖ · ‖E) is said to be mk-summable with respect to T
in the direction d ∈ [, π ) if

(i) there exists ρ ∈ R+ such that the following formal series, called a formal mk-Borel
transform of X̂,

Bmk (X̂)(τ ) =
∞∑

n=

an

�( n
k )

τ n ∈ τE�τ �,

is absolutely convergent for |τ | < ρ ;
(ii) there exists δ >  such that the series Bmk (X̂)(τ ) can be analytically continued with

respect to τ in a sector Sd,δ = {τ ∈ C∗ : |d – arg(τ )| < δ}. Moreover, there exist C >  and
K >  such that

∥
∥Bmk (X̂)(τ )

∥
∥
E

≤ CeK |τ |k

for all τ ∈ Sd,δ .

If this is so, the vector valued mk-Laplace transform of Bmk (X̂)(τ ) in the direction d is
defined by

Ld
mk

(
Bmk (X̂)

)
(T) = k

∫

Lγ

Bmk (X̂)(u)e–(u/T)k du
u

,
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along a half-line Lγ = R+eiγ ⊂ Sd,δ ∪ {}, where γ depends on T and is chosen in such a
way that cos(k(γ – arg(T))) ≥ δ > , for some fixed δ. The function Ld

mk
(Bmk (X̂))(T) is

well defined, holomorphic and bounded in any sector

Sd,θ ,R/k =
{

T ∈C
∗ : |T | < R/k ,

∣
∣d – arg(T)

∣
∣ < θ/

}
,

where π
k < θ < π

k + δ and  < R < δ/K . This function is called the mk-sum of the formal
series X̂(T) in the direction d.

In the next proposition, we give some identities for the mk-Borel transform that will be
useful in the sequel.

Proposition  Let f̂ (t) =
∑

n≥ fntn, ĝ(t) =
∑

n≥ gntn be formal series whose coefficients fn,
gn belong to some Banach space (E,‖ · ‖E). We assume that (E,‖ · ‖E) is a Banach algebra
for some product �. Let k, m ≥  be integers. The following formal identities hold.

Bmk

(
tk+∂t f̂ (t)

)
(τ ) = kτ kBmk

(
f̂ (t)

)
(τ ), ()

Bmk

(
tmf̂ (t)

)
(τ ) =

τ k

�( m
k )

∫ τk



(
τ k – s

) m
k –Bmk

(
f̂ (t)

)(
s/k)ds

s
()

and

Bmk

(
f̂ (t) � ĝ(t)

)
(τ ) = τ k

∫ τk


Bmk

(
f̂ (t)

)((
τ k – s

)/k)
�Bmk

(
ĝ(t)

)(
s/k) 

(τ k – s)s
ds. ()

In the following proposition, we recall some properties of the inverse Fourier transform

Proposition  Let f ∈ E(β ,μ) with β > , μ > . The inverse Fourier transform of f is defined
by

F–(f )(x) =


(π )/

∫ +∞

–∞
f (m) exp(ixm) dm

for all x ∈ R. The function F–(f ) extends to an analytic function on the strip

Hβ =
{

z ∈C/
∣∣Im(z)

∣∣ < β
}

. ()

Let φ(m) = imf (m) ∈ E(β ,μ–). Then we have

∂zF–(f )(z) = F–(φ)(z) ()

for all z ∈ Hβ .
Let g ∈ E(β ,μ) and let ψ(m) = 

(π )/ f ∗ g(m), the convolution product of f and g , for all
m ∈R. From Proposition , we know that ψ ∈ E(β ,μ). Moreover, we have

F–(f )(z)F–(g)(z) = F–(ψ)(z) ()

for all z ∈ Hβ .
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4 Formal and analytic solutions of convolution initial value problems with
complex parameters

4.1 Formal solutions of the main convolution initial value problem
Let k, k ≥ , D ≥  be integers such that k > k. Let δl ≥  be integers such that

 = δ, δl < δl+, ()

for all  ≤ l ≤ D – . For all  ≤ l ≤ D – , let dl,�l ≥  be nonnegative integers such that

dl > δl, �l – dl + δl –  ≥ . ()

Let Q(X), Q(X), Q(X), Rl(X) ∈ C[X],  ≤ l ≤ D, be polynomials such that

deg(Q) ≥ deg(RD) ≥ deg(Rl), deg(RD) ≥ deg(Q), deg(RD) ≥ deg(Q),

Q(im) �= , Rl(im) �= , RD(im) �= 
()

for all m ∈ R, all  ≤ l ≤ D – . We consider sequences of functions m �→ C,n(m, ε), for all
n ≥ , and m �→ Fn(m, ε), for all n ≥ , that belong to the Banach space E(β ,μ) for some β > 
and μ > max(deg(Q) + , deg(Q) + ) and which depend holomorphically on ε ∈ D(, ε)
for some ε > . We assume that there exist constants K, T >  such that

∥∥C,n(m, ε)
∥∥

(β ,μ) ≤ K

(


T

)n

()

for all n ≥ , for all ε ∈ D(, ε). We define C(T , m, ε) =
∑

n≥ C,n(m, ε)Tn which is a con-
vergent series on D(, T/) with values in E(β ,μ) and F(T , m, ε) =

∑
n≥ Fn(m, ε)Tn, which

is a formal series with coefficients in E(β ,μ). Let c,(ε), c(ε), c,(ε), and cF (ε) be bounded
holomorphic functions on D(, ε) which vanish at the origin ε = . We consider the fol-
lowing initial value problem:

Q(im)
(
∂T U(T , m, ε)

)
– T (δD–)(k+)∂

δD
T RD(im)U(T , m, ε)

= ε– c,(ε)
(π )/

∫ +∞

–∞
Q

(
i(m – m)

)
U(T , m – m, ε)Q(im)U(T , m, ε) dm

+
D–∑

l=

Rl(im)ε�l–dl+δl–Tdl∂
δl
T U(T , m, ε)

+ ε– c(ε)
(π )/

∫ +∞

–∞
C(T , m – m, ε)R(im)U(T , m, ε) dm

+ ε– c,(ε)
(π )/

∫ +∞

–∞
C,(m – m, ε)R(im)U(T , m, ε) dm

+ ε–cF (ε)F(T , m, ε) ()

for given initial data U(, m, ε) ≡ .

Proposition  There exists a unique formal series

Û(T , m, ε) =
∑

n≥

Un(m, ε)Tn
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solution of () with initial data U(, m, ε) ≡ , where the coefficients m �→ Un(m, ε) belong
to E(β ,μ) for β >  and μ > max(deg(Q) + , deg(Q) + ) given above and depend holomor-
phically on ε in D(, ε).

Proof From Proposition  and the conditions stated above, we find that the coefficients
Un(m, ε) of Û(T , m, ε) are well defined, belong to E(β ,μ) for all ε ∈ D(, ε), all n ≥ , and
satisfy the following recursion relation:

(n + )Un+(m, ε)

=
RD(im)
Q(im)

δD–∏

j=

(
n + δD – (δD – )(k + ) – j

)
Un+δD–(δD–)(k+)(m, ε)

+
ε–

Q(im)
∑

n+n=n,n≥,n≥

c,(ε)
(π )/

∫ +∞

–∞
Q

(
i(m – m)

)
Un (m – m, ε)

× Q(im)Un (m, ε) dm

+
D–∑

l=

Rl(im)
Q(im)

(
ε�l–dl+δl–

δl–∏

j=

(n + δl – dl – j)
)
Un+δl–dl (m, ε)

+
ε–

Q(im)
∑

n+n=n,n≥,n≥

c(ε)
(π )/

∫ +∞

–∞
C,n (m – m, ε)R(im)Un (m, ε) dm

+
ε–c,(ε)

(π )/Q(im)

∫ +∞

–∞
C,(m – m, ε)R(im)Un(m, ε) dm

+
ε–cF (ε)
Q(im)

Fn(m, ε) ()

for all n ≥ max(max≤l≤D– dl, (δD – )(k + )). �

4.2 Analytic solutions for an auxiliary convolution problem resulting from a
mk1 -Borel transform applied to the main convolution initial value problem

We make the additional assumption that

dl > (δl – )(k + ) ()

for all  ≤ l ≤ D – . Using (.) from [], p., we can expand the operators Tδl(k+)∂
δl
T

in the form

Tδl(k+)∂
δl
T =

(
Tk+∂T

)δl +
∑

≤p≤δl–

Aδl ,pTk(δl–p)(Tk+∂T
)p, ()

where Aδl ,p, p = , . . . , δl –  are real numbers, for all  ≤ l ≤ D. We define integers d
l,k

> 
in order to satisfy

dl + k +  = δl(k + ) + d
l,k ()

for all  ≤ l ≤ D – . We also rewrite (δD – )(k + ) = (δD – )(k + ) + (δD – )(k – k).
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Multiplying () by Tk+ and using (), we can rewrite () in the form

Q(im)
(
Tk+∂T U(T , m, ε)

)

= RD(im)T (δD–)(k–k)(Tk+∂T
)δD U(T , m, ε)

+ RD(im)
∑

≤p≤δD–

AδD ,pT (δD–)(k–k)Tk(δD–p)(Tk+∂T
)pU(T , m, ε)

+ ε–Tk+ c,(ε)
(π )/

∫ +∞

–∞
Q

(
i(m – m)

)
U(T , m – m, ε)Q(im)U(T , m, ε) dm

+
D–∑

l=

Rl(im)
(

ε�l–dl+δl–Td
l,k

(
Tk+∂T

)δl U(T , m, ε)

+
∑

≤p≤δl–

Aδl ,pε
�l–dl+δl–Tk(δl–p)+d

l,k
(
Tk+∂T

)pU(T , m, ε)
)

+ ε–Tk+ c(ε)
(π )/

∫ +∞

–∞
C(T , m – m, ε)R(im)U(T , m, ε) dm

+ ε–Tk+ c,(ε)
(π )/

∫ +∞

–∞
C,(m – m, ε)R(im)U(T , m, ε) dm

+ ε–cF (ε)Tk+F(T , m, ε). ()

We denote ωk (τ , m, ε) the formal mk -Borel transform of Û(T , m, ε) with respect to T ,
ϕk (τ , m, ε) the formal mk -Borel transform of C(T , m, ε) with respect to T and ψk (τ , m, ε)
the formal mk -Borel transform of F(T , m, ε) with respect to T . More precisely,

ωk (τ , m, ε) =
∑

n≥

Un(m, ε)
τ n

�( n
k

)
, ϕk (τ , m, ε) =

∑

n≥

C,n(m, ε)
τ n

�( n
k

)

ψk (τ , m, ε) =
∑

n≥

Fn(m, ε)
τ n

�( n
k

)
.

Using () we find that, for any κ ≥ k, the function ϕk (τ , m, ε) belongs to Fd
(ν,β ,μ,k,κ) for

all ε ∈ D(, ε), any unbounded sector Ud centered at  with bisecting direction d ∈ R, for
some ν > . Indeed, we have

∥
∥ϕk (τ , m, ε)

∥
∥

(ν,β ,μ,k,κ)

≤
∑

n≥

∥∥C,n(m, ε)
∥∥

(β ,μ)

(
sup

τ∈D̄(,ρ)∪Ud

 + |τ |k

|τ | exp
(
–ν|τ |κ) |τ |n

�( n
k

)

)
. ()

By using the classical estimates

sup
x≥

xm exp(–mx) =
(

m

m

)m

e–m ()

for any real numbers m ≥ , m > , and the Stirling formula �(n/k) ∼ (π )/ ×
(n/k)

n
k

– 
 e–n/k as n tends to +∞, we get two constants A, A >  depending on ν , k,
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κ such that

sup
τ∈D̄(,ρ)∪Ud

 + |τ |k

|τ | exp
(
–ν|τ |κ) |τ |n

�( n
k

)

= sup
x≥

(
 + xk/κ)x

n–
κ

e–νx

�( n
k

)

≤
((

n – 
νκ

) n–
κ

e– n–
κ +

(
n – 
νκ

+
k

νκ

) n–
κ + k

κ

e–( n–
κ + k

κ )
)

/�(n/k)

≤ A(A)n ()

for all n ≥ . Therefore, if the inequality A < T holds, we get the estimates

∥∥ϕk (τ , m, ε)
∥∥

(ν,β ,μ,k,κ) ≤ A
∑

n≥

∥∥C,n(m, ε)
∥∥

(β ,μ)(A)n ≤ AAK

T


 – A

T

. ()

On the other hand, we make the assumption that ψk (τ , m, ε) ∈ Fd
(ν,β ,μ,k,k), for all

ε ∈ D(, ε), for some unbounded sector Ud with bisecting direction d ∈ R, where ν is
chosen above. We will make the convention to denote ψd

k
the analytic continuation of

the convergent power series ψk on the domain Ud ∪ D(,ρ). In particular, we find that
ψd

k
(τ , m, ε) ∈ Fd

(ν,β ,μ,k,κ) for any κ ≥ k. We also assume that there exists a constant ζψk
> 

such that

∥∥ψd
k (τ , m, ε)

∥∥
(ν,β ,μ,k,k) ≤ ζψk

()

for all ε ∈ D(, ε). In particular, we notice that

∥∥ψd
k (τ , m, ε)

∥∥
(ν,β ,μ,k,κ) ≤ ζψk

()

for any κ ≥ k. We require that there exists a constant rQ,Rl >  such that

∣
∣∣∣

Q(im)
Rl(im)

∣
∣∣∣ ≥ rQ,Rl ()

for all m ∈R, all  ≤ l ≤ D.
Using the computation rules for the formal mk -Borel transform in Proposition , we

deduce the following equation satisfied by ωk (τ , m, ε):

Q(im)
(
kτ

kωk (τ , m, ε)
)

= RD(im)
τ k

�( (δD–)(k–k)
k

)

∫ τk



(
τ k – s

) (δD–)(k–k)
k

–kδD
 sδDωk

(
s/k , m, ε

)ds
s

+ RD(im)
∑

≤p≤δD–

AδD ,p
τ k

�( (δD–)(k–k)+k(δD–p)
k

)

×
∫ τk



(
τ k – s

) (δD–)(k–k)+k(δD–p)
k

–kp
 spωk

(
s/k , m, ε

)ds
s
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+ ε– τ k

�( + 
k

)

∫ τk



(
τ k – s

)/k

×
(

c,(ε)
(π )/ s

∫ s



∫ +∞

–∞
Q

(
i(m – m)

)
ωk

(
(s – x)/k , m – m, ε

)

× Q(im)ωk

(
x/k , m, ε

) 
(s – x)x

dx dm

)
ds
s

+
D–∑

l=

Rl(im)
(

ε�l–dl+δl– τ k

�(
d

l,k
k

)

∫ τk



(
τ k – s

) d
l,k
k

–(k
δl sδlωk

(
s/k , m, ε

))ds
s

+
∑

≤p≤δl–

Aδl ,pε
�l–dl+δl– τ k

�(
d

l,k
k

+ δl – p)

×
∫ τk



(
τ k – s

) d
l,k
k

+δl–p–(kp
 spωk

(
s/k , m, ε

))ds
s

)

+ ε– τ k

�( + 
k

)

∫ τk



(
τ k – s

)/k

×
(

c(ε)
(π )/ s

∫ s



∫ +∞

–∞
ϕk

(
(s – x)/k , m – m, ε

)

× R(im)ωk

(
x/k , m, ε

) 
(s – x)x

dx dm

)
ds
s

+ ε– τ k

�( + 
k

)

∫ τk



(
τ k – s

)/k c,(ε)
(π )/

(∫ +∞

–∞
C,(m – m, ε)

× R(im)ωk

(
s/k , m, ε

)
dm

)
ds
s

+ ε–cF (ε)
τ k

�( + 
k

)

∫ τk



(
τ k – s

)/k
ψd

k

(
s/k , m, ε

)ds
s

. ()

In the next proposition, we give sufficient conditions under which () has a solution
ωd

k
(τ , m, ε) in the Banach space Fd

(ν,β ,μ,k,κ) where β , μ are defined above and for well cho-
sen κ > k.

Proposition  Under the assumption that


κ

=

k

–

k

,
k

k – k
≥ dl + ( – δl)

dl + ( – δl)(k + )
()

for all  ≤ l ≤ D – , there exist radii rQ,Rl > ,  ≤ l ≤ D, a constant � > , and constants
ζ,, ζ,, ζ, ζ, ζ,, ζF , ζ >  (depending on Q, Q, k, μ, ν , ε, Rl , �l , δl , dl for  ≤ l ≤ D – )
such that if

sup
ε∈D(,ε)

∣
∣∣∣
c,(ε)

ε

∣
∣∣∣ ≤ ζ,, sup

ε∈D(,ε)

∣
∣∣∣
c(ε)

ε

∣
∣∣∣ ≤ ζ,,

∥∥ϕk (τ , m, ε)
∥∥

(ν,β ,μ,k,κ) ≤ ζ,

sup
ε∈D(,ε)

∣∣
∣∣
c,(ε)

ε

∣∣
∣∣ ≤ ζ,,

∥
∥C,(m, ε)

∥
∥

(β ,μ) ≤ ζ, ()
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sup
ε∈D(,ε)

∣∣
∣∣
cF (ε)

ε

∣∣
∣∣ ≤ ζF ,

∥
∥ψd

k (τ , m, ε)
∥
∥

(ν,β ,μ,k,κ) ≤ ζ

for all ε ∈ D(, ε), () has a unique solution ωd
k

(τ , m, ε) in the space Fd
(ν,β ,μ,k,κ) where

β ,μ >  are defined in Proposition  which verifies ‖ωd
k

(τ , m, ε)‖(ν,β ,μ,k,κ) ≤ � , for all
ε ∈ D(, ε).

Proof We start the proof with a lemma which provides appropriate conditions in order to
apply a fixed point theorem.

Lemma  One can choose the constants rQ,Rl > , for  ≤ l ≤ D, a small enough constant
� , and constants ζ,, ζ, ζ,, ζ, ζ,, ζF , ζ >  (depending on Q, Q, k, μ, ν , ε, Rl , �l , δl ,
dl for  ≤ l ≤ D – ) such that if () holds for all ε ∈ D(, ε), the map Hk

ε defined by

Hk
ε

(
w(τ , m)

)

=
RD(im)
Q(im)


k�( (δD–)(k–k)

k
)

∫ τk



(
τ k – s

) (δD–)(k–k)
k

–kδD
 sδD w

(
s/k , m

)ds
s

+
RD(im)
Q(im)

∑

≤p≤δD–

AδD ,p


k�( (δD–)(k–k)+k(δD–p)
k

)

×
∫ τk



(
τ k – s

) (δD–)(k–k)+k(δD–p)
k

–kp
 spw

(
s/k , m

)ds
s

+ ε– 
Q(im)k�( + 

k
)

∫ τk



(
τ k – s

)/k

×
(

c,(ε)
(π )/ s

∫ s



∫ +∞

–∞
Q

(
i(m – m)

)
w

(
(s – x)/k , m – m

)

× Q(im)w
(
x/k , m

) 
(s – x)x

dx dm

)
ds
s

+
D–∑

l=

Rl(im)
Q(im)

(
ε�l–dl+δl– 

k�(
d

l,k
k

)

∫ τk



(
τ k – s

) d
l,k
k

–(k
δl sδl w

(
s/k , m

))ds
s

+
∑

≤p≤δl–

Aδl ,pε
�l–dl+δl– 

k�(
d

l,k
k

+ δl – p)

×
∫ τk



(
τ k – s

) d
l,k
k

+δl–p–(kp
 spw

(
s/k , m

))ds
s

)

+ ε– c(ε)
Q(im)k�( + 

k
)

∫ τk



(
τ k – s

)/k

×
(


(π )/ s

∫ s



∫ +∞

–∞
ϕk

(
(s – x)/k , m – m, ε

)

× R(im)w
(
x/k , m

) 
(s – x)x

dx dm

)
ds
s

+ ε– c,(ε)
Q(im)k�( + 

k
)

∫ τk



(
τ k – s

)/k
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× 
(π )/

(∫ +∞

–∞
C,(m – m, ε)R(im)w

(
s/k , m

)
dm

)
ds
s

+ ε– cF (ε)
Q(im)k�( + 

k
)

∫ τk



(
τ k – s

)/k
ψd

k

(
s/k , m, ε

)ds
s

()

satisfies the next properties.
(i) The following inclusion holds:

Hk
ε

(
B̄(,� )

) ⊂ B̄(,� ), ()

where B̄(,� ) is the closed ball of radius � >  centered at  in Fd
(ν,β ,μ,k,κ), for all ε ∈

D(, ε).
(ii) We have

∥∥Hk
ε (w) – Hk

ε (w)
∥∥

(ν,β ,μ,k,κ) ≤ 

‖w – w‖(ν,β ,μ,k,κ) ()

for all w, w ∈ B̄(,� ), for all ε ∈ D(, ε).

Proof We first check the property (). Let ε ∈ D(, ε) and w(τ , m) be in Fd
(ν,β ,μ,k,κ). We

take ζ,, ζ, ζ,, ζ, ζ,, ζ, ζF ,� >  such that () holds and ‖w(τ , m)‖(ν,β ,μ,k,κ) ≤ � for
all ε ∈ D(, ε).

Since κ ≥ k and () hold, using Proposition , we find that

∥∥
∥∥ε– c,(ε)

Q(im)k�( + 
k

)

∫ τk



(
τ k – s

)/k

×
(


(π )/ s

∫ s



∫ +∞

–∞
Q

(
i(m – m)

)
w

(
(s – x)/k , m – m

)

× Q(im)w
(
x/k , m

) 
(s – x)x

dx dm

)
ds
s

∥
∥∥
∥

(ν,β ,μ,k,κ)

≤ Cζ,

(π )/k�( + 
k

)
∥
∥w(τ , m)

∥
∥

(ν,β ,μ,k,κ) ≤ Cζ,�


(π )/k�( + 
k

)
. ()

Due to the lower bound assumption () and taking into account the definition of κ in
(), we get from Lemma  and Proposition 

∥
∥∥
∥

RD(im)
Q(im)


k�( (δD–)(k–k)

k
)

∫ τk



(
τ k – s

) (δD–)(k–k)
k

–kδD
 sδD w

(
s/k , m

)ds
s

∥
∥∥
∥

(ν,β ,μ,k,κ)

≤ CkδD


rQ,RD k�( (δD–)(k–k)
k

)

∥
∥w(τ , m)

∥
∥

(ν,β ,μ,k,κ) ≤ CkδD


rQ,RD k�( (δD–)(k–k)
k

)
� ()

and
∥∥
∥∥

RD(im)
Q(im)

AδD ,p


k�( (δD–)(k–k)+k(δD–p)
k

)

×
∫ τk



(
τ k – s

) (δD–)(k–k)+k(δD–p)
k

–kp
 spw

(
s/k , m

)ds
s

∥
∥∥
∥

(ν,β ,μ,k,κ)
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≤ |AδD ,p|Ckp


rQ,RD k�( (δD–)(k–k)+k(δD–p)
k

)

∥
∥w(τ , m)

∥
∥

(ν,β ,μ,k,κ)

≤ |AδD ,p|Ckp


rQ,RD k�( (δD–)(k–k)+k(δD–p)
k

)
� ()

for all  ≤ p ≤ δD – .
From assumption () and due to the second constraint in (), we get from Lemma 

and Proposition 

∥∥
∥∥

Rl(im)
Q(im)

ε�l–dl+δl– 

k�(
d

l,k
k

)

∫ τk



(
τ k – s

) d
l,k
k

–(kδl
 sδl w

(
s/k , m

))ds
s

∥∥
∥∥

(ν,β ,μ,k,κ)

≤ |ε|�l–dl+δl– 
rQ,Rl

Ckδl


k�(
d

l,k
k

)

∥∥w(τ , m)
∥∥

(ν,β ,μ,k,κ)

≤ |ε|�l–dl+δl– 
rQ,Rl

Ckδl


k�(
d

l,k
k

)
� ()

for all  ≤ l ≤ D –  and

∥∥∥
∥

Rl(im)
Q(im)

Aδl ,pε
�l–dl+δl– 

k�(
d

l,k
k

+ δl – p)

×
∫ τk



(
τ k – s

) d
l,k
k

+δl–p–(kp
 spw

(
s/k , m

))ds
s

∥
∥∥∥

(ν,β ,μ,k,κ)

≤ |ε|�l–dl+δl– 
rQ,Rl

|Aδl ,p|
Ckp



k�(
d

l,k
k

+ δl – p)

∥
∥w(τ , m)

∥
∥

(ν,β ,μ,k,κ)

≤ |ε|�l–dl+δl– 
rQ,Rl

|Aδl ,p|
Ckp



k�(
d

l,k
k

+ δl – p)
� ()

for all  ≤ p ≤ δl – . Since κ ≥ k and () we get from Proposition  that

∥
∥∥
∥ε– c(ε)

Q(im)k�( + 
k

)

∫ τk



(
τ k – s

)/k

×
(


(π )/ s

∫ s



∫ +∞

–∞
ϕk

(
(s – x)/k , m – m, ε

)

× R(im)w
(
x/k , m

) 
(s – x)x

dx dm

)
ds
s

∥∥
∥∥

(ν,β ,μ,k,κ)

≤ Cζ,

(π )/k�( + 
k

)
∥∥ϕk (τ , m, ε)

∥∥
(ν,β ,μ,k,κ)

∥∥w(τ , m)
∥∥

(ν,β ,μ,k,κ)

≤ Cζ,

(π )/k�( + 
k

)
ζ� . ()
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Since κ ≥ k and () we deduce from Proposition  that

∥∥
∥∥ε– c,(ε)

Q(im)k�( + 
k

)

∫ τk



(
τ k – s

)/k 
(π )/

(∫ +∞

–∞
C,(m – m, ε)

× R(im)w
(
s/k , m

)
dm

)
ds
s

∥
∥∥
∥

(ν,β ,μ,k,κ)

≤ Cζ,

(π )/k�( + 
k

)
∥∥C,(m, ε)

∥∥
(β ,μ)

∥∥w(τ , m)
∥∥

(ν,β ,μ,k,κ)

≤ Cζ,

(π )/k�( + 
k

)
ζ� ()

and finally bearing in mind Proposition  we find that

∥
∥∥
∥ε– cF (ε)

Q(im)k�( + 
k

)

∫ τk



(
τ k – s

)/k
ψd

k

(
s/k , m, ε

)ds
s

∥
∥∥
∥

(ν,β ,μ,k,κ)

≤ sup
m∈R


|Q(im)|

CζF

k�( + 
k

)
∥∥ψd

k (τ , m, ε)
∥∥

(ν,β ,μ,k,κ)

≤ sup
m∈R


|Q(im)|

CζF

k�( + 
k

)
ζ. ()

Now, we choose rQ,Rl > , for  ≤ l ≤ D, ζ,, ζ,, ζ, ζF , ζ,, ζ, ζ >  and � >  such that

Cζ,�


(π )/k�( + 
k

)
+

CkδD


rQ,RD k�( (δD–)(k–k)
k

)
�

+
∑

≤p≤δD–

|AδD ,p|Ckp


rQ,RD k�( (δD–)(k–k)+k(δD–p)
k

)
� +

D–∑

l=

ε
�l–dl+δl–



rQ,Rl

Ckδl


k�(
d

l,k
k

)
�

+
∑

≤p≤δl–

ε
�l–dl+δl–



rQ,Rl

|Aδl ,p|
Ckp



k�(
d

l,k
k

+ δl – p)
� +

Cζ,

(π )/k�( + 
k

)
ζ�

+
Cζ,

(π )/k�( + 
k

)
ζ� + sup

m∈R


|Q(im)|
CζF

k�( + 
k

)
ζ ≤ � . ()

Gathering all the norm estimates (), (), (), (), (), (), (), and () together
with the constraint (), one gets ().

Now, we check the second property (). Let w(τ , m), w(τ , m) be in Fd
(ν,β ,μ,k,κ). We take

� >  such that

∥
∥wl(τ , m)

∥
∥

(ν,β ,μ,k,κ) ≤ � ,

for l = , , for all ε ∈ D(, ε). One can write

Q
(
i(m – m)

)
w

(
(s – x)/k , m – m

)
Q(im)w

(
x/k , m

)

– Q
(
i(m – m)

)
w

(
(s – x)/k , m – m

)
Q(im)w

(
x/k , m

)
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= Q
(
i(m – m)

)(
w

(
(s – x)/k , m – m

)
– w

(
(s – x)/k , m – m

))

× Q(im)w
(
x/k , m

)

+ Q
(
i(m – m)

)
w

(
(s – x)/k , m – m

)

× Q(im)
(
w

(
x/k , m

)
– w

(
x/k , m

))
()

and taking into account that κ ≥ k, (), () and using Proposition , we find that

∥
∥∥
∥ε– c,(ε)

Q(im)k�( + 
k

)

∫ τk



(
τ k – s

)/k

×
(


(π )/ s

∫ s



∫ +∞

–∞

(
Q

(
i(m – m)

)
w

(
(s – x)/k , m – m

)

× Q(im)w
(
x/k , m

)
– Q

(
i(m – m)

)
w

(
(s – x)/k , m – m

)

× Q(im)w
(
x/k , m

)) 
(s – x)x

dx dm

)
ds
s

∥
∥∥
∥

(ν,β ,μ,k,κ)

≤ Cζ,

(π )/k�( + 
k

)
∥
∥w(τ , m) – w(τ , m)

∥
∥

(ν,β ,μ,k,κ)

(∥∥w(τ , m)
∥
∥

(ν,β ,μ,k,κ)

+
∥
∥w(τ , m)

∥
∥

(ν,β ,μ,k,κ)

)

≤ Cζ,�

(π )/k�( + 
k

)
∥
∥w(τ , m) – w(τ , m)

∥
∥

(ν,β ,μ,k,κ). ()

On the other hand, from the estimates (), (), (), (), (), () and under the con-
straints (), (), and the lower bound assumption (), we deduce that

∥∥
∥∥

RD(im)
Q(im)


k�( (δD–)(k–k)

k
)

∫ τk



(
τ k – s

) (δD–)(k–k)
k

–kδD
 sδD

× (
w

(
s/k , m

)
– w

(
s/k , m

))ds
s

∥
∥∥
∥

(ν,β ,μ,k,κ)

≤ CkδD


rQ,RD k�( (δD–)(k–k)
k

)

∥∥w(τ , m) – w(τ , m)
∥∥

(ν,β ,μ,k,κ) ()

and that

∥∥
∥∥

RD(im)
Q(im)

AδD ,p


k�( (δD–)(k–k)+k(δD–p)
k

)

×
∫ τk



(
τ k – s

) (δD–)(k–k)+k(δD–p)
k

–kp
 sp(w

(
s/k , m

)
– w

(
s/k , m

))ds
s

∥
∥∥
∥

(ν,β ,μ,k,κ)

≤ |AδD ,p|Ckp


rQ,RD k�( (δD–)(k–k)+k(δD–p)
k

)

∥∥w(τ , m) – w(τ , m)
∥∥

(ν,β ,μ,k,κ) ()
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for all  ≤ p ≤ δD –  and also

∥
∥∥∥

Rl(im)
Q(im)

ε�l–dl+δl– 

k�(
d

l,k
k

)

∫ τk



(
τ k – s

) d
l,k
k

–

× (
kδl

 sδl
(
w

(
s/k , m

)
– w

(
s/k , m

)))ds
s

∥
∥∥
∥

(ν,β ,μ,k,κ)

≤ |ε|�l–dl+δl– 
rQ,Rl

Ckδl


k�(
d

l,k
k

)

∥
∥w(τ , m) – w(τ , m)

∥
∥

(ν,β ,μ,k,κ) ()

for all  ≤ l ≤ D –  together with

∥
∥∥∥

Rl(im)
Q(im)

Aδl ,pε
�l–dl+δl– 

k�(
d

l,k
k

+ δl – p)

×
∫ τk



(
τ k – s

) d
l,k
k

+δl–p–(kp
 sp(w

(
s/k , m

)
– w

(
s/k , m

)))ds
s

∥∥∥
∥

(ν,β ,μ,k,κ)

≤ |ε|�l–dl+δl– 
rQ,Rl

|Aδl ,p|
Ckp



k�(
d

l,k
k

+ δl – p)

∥∥w(τ , m) – w(τ , m)
∥∥

(ν,β ,μ,k,κ) ()

for all  ≤ p ≤ δl – . Finally, we also obtain

∥
∥∥
∥ε– c(ε)

Q(im)k�( + 
k

)

∫ τk



(
τ k – s

)/k
(


(π )/ s

∫ s



∫ +∞

–∞
ϕk

(
(s – x)/k , m – m, ε

)

× R(im)
(
w

(
x/k , m

)
– w

(
x/k , m

)) 
(s – x)x

dx dm

)
ds
s

∥∥
∥∥

(ν,β ,μ,k,κ)

≤ Cζ,

(π )/k�( + 
k

)
ζ

∥
∥w(τ , m) – w(τ , m)

∥
∥

(ν,β ,μ,k,κ) ()

and

∥∥
∥∥ε– c,(ε)

Q(im)k�( + 
k

)

∫ τk



(
τ k – s

)/k 
(π )/

(∫ +∞

–∞
C,(m – m, ε)

× R(im)
(
w

(
s/k , m

)
– w

(
s/k , m

))
dm

)
ds
s

∥∥
∥∥

(ν,β ,μ,k,κ)

≤ Cζ,

(π )/k�( + 
k

)
ζ

∥∥w(τ , m) – w(τ , m)
∥∥

(ν,β ,μ,k,κ). ()

Now, we take � , rQ,Rl > , for  ≤ l ≤ D, and ζ,, ζ,, ζ, ζ,, ζ >  such that

Cζ,�

(π )/k�( + 
k

)
+

CkδD


rQ,RD k�( (δD–)(k–k)
k

)

+
∑

≤p≤δD–

|AδD ,p|Ckp


rQ,RD k�( (δD–)(k–k)+k(δD–p)
k

)
+

∑

≤l≤D–

ε
�l–dl+δl–



rQ,Rl

Ckδl


k�(
d

l,k
k

)
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+
∑

≤p≤δl–

ε
�l–dl+δl–



rQ,Rl

|Aδl ,p|
Ckp



k�(
d

l,k
k

+ δl – p)
+

Cζ,

(π )/k�( + 
k

)
ζ

+
Cζ,

(π )/k�( + 
k

)
ζ ≤ /. ()

Bearing in mind the estimates (), (), (), (), (), (), () with the con-
straint (), one gets (). Finally, we choose rQ,Rl > , for  ≤ l ≤ D, ζ,, ζ,, ζ, ζF , ζ,,
ζ, ζ >  and � >  such that both (), () are fulfilled. This yields our lemma. �

We consider the ball B̄(,� ) ⊂ Fd
(ν,β ,μ,k,κ) constructed in Lemma  which is a com-

plete metric space for the norm ‖ · ‖(ν,β ,μ,k,κ). From the lemma above, we find that Hk
ε

is a contractive map from B̄(,� ) into itself. Due to the classical contractive mapping
theorem, we deduce that the map Hk

ε has a unique fixed point denoted by ωd
k

(τ , m, ε)
(i.e. Hk

ε (ωd
k

(τ , m, ε)) = ωd
k

(τ , m, ε)) in B̄(,� ), for all ε ∈ D(, ε). Moreover, the function
ωd

k
(τ , m, ε) depends holomorphically on ε in D(, ε). By construction, ωd

k
(τ , m, ε) defines

a solution of (). This yields Proposition . �

4.3 Formal and analytic acceleration operators
In this section, we give a definition of the formal and analytic acceleration operator which
is a slightly modified version of the one given in [], Chapter , adapted to our definitions of
mk-Laplace and mk-Borel transforms. First we give a definition for the formal transform.

Definition  Let k̃ > k >  be real numbers. Let f̂ (τ ) =
∑

n≥ fnτ
n ∈ τC�τ � be a formal

series. We define the formal acceleration operator with indices mk̃ , mk by

Âmk̃ ,mk f̂ (ξ ) =
∑

n≥

fn
�( n

k )
�( n

k̃
)
ξn ∈ ξC�ξ �.

Notice that if one defines the formal mk-Laplace transform L̂mk (f̂ ) and the formal mk̃-
Borel transform B̂mk̃

(f̂ ) of f̂ (τ ) by

L̂mk (f̂ )(T) =
∑

n≥

fn�

(
n
k

)
Tn, B̂mk̃

(f̂ )(Z) =
∑

n≥

fn

�( n
k̃

)
Zn,

then the formal acceleration operator Âmk̃ ,mk can also be defined as

Âmk̃ ,mk f̂ (ξ ) = (B̂mk̃
◦ L̂mk )(f̂ )(ξ ).

In the next definition, we define the analytic transforms.

Proposition  Let k̃ > k >  be real numbers. Let S(d, π

k̃
+ δ,ρ) be a bounded sector of

radius ρ with aperture π

k̃
+ δ, for some δ > , and with direction d. Let F : S(d, π

k̃
+ δ,ρ) →C

be a bounded analytic function such that there exist a formal series F̂(z) =
∑

n≥ Fnzn ∈
C�z� and two constants C, K >  with

∣
∣∣
∣∣
F(z) –

N–∑

n=

Fnzn

∣
∣∣
∣∣
≤ CKN�( + N/k)|z|N ()
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for all z ∈ S(d, π

k̃
+ δ,ρ), all N ≥ . The analytic mk̃-Borel transform of F in the direction d

is defined as

(
Bd

mk̃
F
)
(Z) =

–k̃
iπ

∫

γk̃

F(u) exp

((
Z
u

)k̃) Zk̃

uk̃+
du, ()

where γk̃ is the closed Hankel path starting from the origin along the segment [, (ρ/) ×
ei(d+ π

k̃
+ δ′

 )], following the arc of circle [(ρ/)ei(d+ π

k̃
+ δ′

 ), (ρ/)ei(d– π

k̃
– δ′

 )] and going back to the

origin along the segment [(ρ/)ei(d– π

k̃
– δ′

 ), ] where  < δ′ < δ, which can be chosen as close to
δ as needed. Then the function (Bd

mk̃
F)(Z) is analytic on the unbounded sector S(d, δ′′) with

direction d and aperture δ′′ where  < δ′′ < δ′, which can be chosen as close to δ′ as needed.
Moreover, if (B̂mk̃

F̂)(Z) =
∑

n≥ FnZn/�(n/k̃) denotes the formal mk̃-Borel transform of F̂ ,
then for any given ρ ′ > , there exist two constants C, K >  with

∣∣
∣∣∣
(
Bd

mk̃
F
)
(Z) –

N–∑

n=

Fn

�( n
k̃

)
Zn

∣∣
∣∣∣
≤ CKN�( + N/κ)|Z|N ()

for all Z ∈ S(d, δ′′) ∩ D(,ρ ′), all N ≥ , where κ is defined as /κ = /k – /k̃. Finally, the
mk̃-Borel operator Bd

mk̃
is the right inverse operator of the mk̃-Laplace transform, namely

we have

Ld
mk̃

(
v �→ (

Bd
mk̃

F
)
(v)

)
(T) = F(T), ()

for all T ∈ S(d, π

k̃
+ δ′,ρ/).

Proof The proof follows the same lines of arguments as Theorem , Section . in [].
Namely, one can check that if F(z) = zn, for an integer n ≥ , then

Bd
mk̃

F(Z) = Zn/�(n/k̃) ()

for all Z ∈ S(d, δ′′) by using the change of variable u = z/w/k̃ in the integral () and a
path deformation, bearing in mind the Hankel formula


�( n

k̃
)

=


iπ

∫

γ

w– n
k̃ ew dw,

where γ is the path of integration from infinity along the ray arg(w) = –π to the unit disc,
then around the circle and back to infinity along the ray arg(w) = π . From the asymptotic
expansion () and using the same integrals estimates as in Theorem , Section . in
[], together with the Stirling formula, for any given ρ ′ > , we get two constants Č, Ǩ > 
such that

∣
∣∣
∣∣
Bd

mk̃
F(Z) –

N–∑

n=

Fn

�( n
k̃

)
Zn

∣
∣∣
∣∣

=
∣∣Bd

mk̃
(RN–F)(Z)

∣∣ ≤ ČǨN �( + N/k)
�( + N/k̃)

|Z|N ,

where RN–F(u) = F(u) –
∑N–

n= Fnun, for all N ≥ , for all Z ∈ S(d, δ′′) ∩ D(,ρ ′). Therefore
() follows.
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In the last part of the proof, we show the identity (). We follow the same lines of
arguments as Theorem  in Section . from []. Using Fubini’s theorem, we can write

Ld
mk̃

(
v �→ (

Bd
mk̃

F
)
(v)

)
(T)

= k̃
∫

Ld

(
–

k̃
iπ

∫

γk̃

F(u)e( v
u )k̃ vk̃

uk̃+
du

)
e–( v

T )k̃ dv
v

= –
k̃

iπ

∫

γk̃

F(u)
uk̃+

(∫

Ld

exp

(
vk̃

(


uk̃
–


Tk̃

))
k̃vk̃– dv

)
du. ()

Therefore, by direct integration, we deduce that

Ld
mk̃

(
v �→ (

Bd
mk̃

F
)
(v)

)
(T) =

k̃
iπ

∫

γk̃

F(u)
u

Tk̃

Tk̃ – uk̃
du. ()

Now, the function u �→ F(u)
u

Tk̃

Tk̃ –uk̃ has in the interior of γk̃ exactly one singularity at u = T
(since T is assumed to belong to S(d, π

k̃
+ δ′,ρ/)), this being a pole of order one, with

residue –F(T)/k̃. The residue theorem completes the proof of (). �

Proposition  Let S(d,α) be an unbounded sector with direction d ∈ R and aperture α.
Let k̃ > k >  be given real numbers and let κ >  be the real number defined by /κ =
/k – /k̃. Let f : S(d,α) ∪ D(, r) → C be an analytic function with f () =  and such that
there exist C, M >  with

∣∣f (h)
∣∣ ≤ CeM|h|κ

for all h ∈ S(d,α) ∪ D(, r).
For all  < δ′ < π/κ (which can be chosen close to π/κ), we define the kernel function

G(ξ , h) = –
k̃k

iπ
ξ k̃

∫

Vd,k̃,δ′
exp

(
–
(

h
u

)k

+
(

ξ

u

)k̃) du
uk̃+

,

where Vd,k̃,δ′ is the path starting from  along the half-line R+ei(d+ π

k̃
+ δ′

 ) and back to the

origin along the half-line R+ei(d– π

k̃
– δ′

 ). The function G(ξ , h) is well defined and satisfies the
following estimates: there exist c, c >  such that

∣∣G(ξ , h)
∣∣ ≤ c exp

(
–c

( |h|
|ξ |

)κ)
()

for all h ∈ Ld = R+eid and all ξ ∈ S(d, δ′′) for  < δ′′ < δ′ (which can be chosen close to δ′).
Then, for any  < ρ < (c/M)/κ , the function

Ad
mk̃ ,mk

f (ξ ) =
∫

Ld

f (h)G(ξ , h)
dh
h

= g(ξ )

defines an analytic function on the bounded sector Sd,κ ,δ,ρ with aperture π
κ

+ δ, for any  <
δ < α, in the direction d, and with radius ρ and which satisfies the requirement that there
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exist C, K >  with

∣∣
∣∣
∣
g(ξ ) –

N–∑

n=

fn
�(n/k)
�(n/k̃)

ξn

∣∣
∣∣
∣
≤ CKN�( + N/κ)|ξ |N ()

for all ξ ∈ Sd,κ ,δ,ρ , all N ≥ , where ĝ(ξ ) =
∑

n≥ fn
�(n/k)
�(n/k̃)

ξn is the formal acceleration

Âmk̃ ,mk f̂ (ξ ) where f̂ (h) =
∑

n≥ fnhn is the (convergent) Taylor expansion at h =  of f on
D(, r).

In other words, g(ξ ) is the κ-sum of ĝ(ξ ) on Sd,κ ,δ,ρ in the sense of the definition [] from
Section ..

Proof We first show the estimates (). We follow the idea of proof of Lemma , Sec-
tion . in []. We make the change of variable u = hũ in the integral G(ξ , h) and we deform
the path of the integration in order to get the expression

G(ξ , h) = –
k̃k

iπ

(
ξ

h

)k̃ ∫

γk̃

e–(/ũ)k
e(ξ /h)k̃ ( 

ũ )k̃ 
ũk̃+

dũ,

where γk̃ is the closed Hankel path defined in Proposition  with the direction d = .
Hence, we recognize that G(ξ , h) can be written as an analytic Borel transform G(ξ , h) =
k(B

mk̃
ek)(ξ /h) where ek(u) = e–(/u)k . From Exercise  in Section . from [], we know

that ek(u) has ̂ as formal power series expansion of Gevrey order k on any sector S, π
k̃

+δ

with direction  for any  < δ < π/κ . From Proposition , we deduce that (B
mk̃

ek)(Z)
has ̂ as formal series expansion of Gevrey order κ on any unbounded sector S,δ′′ where
 < δ′′ < δ′ < δ < π/κ (where δ′′ can be chosen close to π/κ). Finally, using Exercise  in
Section . from [], we get two constants c, c >  such that

∣∣(B
mk̃

ek
)
(Z)

∣∣ ≤ ce–c|Z|–κ

for all Z ∈ S,δ′′ . The estimates () follow.
In order to show the asymptotic expansion with bound estimates (), we first check

that if f (h) = hn, for an integer n ≥ , then

Ad
mk̃ ,mk

f (ξ ) =
�(n/k)
�(n/k̃)

ξn ()

on Sd,κ ,δ,ρ . Indeed using Fubini’s theorem, we can write

Ad
mk̃ ,mk

f (ξ ) = –
k̃

iπ

∫

Vd,k̃,δ′

(
k
∫

Ld

hne–( h
u )k dh

h

)
e( ξ

u )k̃ ξ k̃

uk̃+
du.

From the definition of the Gamma function we know that

k
∫

Ld

hne–( h
u )k dh

h
= Ld

mk

(
hn)(u) = �

(
n
k

)
un,
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and bearing in mind (), after a path deformation, we recognize that

Ad
mk̃ ,mk

f (ξ ) = �

(
n
k

)
Bd

mk̃

(
un)(ξ ) =

�(n/k)
�(n/k̃)

ξn.

Since the Taylor expansion of f at h =  is convergent, there exist two constants Cf , Kf > 
such that

∣∣
∣∣
∣
f (h) –

N–∑

n=

fnhn

∣∣
∣∣
∣
≤ Cf KN

f |h|N ()

for all h ∈ D(, r), all N ≥ . Taking the expansion () and the exponential growth esti-
mates (), using the same integrals estimates as in Exercise  in Section . of [], we get
two constants C, K >  such that

∣∣
∣∣∣
Ad

mk̃ ,mk
f (ξ ) –

N–∑

n=

fn
�( n

k )
�( n

k̃
)
ξn

∣∣
∣∣∣

=
∣∣Ad

mk̃ ,mk
(RN–f )(ξ )

∣∣ ≤ CKN�( + N/κ)|ξ |N ,

where RN–f (h) = f (h) –
∑N–

n= fnhn, for all N ≥ , all ξ ∈ Sd,κ ,δ,ρ . �

4.4 Analytic solutions for an auxiliary convolution problem resulting from a
mk2 -Borel transform applied to the main convolution initial value problem

We keep the notations of Sections . and .. For the integers dl , δl , for  ≤ l ≤ D – , that
satisfy the constraints (), (), and (), we make the additional assumption that there
exist integers d

l,k
>  such that

dl + k +  = δl(k + ) + d
l,k ()

for all  ≤ l ≤ D – . In order to ensure the positivity of the integers d
l,k

, we impose the
following assumption on the integers d

l,k
:

d
l,k > (δl – )(k – k), ()

for all  ≤ l ≤ D – . Indeed, by the definition of d
l,k

in (), the constraint () can be
rewritten d

l,k
= d

l,k
+ k – k – δl(k – k). Using (.) from [], p., we can expand the

operators Tδl(k+)∂
δl
T in the form

Tδl(k+)∂
δl
T =

(
Tk+∂T

)δl +
∑

≤p≤δl–

Aδl ,pTk(δl–p)(Tk+∂T
)p, ()

where Aδl ,p, p = , . . . , δl –  are real numbers, for all  ≤ l ≤ D.
Multiplying () by Tk+ and using (), we can rewrite () in the form

Q(im)
(
Tk+∂T U(T , m, ε)

)
– RD(im)

(
Tk+∂T

)δD U(T , m, ε)

= RD(im)
∑

≤p≤δD–

AδD ,pTk(δD–p)(Tk+∂T
)pU(T , m, ε)

+ ε–Tk+ c,(ε)
(π )/

∫ +∞

–∞
Q

(
i(m – m)

)
U(T , m – m, ε)Q(im)U(T , m, ε) dm
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+
D–∑

l=

Rl(im)
(

ε�l–dl+δl–Td
l,k

(
Tk+∂T

)δl U(T , m, ε)

+
∑

≤p≤δl–

Aδl ,pε
�l–dl+δl–Tk(δl–p)+d

l,k
(
Tk+∂T

)pU(T , m, ε)
)

+ ε–Tk+ c(ε)
(π )/

∫ +∞

–∞
C(T , m – m, ε)R(im)U(T , m, ε) dm

+ ε–Tk+ c,(ε)
(π )/

∫ +∞

–∞
C,(m – m, ε)R(im)U(T , m, ε) dm

+ ε–cF (ε)Tk+F(T , m, ε). ()

We denote ω̂k (τ , m, ε) the formal mk -Borel transform of Û(T , m, ε) with respect to T ,
ϕk (τ , m, ε) the formal mk -Borel transform of C(T , m, ε) with respect to T and ψ̂k (τ ,
m, ε) the formal mk -Borel transform of F(T , m, ε) with respect to T ,

ω̂k (τ , m, ε) =
∑

n≥

Un(m, ε)
τ n

�( n
k

)
, ϕk (τ , m, ε) =

∑

n≥

C,n(m, ε)
τ n

�( n
k

)

ψ̂k (τ , m, ε) =
∑

n≥

Fn(m, ε)
τ n

�( n
k

)
.

()

Using the computation rules for the formal mk -Borel transform in Proposition , we de-
duce the following equation satisfied by ω̂k (τ , m, ε):

Q(im)
(
kτ

k ω̂k (τ , m, ε)
)

–
(
kτ

k
)δD RD(im)ω̂k (τ , m, ε)

= RD(im)
∑

≤p≤δD–

AδD ,p
τ k

�(δD – p)

∫ τk



(
τ k – s

)δD–p–(kp
 spω̂k

(
s/k , m, ε

))ds
s

+ ε– τ k

�( + 
k

)

∫ τk



(
τ k – s

)/k

×
(

c,(ε)
(π )/ s

∫ s



∫ +∞

–∞
Q

(
i(m – m)

)
ω̂k

(
(s – x)/k , m – m, ε

)

× Q(im)ω̂k

(
x/k , m, ε

) 
(s – x)x

dx dm

)
ds
s

+
D–∑

l=

Rl(im)
(

ε�l–dl+δl– τ k

�(
d

l,k
k

)

∫ τk



(
τ k – s

) d
l,k
k

–(k
δl sδl ω̂k

(
s/k , m, ε

))ds
s

+
∑

≤p≤δl–

Aδl ,pε
�l–dl+δl– τ k

�(
d

l,k
k

+ δl – p)

×
∫ τk



(
τ k – s

) d
l,k
k

+δl–p–(k
pspω̂k

(
s/k , m, ε

))ds
s

)

+ ε– τ k

�( + 
k

)

∫ τk



(
τ k – s

)/k
(

c(ε)
(π )/ s

∫ s



∫ +∞

–∞
ϕk

(
(s – x)/k , m – m, ε

)

× R(im)ω̂k

(
x/k , m, ε

) 
(s – x)x

dx dm

)
ds
s
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+ ε– τ k

�( + 
k

)

∫ τk



(
τ k – s

)/k c,(ε)
(π )/

×
(∫ +∞

–∞
C,(m – m, ε)R(im)ω̂k

(
s/k , m, ε

)
dm

)
ds
s

+ ε–cF (ε)
τ k

�( + 
k

)

∫ τk



(
τ k – s

)/k
ψ̂k

(
s/k , m, ε

)ds
s

. ()

We recall from [] that ϕk (τ , m, ε) ∈ Fd
(ν,β ,μ,k) for all ε ∈ D(, ε), any unbounded sector Sd

and any bounded sector Sb
d centered at  with bisecting direction d ∈R, for some ν > .

From Section ., we recall that ψd
k

(τ , m, ε) ∈ Fd
(ν,β ,μ,k,k), for all ε ∈ D(, ε), for some

unbounded sector Ud with bisecting direction d ∈R, where ν is chosen in that section.

Lemma  The function

ψd
k (τ , m, ε) := Ad

mk ,mk

(
h �→ ψd

k (h, m, ε)
)
(τ ) =

∫

Ld

ψd
k (h, m, ε)G(τ , h)

dh
h

is analytic on an unbounded sector Sd,κ ,δ with aperture π
κ

+ δ in the direction d, for any
 < δ < ap(Ud) where ap(Ud) denotes the aperture of the sector Ud and has estimates of the
form: there exist constants Cψk

>  and ν ′ >  such that

∣∣ψd
k (τ , m, ε)

∣∣ ≤ Cψk

(
 + |m|)–μe–β|m| |τ |

 + |τ |k
exp

(
ν ′|τ |k

)
()

for all τ ∈ Sd,κ ,δ , all m ∈ R, all ε ∈ D(, ε). In particular, we find that Ad
mk ,mk

(h �→
ψd

k
(h, m, ε))(τ ) ∈ Fd

(ν′ ,β ,μ,k) for any unbounded sector Sd and bounded sector Sb
d with aper-

ture π
κ

+ δ, with δ as above, and we carry a constant ζψk
>  with

∥
∥ψd

k (τ , m, ε)
∥
∥

(ν′ ,β ,μ,k) ≤ ζψk
()

for all ε ∈ D(, ε).

Proof Bearing in mind the inclusion () we already know from Proposition  that the
function τ �→ ψd

k
(τ , m, ε) defines a holomorphic and bounded function (with bound in-

dependent of ε ∈ D(, ε)) on a sector Sd,κ ,δ,(c/ν)/κ / with direction d, aperture π
κ

+ δ, and
radius (c/ν)/κ/, for some δ >  and the constant c introduced in (), for all m ∈R, all
ε ∈ D(, ε).

From the assumption that the function ψd
k

(τ , m, ε) belongs to the space Fd
(ν,β ,μ,k,k), see

(), we know that the mk -Laplace transform

Ld
mk

(
h �→ ψd

k (h, m, ε)
)
(u) = k

∫

Ld

ψd
k (h, m, ε) exp

(
–
(

h
u

)k)dh
h

defines a holomorphic and bounded function (by a constant that does not depend on ε ∈
D(, ε)) on a sector Sd,θ ,σ ′ in the direction d, with radius σ ′ and aperture θ which satisfies
π
k

+ π
κ

< θ < π
k

+ π
κ

+ ap(Ud), where ap(Ud) is the aperture of Ud , for some σ ′ > .
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Hence, by using a path deformation and the Fubini theorem, we can rewrite the function
ψd

k
(τ , m, ε) in the form

ψd
k (τ , m, ε) = –

k

iπ

∫

Vd,k,δ′ ,σ ′/

Ld
mk

(
h �→ ψd

k (h, m, ε)
)
(u)e( τ

u )k τ k

uk+ du

= Bd
mk

(
Ld

mk

(
h �→ ψd

k (h, m, ε)
)
(u)

)
(τ ), ()

where Vd,k,δ′ ,σ ′/ is the closed Hankel path starting from the origin along the segment

[
,

(
σ ′/

)
ei(d+ π

k
+ δ′

 )]

following the arc of circle [(σ ′/)ei(d+ π
k

+ δ′
 ), (σ ′/)ei(d– π

k
– δ′

 )] and going back to the origin

along the segment [(σ ′/)ei(d– π
k

– δ′
 ), ], where  < δ′ < π

κ
+ ap(Ud) that can be chosen close

to π
κ

+ ap(Ud).
Therefore, from Proposition , we know that τ �→ ψd

k
(τ , m, ε) defines a holomorphic

function on the unbounded sector S(d, δ′′) where  < δ′′ < δ′, which can be chosen close
to δ′, for all m ∈ R, all ε ∈ D(, ε). Now, we turn to the estimates (). From the rep-
resentation (), we get the following estimates: there exist constants E, E, E >  such
that

∣∣ψd
k (τ , m, ε)

∣∣ ≤ Ee–β|m|

( + |m|)μ
(

eE|τ |k |τ |k +
∫ σ ′




e–E( |τ |

s )k |τ |k

sk+ ds
)

≤ Ee–β|m|

( + |m|)μ
(

eE|τ |k |τ |k +


Ek
e–E( 

σ ′ )k |τ |k
)

()

for all τ ∈ S(d, δ′′), all m ∈R, all ε ∈ D(, ε). Besides, from the asymptotic expansion (),
we get in particular the existence of a constant E >  such that

∣
∣ψd

k (τ , m, ε)
∣
∣ ≤ Ee–β|m|

( + |m|)μ |τ | ()

for all τ ∈ S(d, δ′′) ∩ D(,ρ ′) and some ρ ′ > . Finally, combining the estimates () and
() yields (). �

We consider now the following problem:

Q(im)
(
kτ

kωk (τ , m, ε)
)

–
(
kτ

k
)δD RD(im)ωk (τ , m, ε)

= RD(im)
∑

≤p≤δD–

AδD ,p
τ k

�(δD – p)

∫ τk



(
τ k – s

)δD–p–(kp
 spωk

(
s/k , m, ε

))ds
s

+ ε– τ k

�( + 
k

)

∫ τk



(
τ k – s

)/k

×
(

c,(ε)
(π )/ s

∫ s



∫ +∞

–∞
Q

(
i(m – m)

)
ωk

(
(s – x)/k , m – m, ε

)

× Q(im)ωk

(
x/k , m, ε

) 
(s – x)x

dx dm

)
ds
s
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+
D–∑

l=

Rl(im)
(

ε�l–dl+δl– τ k

�(
d

l,k
k

)

∫ τk



(
τ k – s

) d
l,k
k

–(k
δl sδlωk

(
s/k , m, ε

))ds
s

+
∑

≤p≤δl–

Aδl ,pε
�l–dl+δl– τ k

�(
d

l,k
k

+ δl – p)

×
∫ τk



(
τ k – s

) d
l,k
k

+δl–p–(k
pspωk

(
s/k , m, ε

))ds
s

)

+ ε– τ k

�( + 
k

)

∫ τk



(
τ k – s

)/k
(

c(ε)
(π )/ s

∫ s



∫ +∞

–∞
ϕk

(
(s – x)/k , m – m, ε

)

× R(im)ωk

(
x/k , m, ε

) 
(s – x)x

dx dm

)
ds
s

+ ε– τ k

�( + 
k

)

∫ τk



(
τ k – s

)/k c,(ε)
(π )/

×
(∫ +∞

–∞
C,(m – m, ε)R(im)ωk

(
s/k , m, ε

)
dm

)
ds
s

+ ε–cF (ε)
τ k

�( + 
k

)

∫ τk



(
τ k – s

)/k
ψd

k

(
s/k , m, ε

)ds
s

()

for vanishing initial data ωk (, m, ε) ≡ , where ψd
k

(τ , m, ε) has been constructed in
Lemma .

We make the additional assumption that there exists an unbounded sector

SQ,RD =
{

z ∈C/|z| ≥ rQ,RD ,
∣
∣arg(z) – dQ,RD

∣
∣ ≤ ηQ,RD

}

with direction dQ,RD ∈R, aperture ηQ,RD >  for some radius rQ,RD >  such that

Q(im)
RD(im)

∈ SQ,RD ()

for all m ∈ R. We factorize the polynomial Pm(τ ) = Q(im)k – RD(im)kδD
 τ (δD–)k in the

form

Pm(τ ) = –RD(im)kδD


(δD–)k–∏

l=

(
τ – ql(m)

)
, ()

where

ql(m) =
( |Q(im)|

|RD(im)|kδD–


) 
(δD–)k

× exp

(√
–

(
arg

(
Q(im)

RD(im)kδD–


)


(δD – )k
+

π l
(δD – )k

))
()

for all  ≤ l ≤ (δD – )k – , all m ∈R.
We choose an unbounded sector Sd centered at , a small closed disc D̄(,ρ) and we

prescribe the sector SQ,RD in such a way that the following conditions hold.
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() There exists a constant M >  such that

∣∣τ – ql(m)
∣∣ ≥ M

(
 + |τ |) ()

for all  ≤ l ≤ (δD – )k – , all m ∈ R, all τ ∈ Sd ∪ D̄(,ρ). Indeed, from () and the
explicit expression () of ql(m), we first observe that |ql(m)| > ρ for every m ∈ R, all
 ≤ l ≤ (δD – )k –  for an appropriate choice of rQ,RD and of ρ > . We also see that, for
all m ∈ R, all  ≤ l ≤ (δD – )k – , the roots ql(m) remain in a union U of unbounded
sectors centered at  that do not cover a full neighborhood of the origin in C

∗ provided
that ηQ,RD is small enough. Therefore, one can choose an adequate sector Sd such that
Sd ∩ U = ∅ with the property that, for all  ≤ l ≤ (δD – )k – , the quotients ql(m)/τ lie
outside some small disc centered at  in C for all τ ∈ Sd , all m ∈ R. This yields () for
some small constant M > .

() There exists a constant M >  such that

∣
∣τ – ql (m)

∣
∣ ≥ M

∣
∣ql (m)

∣
∣ ()

for some l ∈ {, . . . , (δD – )k – }, all m ∈R, all τ ∈ Sd ∪ D̄(,ρ). Indeed, for the sector Sd

and the disc D̄(,ρ) chosen as above in (), we notice that, for any fixed  ≤ l ≤ (δD –)k –
, the quotient τ /ql (m) stays outside a small disc centered at  in C for all τ ∈ Sd ∪ D̄(,ρ),
all m ∈R. Hence () must hold for some small constant M > .

By construction of the roots () in the factorization () and using the lower bound
estimates (), (), we get a constant CP >  such that

∣
∣Pm(τ )

∣
∣ ≥ M(δD–)k–

 M
∣
∣RD(im)

∣
∣kδD



( |Q(im)|
|RD(im)|kδD–



) 
(δD–)k (

 + |τ |)(δD–)k–

≥ M(δD–)k–
 M

kδD


(kδD–
 )


(δD–)k

(rQ,RD )


(δD–)k
∣
∣RD(im)

∣
∣

×
(

min
x≥

( + x)(δD–)k–

( + xk )(δD–)– 
k

)
(
 + |τ |k

)(δD–)– 
k

= CP(rQ,RD )


(δD–)k
∣∣RD(im)

∣∣( + |τ |k
)(δD–)– 

k ()

for all τ ∈ Sd ∪ D̄(,ρ), all m ∈R.
In the next proposition, we give sufficient conditions under which () has a solution

ωd
k

(τ , m, ε) in the Banach space Fd
(ν′ ,β ,μ,k) where ν ′, β , μ are defined above.

Proposition  Under the assumption that

δD ≥ δl +

k

()

for all  ≤ l ≤ D – , there exist a radius rQ,RD > , a constant υ > , and constants
ς,,ς,,ς,ς,ς,,ςF ,ς >  (depending on Q, Q, k, CP , μ, ν , ε, Rl , �l , δl , dl for
 ≤ l ≤ D – ) such that if

sup
ε∈D(,ε)

∣∣
∣∣
c,(ε)

ε

∣∣
∣∣ ≤ ς,, sup

ε∈D(,ε)

∣∣
∣∣
c(ε)

ε

∣∣
∣∣ ≤ ς,,

∥
∥ϕk (τ , m, ε)

∥
∥

(ν′ ,β ,μ,k) ≤ ς,
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sup
ε∈D(,ε)

∣∣
∣∣
c,(ε)

ε

∣∣
∣∣ ≤ ς,,

∥
∥C,(m, ε)

∥
∥

(β ,μ) ≤ ς, ()

sup
ε∈D(,ε)

∣∣
∣∣
cF (ε)

ε

∣∣
∣∣ ≤ ςF ,

∥
∥ψd

k (τ , m, ε)
∥
∥

(ν′ ,β ,μ,k) ≤ ς

for all ε ∈ D(, ε), () has a unique solution ωd
k

(τ , m, ε) in the space Fd
(ν′ ,β ,μ,k) with the

property that ‖ωd
k

(τ , m, ε)‖(ν′ ,β ,μ,k) ≤ υ , for all ε ∈ D(, ε), where β ,μ >  are defined
above, for any unbounded sector Sd that satisfies the constraints (), () and for any
bounded sector Sb

d with aperture strictly larger than π
κ

such that

Sb
d ⊂ D(,ρ), Sb

d ⊂ Sd,κ ,δ , ()

where D(,ρ) fulfills the constraints (), () and where the sector Sd,κ ,δ with aperture
π
κ

+ δ is defined in Lemma , where  < δ < ap(Ud).

Proof We start the proof with a lemma which provides appropriate conditions in order to
apply a fixed point theorem.

Lemma  One can choose the constant rQ,RD > , a constant υ small enough and constants
ς,,ς,,ς,ς,ς,,ςF ,ς >  (depending on Q, Q, k, CP , μ, ν , ε, Rl , �l , δl , dl for  ≤ l ≤
D – ) such that if () holds for all ε ∈ D(, ε), the map Hk

ε defined by

Hk
ε

(
w(τ , m)

)

=
RD(im)
Pm(τ )

∑

≤p≤δD–

AδD ,p


�(δD – p)

∫ τk



(
τ k – s

)δD–p–(kp
 spw

(
s/k , m

))ds
s

+ ε– 
Pm(τ )�( + 

k
)

∫ τk



(
τ k – s

)/k

×
(

c,(ε)
(π )/ s

∫ s



∫ +∞

–∞
Q

(
i(m – m)

)
w

(
(s – x)/k , m – m

)

× Q(im)w
(
x/k , m

) 
(s – x)x

dx dm

)
ds
s

+
D–∑

l=

Rl(im)
Pm(τ )

(
ε�l–dl+δl– 

�(
d

l,k
k

)

∫ τk



(
τ k – s

) d
l,k
k

–(k
δl sδl w

(
s/k , m

))ds
s

+
∑

≤p≤δl–

Aδl ,pε
�l–dl+δl– 

�(
d

l,k
k

+ δl – p)

×
∫ τk



(
τ k – s

) d
l,k
k

+δl–p–(k
pspw

(
s/k , m

))ds
s

)

+ ε– 
Pm(τ )�( + 

k
)

∫ τk



(
τ k – s

)/k

×
(

c(ε)
(π )/ s

∫ s



∫ +∞

–∞
ϕk

(
(s – x)/k , m – m, ε

)

× R(im)w
(
x/k , m

) 
(s – x)x

dx dm

)
ds
s
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+ ε– 
Pm(τ )�( + 

k
)

∫ τk



(
τ k – s

)/k c,(ε)
(π )/

×
(∫ +∞

–∞
C,(m – m, ε)R(im)w

(
s/k , m

)
dm

)
ds
s

+ ε–cF (ε)


Pm(τ )�( + 
k

)

∫ τk



(
τ k – s

)/k
ψd

k

(
s/k , m, ε

)ds
s

()

satisfies the next properties.
(i) The following inclusion holds:

Hk
ε

(
B̄(,υ)

) ⊂ B̄(,υ), ()

where B̄(,υ) is the closed ball of radius υ >  centered at  in Fd
(ν′ ,β ,μ,k), for all ε ∈ D(, ε).

(ii) We have

∥
∥Hk

ε (w) – Hk
ε (w)

∥
∥

(ν′ ,β ,μ,k) ≤ 

‖w – w‖(ν′ ,β ,μ,k) ()

for all w, w ∈ B̄(,υ), for all ε ∈ D(, ε).

The proof of Lemma  follows the same lines of arguments as Lemma  in Proposition 
of [] and rests on Lemma , Propositions , , and  given in Section .. Therefore, we
omit the details.

We consider the ball B̄(,υ) ⊂ Fd
(ν′ ,β ,μ,k) constructed in Lemma  which is a complete

metric space for the norm ‖ · ‖(ν′ ,β ,μ,k). From the lemma above, we find that Hk
ε is a

contractive map from B̄(,υ) into itself. Due to the classical contractive mapping theo-
rem, we deduce that the map Hk

ε has a unique fixed point denoted by ωd
k

(τ , m, ε) (i.e.
Hk

ε (ωd
k

(τ , m, ε)) = ωd
k

(τ , m, ε)) in B̄(,υ), for all ε ∈ D(, ε). Moreover, the function
ωd

k
(τ , m, ε) depends holomorphically on ε in D(, ε). By construction, ωd

k
(τ , m, ε) de-

fines a solution of (). This yields the proposition. �

In the next proposition, we present the link, by means of the analytic acceleration op-
erator defined in Proposition , between the holomorphic solution of the problem ()
constructed in Proposition  and the solution of the problem () found in Proposi-
tion .

Proposition  Let us consider the function ωd
k

(τ , m, ε) constructed in Proposition  and
which solves (). The function

τ �→ Accd
k,k

(
ωd

k

)
(τ , m, ε) := Ad

mk ,mk

(
h �→ ωd

k (h, m, ε)
)
(τ )

=
∫

Ld

ωd
k (h, m, ε)G(τ , h)

dh
h

defines an analytic function on a sector Sd,κ ,δ,(c/ν)/κ / with direction d, aperture π
κ

+ δ, and
radius (c/ν)/κ/, for any  < δ < ap(Ud) and for a constant c introduced in (), with the
property that Accd

k,k (ωd
k

)(, m, ε) ≡ , for all m ∈R, all ε ∈ D(, ε).
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Moreover, for all fixed ε ∈ D(, ε), the identity

Accd
k,k

(
ωd

k

)
(τ , m, ε) = ωd

k (τ , m, ε) ()

holds for all τ ∈ Sd,κ ,δ,(c/ν)/κ /, all m ∈ R, provided that ν >  is chosen in such a way that
Sd,κ ,δ,(c/ν)/κ / ⊂ Sb

d holds where Sb
d is the bounded sector introduced in Proposition .

As a consequence of Proposition , the function τ �→ Accd
k,k (ωd

k
)(τ , m, ε) has an ana-

lytic continuation on the union Sb
d ∪ Sd , where the sector Sd has been described in Proposi-

tion , denoted again by Accd
k,k (ωd

k
)(τ , m, ε) which satisfies estimates of the form: there

exists a constant Cωk
>  with

∣
∣Accd

k,k

(
ωd

k

)
(τ , m, ε)

∣
∣ ≤ Cωk

(
 + |m|)–μe–β|m| |τ |

 + |τ |k
exp

(
ν ′|τ |k

)
()

for all τ ∈ Sb
d ∪ Sd , all m ∈R, all ε ∈ D(, ε).

Proof From Proposition , we point out that ωd
k

(τ , m, ε) belongs to the space Fd
(ν,β ,μ,k,κ)

and that ‖ωd
k

‖(ν,β ,μ,k,κ) ≤ � for all ε ∈ D(, ε). Due to Proposition , we deduce that
the function τ �→ Accd

k,k (ωd
k

)(τ , m, ε) defines a holomorphic and bounded function with
values in the Banach space E(β ,μ) (with bound independent of ε) on a sector Sd,κ ,δ,(c/ν)/κ /

with direction d, aperture π
κ

+ δ, and radius (c/ν)/κ/, for any  < δ < ap(Ud) and for a
constant c introduced in (), for all ε ∈ D(, ε).

Now, as a result of Proposition , we also know that the function τ �→ Accd
k,k (ωd

k
)(τ ,

m, ε) is the κ-sum of the formal series

Âmk ,mk

(
h �→ ωk (h, m, ε)

)
(τ ) = ω̂k (τ , m, ε)

viewed as a formal series in τ with coefficients in the Banach space E(β ,μ), on Sd,κ ,δ,(c/ν)/κ /,
for all ε ∈ D(, ε). In particular, one sees that Accd

k,k (ωd
k

)(, m, ε) ≡ , for all ε ∈ D(, ε).
Likewise, we notice from Lemma  that the function τ �→ ψd

k
(τ , m, ε) is the κ-sum

on Sd,κ ,δ,(c/ν)/κ / of the formal series ψ̂k (τ , m, ε) defined in (), viewed as a formal se-
ries in τ with coefficients in the Banach space E(β ,μ), for all ε ∈ D(, ε). We recall that
ω̂k (τ , m, ε) formally solves () for vanishing initial data ω̂k (, m, ε) ≡ . Using the stan-
dard stability properties of the κ-sums of the formal series with respect to algebraic oper-
ations and integration (see [], Section ., Theorem , p.), we deduce that the function
Accd

k,k (ωd
k

)(τ , m, ε) satisfies () for all τ ∈ Sd,κ ,δ,(c/ν)/κ /, all m ∈ R, all ε ∈ D(, ε), for
vanishing initial data Accd

k,k (ωd
k

)(, m, ε) ≡ .
In order to justify the identity (), we need to define some additional Banach space.

We keep the aforementioned notations.

Definition  Let h′ = (c/ν)/κ/. We denote H(ν′ ,β ,μ,k,h′) the vector space of continuous
functions (τ , m) �→ h(τ , m) on S̄d,κ ,δ,h′ ×R, holomorphic with respect to τ on Sd,κ ,δ,h′ such
that

∥
∥h(τ , m)

∥
∥

(ν′ ,β ,μ,k,h′)

= sup
τ∈S̄d,κ ,δ,h′ ,m∈R

(
 + |m|)μ  + |τ |k

|τ | exp
(
β|m| – ν ′|τ |k

)∣∣h(τ , m)
∣∣ ()
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is finite. One can check that H(ν′ ,β ,μ,k,h′) endowed with the norm ‖ · ‖(ν′ ,β ,μ,k,h′) is a Banach
space.

Remark Notice that if a function h(τ , m) belongs to the space Fd
(ν′ ,β ,μ,k) for the sectors Sd

and Sb
d described in Proposition , then it belongs to the space H(ν′ ,β ,μ,k,h′) (provided that

ν >  is chosen such that Sd,κ ,δ,h′ ⊂ Sb
d) and, moreover,

∥
∥h(τ , m)

∥
∥

(ν′ ,β ,μ,k,h′) ≤ ∥
∥h(τ , m)

∥
∥

(ν′ ,β ,μ,k)

holds.

From the remark above, one deduces that the functions ϕk (τ , m, ε) and ψd
k

(τ , m, ε) be-
long to the space H(ν′ ,β ,μ,k,h′).

In the following, one can reproduce the same lines of arguments as in the proof of Propo-
sition  just by replacing the Banach space Fd

(ν′ ,β ,μ,k) by H(ν′ ,β ,μ,k,h′), one gets the follow-
ing.

Lemma  Under the assumption that () holds, for the radius rQ,RD > , the constants
υ and ς,, ς,, ς, ς, ς,, ςF , ς given in Proposition  for which the constraints ()
hold, () has a unique solution ωk,h′ (τ , m, ε) in the space H(ν′ ,β ,μ,k,h′) with the property
that ‖ωk,h′ (τ , m, ε)‖(ν′ ,β ,μ,k,h′) ≤ υ , for all ε ∈ D(, ε).

Taking into account Proposition , since ωd
k

(τ , m, ε) belongs to Fd
(ν′ ,β ,μ,k), it also belongs

to the space H(ν′ ,β ,μ,k,h′). Moreover, since τ �→ Accd
k,k (ωd

k
)(τ , m, ε) defines a holomorphic

and bounded function with values in the Banach space E(β ,μ) (with bound independent
of ε) on Sd,κ ,δ,h′ that vanishes at τ = , we also find that Accd

k,k (ωd
k

)(τ , m, ε) belongs to
H(ν′ ,β ,μ,k,h′).

As a summary, we have seen that both ωd
k

(τ , m, ε) and Accd
k,k (ωd

k
)(τ , m, ε) solve

the same equation () for vanishing initial data and belong to H(ν′ ,β ,μ,k,h′). Moreover,
one can check that the constant υ >  in Lemma  and Proposition  can be chosen
sufficiently large such that ‖Accd

k,k (ωd
k

)(τ , m, ε)‖(ν′ ,β ,μ,k,h′) ≤ υ holds, if the constants
ς,,ς,,ς,,ςF >  are chosen small enough and rQ,RD >  is taken large enough. By con-
struction, we already know that ‖ωd

k
(τ , m, ε)‖(ν′ ,β ,μ,k,h′) ≤ υ . Therefore, from Lemma ,

we find that they must be equal. Proposition  follows. �

Now, we define the mk -Laplace transforms

Fd(T , m, ε) := k

∫

Ld

ψd
k (u, m, ε)e–( u

T )k du
u

,

Ud(T , m, ε) := k

∫

Ld

ωd
k (u, m, ε)e–( u

T )k du
u

,
()

which, according to the estimates () and (), are E(β ,μ)-valued bounded holomorphic
functions on the sector Sd,θ ,h′ with bisecting direction d, aperture π

k
< θ < π

k
+ ap(Sd), and

radius h′, where h′ >  is some positive real number, for all ε ∈ D(, ε).

Remark The analytic functions Fd(T , m, ε) (resp. Ud(T , m, ε)) can be called the (mk ,
mk )-sums in the direction d of the formal series F(T , m, ε) (resp. U(T , m, ε)) introduced
in the Section ., following the terminology of [], Section ..
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In the next proposition, we construct analytic solutions to the problem () with analytic
forcing term and for vanishing initial data.

Proposition  The function Ud(T , m, ε) solves the following equation:

Q(im)
(
∂T Ud(T , m, ε)

)
– T (δD–)(k+)∂

δD
T RD(im)Ud(T , m, ε)

= ε– c,(ε)
(π )/

∫ +∞

–∞
Q

(
i(m – m)

)
Ud(T , m – m, ε)Q(im)Ud(T , m, ε) dm

+
D–∑

l=

Rl(im)ε�l–dl+δl–Tdl∂
δl
T Ud(T , m, ε)

+ ε– c(ε)
(π )/

∫ +∞

–∞
C(T , m – m, ε)R(im)Ud(T , m, ε) dm

+ ε– c,(ε)
(π )/

∫ +∞

–∞
C,(m – m, ε)R(im)Ud(T , m, ε) dm

+ ε–cF (ε)Fd(T , m, ε) ()

for given initial data Ud(, m, ε) = , for all T ∈ Sd,θ ,h′ , m ∈R, all ε ∈ D(, ε).

Proof Since the function ωd
k

(u, m, ε) solves the integral equation (), one can check by
direct computations similar to those described in Proposition , using the integral repre-
sentations () that Ud(T , m, ε) solves () where the formal series F(T , m, ε) is replaced
by Fd(T , m, ε) and hence solves () where Fd(T , m, ε) must be put in place of F(T , m, ε).

�

5 Analytic solutions of a nonlinear initial value Cauchy problem with analytic
forcing term on sectors and with complex parameter

Let k, k ≥ , D ≥  be integers such that k > k. Let δl ≥  be integers such that

 = δ, δl < δl+, ()

for all  ≤ l ≤ D – . For all  ≤ l ≤ D – , let dl,�l ≥  be nonnegative integers such that

dl > δl, �l – dl + δl –  ≥ . ()

Let Q(X), Q(X), Q(X), Rl(X) ∈ C[X],  ≤ l ≤ D, be polynomials such that

deg(Q) ≥ deg(RD) ≥ deg(Rl), deg(RD) ≥ deg(Q), deg(RD) ≥ deg(Q),

Q(im) �= , Rl(im) �= , RD(im) �= 
()

for all m ∈R, all  ≤ l ≤ D – .
We require that there exists a constant rQ,Rl >  such that

∣∣
∣∣

Q(im)
Rl(im)

∣∣
∣∣ ≥ rQ,Rl ()
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for all m ∈ R, all  ≤ l ≤ D. We make the additional assumption that there exists an un-
bounded sector

SQ,RD =
{

z ∈C/|z| ≥ rQ,RD ,
∣∣arg(z) – dQ,RD

∣∣ ≤ ηQ,RD

}

with direction dQ,RD ∈R, aperture ηQ,RD >  for the radius rQ,RD >  given above, such that

Q(im)
RD(im)

∈ SQ,RD ()

for all m ∈R.

Definition  Let ς ≥  be an integer. For all  ≤ p ≤ ς – , we consider open sectors Ep

centered at , with radius ε, and opening π
k

+ κp, with κp >  small enough such that Ep ∩
Ep+ �= ∅, for all  ≤ p ≤ ς –  (with the convention that Eς = E). Moreover, we assume that
the intersection of any three different elements in {Ep}≤p≤ς– is empty and that

⋃ς–
p= Ep =

U \ {}, where U is some neighborhood of  in C. Such a set of sectors {Ep}≤p≤ς– is called
a good covering in C

∗.

Definition  Let {Ep}≤p≤ς– be a good covering in C
∗. Let T be an open bounded sector

centered at  with radius rT and consider a family of open sectors

Sdp ,θ ,εrT =
{

T ∈C
∗/|T | < εrT ,

∣∣dp – arg(T)
∣∣ < θ/

}

with aperture θ > π/k and where dp ∈R, for all  ≤ p ≤ ς – , are directions which satisfy
the following constraints: Let ql(m) be the roots of the polynomials () defined by ()
and Sdp ,  ≤ p ≤ ς – , be unbounded sectors centered at  with directions dp and with
small aperture. Let ρ >  be a positive real number. We assume that:

() There exists a constant M >  such that

∣
∣τ – ql(m)

∣
∣ ≥ M

(
 + |τ |) ()

for all  ≤ l ≤ (δD – )k – , all m ∈R, all τ ∈ Sdp ∪ D̄(,ρ), for all  ≤ p ≤ ς – .
() There exists a constant M >  such that

∣∣τ – ql (m)
∣∣ ≥ M

∣∣ql (m)
∣∣ ()

for some l ∈ {, . . . , (δD – )k – }, all m ∈R, all τ ∈ Sdp ∪ D̄(,ρ), for all  ≤ p ≤ ς – .
() There exist a family of unbounded sectors Udp with bisecting direction dp and

bounded sectors Sb
dp with bisecting direction dp, with radius less than ρ , with aperture

π
κ

+ δp, with  < δp < ap(Udp ), for all  ≤ p ≤ ς – , with the property that Sb
dp ∩ Sb

dp+ �= ∅
for all  ≤ p ≤ ς –  (with the convention that dς = d).

() For all  ≤ p ≤ ς – , for all t ∈ T , all ε ∈ Ep, we have εt ∈ Sdp ,θ ,εrT .
We say that the family {(Sdp ,θ ,εrT )≤p≤ς–,T } is associated to the good covering

{Ep}≤p≤ς–.
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We consider a good covering {Ep}≤p≤ς– and a family of sectors {(Sdp ,θ ,εrT )≤p≤ς–,T }
associated to it. For all  ≤ p ≤ ς – , we consider the following nonlinear initial value
problem with forcing term:

Q(∂z)
(
∂tudp (t, z, ε)

)

= c,(ε)
(
Q(∂z)udp (t, z, ε)

)(
Q(∂z)udp (t, z, ε)

)

+ ε(δD–)(k+)–δD+t(δD–)(k+)∂
δD
t RD(∂z)udp (t, z, ε) +

D–∑

l=

ε�l tdl∂
δl
t Rl(∂z)udp (t, z, ε)

+ c(t, z, ε)R(∂z)udp (t, z, ε) + cF (ε)f dp (t, z, ε) ()

for given initial data udp (, z, ε) ≡ .
The functions c,(ε) and cF (ε) are holomorphic and bounded on the disc D(, ε) and

are such that c,() = cF () = . The coefficient c(t, z, ε) and the forcing term f dp (t, z, ε)
are constructed as follows. Let c(ε) and c,(ε) be holomorphic and bounded functions
on the disc D(, ε) which satisfy c() = c,() = . We consider sequences of functions
m �→ C,n(m, ε), for n ≥ , and m �→ Fn(m, ε), for n ≥ , that belong to the Banach space
E(β ,μ) for some β > , μ > max(deg(Q)+, deg(Q)+), and which depend holomorphically
on ε ∈ D(, ε). We assume that there exist constants K, T >  such that () holds for
all n ≥ , for all ε ∈ D(, ε). We deduce that the function

C(T , z, ε) = c,(ε)F–(m �→ C,(m, ε)
)
(z) +

∑

n≥

c(ε)F–(m �→ C,n(m, ε)
)
(z)Tn

represents a bounded holomorphic function on D(, T/) × Hβ ′ × D(, ε) for any  <
β ′ < β (where F– denotes the inverse Fourier transform defined in Proposition ). We
define the coefficient c(t, z, ε) as

c(t, z, ε) = C(εt, z, ε). ()

The function c is holomorphic and bounded on D(, r)×Hβ ′ ×D(, ε) where rε < T/.
We make the assumption that the formal mk -Borel transform

ψk (τ , m, ε) =
∑

n≥

Fn(m, ε)
τ n

�( n
k

)

is convergent on the disc D(,ρ) given in Definition  and can be analytically continued
w.r.t. τ as a function τ �→ ψ

dp
k

(τ , m, ε) on the domain Udp ∪ D(,ρ), where Udp is the
unbounded sector given in Definition , with ψ

dp
k

(τ , m, ε) ∈ Fdp
(ν,β ,μ,k,k) and such that there

exists a constant ζψk
>  such that

∥∥ψ
dp
k

(τ , m, ε)
∥∥

(ν,β ,μ,k,k) ≤ ζψk
()

for all ε ∈ D(, ε).
From Lemma , we know that the accelerated function

ψ
dp
k

(τ , m, ε) := Adp
mk ,mk

(
h �→ ψ

dp
k

(h, m, ε)
)
(τ )
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defines a function that belongs to the space Fdp
(ν′ ,β ,μ,k) for the unbounded sector Sdp and

the bounded sector Sb
dp given in Definition . Moreover, we get a constant ζψk

>  with

∥∥ψ
dp
k

(τ , m, ε)
∥∥

(ν′ ,β ,μ,k) ≤ ζψk
()

for all ε ∈ D(, ε). We take the mk -Laplace transform

Fdp (T , m, ε) := k

∫

Ldp

ψ
dp
k

(u, m, ε)e–( u
T )k du

u
, ()

which exists for all T ∈ Sdp ,θ ,h′ , m ∈R, ε ∈ D(, ε), where Sdp ,θ ,h′ is a sector with bisecting
direction dp, aperture π

k
< θ < π

k
+ ap(Sdp ), and radius h′, where h′ >  is some positive

real number, for all ε ∈ D(, ε).
We define the forcing term f dp (t, z, ε) as

f dp (t, z, ε) := F–(m �→ Fdp (εt, m, ε)
)
(z). ()

By construction, f dp (t, z, ε) represents a bounded holomorphic function on T × Hβ ′ × Ep

(provided that the radius rT of T satisfies the inequality εrT ≤ h′, which will be assumed
in the sequel).

In the next first main result, we construct a family of actual holomorphic solutions to
() for given initial data at t =  being identically equal to zero, defined on the sectors
Ep with respect to the complex parameter ε. We can also control the difference between
any two neighboring solutions on the intersection of sectors Ep ∩ Ep+.

Theorem  We consider () and we assume that the constraints (), (), (), (),
and () hold. We also make the additional assumption that

dl + k +  = δl(k + ) + d
l,k , d

l,k > ,

κ

=

k

–

k

,

k

k – k
≥ dl + ( – δl)

dl + ( – δl)(k + )
, d

l,k > (δl – )(k – k), δD ≥ δl +

k

,
()

for  ≤ l ≤ D – . Let the coefficient c(t, z, ε) and the forcing terms f dp (t, z, ε) be constructed
as in (), (). Let a good covering {Ep}≤p≤ς– inC

∗ be given, for which a family of sectors
{(Sdp ,θ ,εrT )≤p≤ς–,T } associated to this good covering can be considered.

Then there exist radii rQ,Rl >  large enough, for  ≤ l ≤ D and constants ζ,, ζ,, ζ,, ζF >
 small enough, such that if

sup
ε∈D(,ε)

∣∣
∣∣
c,(ε)

ε

∣∣
∣∣ ≤ ζ,, sup

ε∈D(,ε)

∣∣
∣∣
c(ε)

ε

∣∣
∣∣ ≤ ζ,,

sup
ε∈D(,ε)

∣∣
∣∣
c,(ε)

ε

∣∣
∣∣ ≤ ζ,, sup

ε∈D(,ε)

∣∣
∣∣
cF (ε)

ε

∣∣
∣∣ ≤ ζF ,

()

and also for every  ≤ p ≤ ς – , one can construct a solution udp (t, z, ε) of () with
udp (, z, ε) ≡ , which defines a bounded holomorphic function on the domain T ×Hβ ′ ×Ep

for any given  < β ′ < β .
Moreover, the next estimates hold for the solution udp and the forcing term f dp : there exist

constants  < h′′ ≤ rT , Kp, Mp >  (independent of ε) with the following properties:
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() Assume that the unbounded sectors Udp and Udp+ have a sufficiently large aperture
in such a way that Udp ∩ Udp+ contains the sector Udp ,dp+ = {τ ∈ C

∗/ arg(τ ) ∈ [dp,dp+]},
then

sup
t∈T ∩D(,h′′),z∈Hβ′

∣
∣udp+ (t, z, ε) – udp (t, z, ε)

∣
∣ ≤ Kpe

– Mp
|ε|k ,

sup
t∈T ∩D(,h′′),z∈Hβ′

∣
∣f dp+ (t, z, ε) – f dp (t, z, ε)

∣
∣ ≤ Kpe

– Mp
|ε|k

()

for all ε ∈ Ep+ ∩ Ep.
() Assume that the unbounded sectors Udp and Udp+ have an empty intersection, then

sup
t∈T ∩D(,h′′),z∈Hβ′

∣
∣udp+ (t, z, ε) – udp (t, z, ε)

∣
∣ ≤ Kpe

– Mp
|ε|k ,

sup
t∈T ∩D(,h′′),z∈Hβ′

∣
∣f dp+ (t, z, ε) – f dp (t, z, ε)

∣
∣ ≤ Kpe

– Mp
|ε|k

()

for all ε ∈ Ep+ ∩ Ep.

Proof Let  ≤ p ≤ ς – . Under the assumptions of Theorem , using Proposition , one
can construct a function Udp (T , m, ε) which satisfies Udp (, m, ε) ≡  and solves the equa-
tion

Q(im)
(
∂T Udp (T , m, ε)

)
– T (δD–)(k+)∂

δD
T RD(im)Udp (T , m, ε)

= ε– c,(ε)
(π )/

∫ +∞

–∞
Q

(
i(m – m)

)
Udp (T , m – m, ε)Q(im)Udp (T , m, ε) dm

+
D–∑

l=

Rl(im)ε�l–dl+δl–Tdl∂
δl
T Udp (T , m, ε)

+ ε– c(ε)
(π )/

∫ +∞

–∞
C(T , m – m, ε)R(im)Udp (T , m, ε) dm

+ ε– c,(ε)
(π )/

∫ +∞

–∞
C,(m – m, ε)R(im)Udp (T , m, ε) dm

+ ε–cF (ε)Fdp (T , m, ε), ()

where C(T , m, ε) =
∑

n≥ C,n(m, ε)Tn is a convergent series on D(, T/) with values
in E(β ,μ) and Fdp (T , m, ε) is given by (), for all ε ∈ D(, ε). The function (T , m) �→
Udp (T , m, ε) is well defined on the domain Sdp ,θ ,h′ ×R.

Moreover, Udp (T , m, ε) can be written as mk -Laplace transform

Udp (T , m, ε) = k

∫

Lγp

ω
dp
k

(u, m, ε) exp

(
–
(

u
T

)k)du
u

()

along a half-line Lγp = R+e
√

–γp ⊂ Sdp ∪ {} (the direction γp may depend on T ), where
ω
dp
k

(τ , m, ε) defines a continuous function on (Sb
dp ∪ Sdp ) × R × D(, ε), which is holo-

morphic with respect to (τ , ε) on (Sb
dp ∪ Sdp ) × D(, ε) for any m ∈ R and satisfies the
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estimates: there exists a constant C
ω
dp
k

>  with

∣
∣ω

dp
k

(τ , m, ε)
∣
∣ ≤ C

ω
dp
k

(
 + |m|)–μe–β|m| |τ |

 + |τ |k
exp

(
ν ′|τ |k

)
()

for all τ ∈ Sb
dp ∪ Sdp , all m ∈ R, all ε ∈ D(, ε). Besides, the function ω

dp
k

(τ , m, ε) is the
analytic continuation w.r.t. τ of the function

τ �→ Acc
dp
k,k

(
ω
dp
k

)
(τ , m, ε) =

∫

L
γ p

ω
dp
k

(h, m, ε)G(τ , h)
dh
h

, ()

where the path of integration is a half-line Lγ 
p

= R+e
√

–γ 
p ⊂ Udp (the direction γ 

p may
depend on τ ), which defines an analytic function on Sdp ,κ ,δp ,(c/ν)/κ / ⊂ Sb

dp which is a sec-
tor with bisecting direction dp, aperture π

κ
+ δp, and radius (c/ν)/κ/. We recall that

ω
dp
k

(h, m, ε) defines a continuous function on (Udp ∪D(,ρ))×R×D(, ε), which is holo-
morphic w.r.t. (τ , ε) on (Udp ∪D(,ρ))×D(, ε), for any m ∈R, and satisfies the estimates:
there exists a constant C

ω
dp
k

>  with

∣∣ω
dp
k

(τ , m, ε)
∣∣ ≤ C

ω
dp
k

(
 + |m|)–μe–β|m| |τ |

 + |τ |k
exp

(
ν|τ |κ) ()

for all τ ∈ Udp ∪ D(,ρ), all m ∈R, all ε ∈ D(, ε).
Using the estimates (), we find that the function

(T , z) �→ Udp (T , z, ε) = F–(m �→ Udp (T , m, ε)
)
(z)

defines a bounded holomorphic function on Sdp ,θ ,h′ × Hβ ′ , for all ε ∈ D(, ε) and any  <
β ′ < β . For all  ≤ p ≤ ς – , we define

udp (t, z, ε) = Udp (εt, z, ε) =
k

(π )/

∫ +∞

–∞

∫

Lγp

ω
dp
k

(u, m, ε) exp

(
–
(

u
εt

)k)
eizm du

u
dm.

Taking into account the construction provided in () from Definition , the function
udp (t, z, ε) defines a bounded holomorphic function on the domain T × Hβ ′ × Ep. More-
over, we have udp (, z, ε) ≡  and using the properties of the Fourier inverse trans-
form from Proposition , we deduce that udp (t, z, ε) solves the main equation () on
T × Hβ ′ × Ep.

Now, we proceed to the proof of the estimates (). We detail only the arguments for
the functions udp since the estimates for the forcing terms f dp follow the same line of
discourse as below with the help of the estimates () instead of ().

Let  ≤ p ≤ ς –  such that Udp ∩ Udp+ contains the sector Udp ,dp+ . First of all,
from the integral representation () by using a path deformation between Lγ 

p
and

Lγ 
p+

, we observe that the functions Acc
dp
k,k

(ωdp
k

)(τ , m, ε) and Acc
dp+
k,k

(ωdp+
k

)(τ , m, ε) must
coincide on the domain (Sdp ,κ ,δp ,(c/ν)/κ / ∩ Sdp+,κ ,δp+,(c/ν)/κ /) × R × D(, ε). Hence,
there exists a function that we denote ω

dp ,dp+
k

(τ , m, ε) which is holomorphic w.r.t. τ on
Sdp ,κ ,δp ,(c/ν)/κ / ∪ Sdp+,κ ,δp+,(c/ν)/κ /, continuous w.r.t. m on R, holomorphic w.r.t. ε on
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D(, ε) which coincides with Acc
dp
k,k

(ωdp
k

)(τ , m, ε) on Sdp ,κ ,δp ,(c/ν)/κ / ×R× D(, ε) and
with Acc

dp+
k,k

(ωdp+
k

)(τ , m, ε) on Sdp+,κ ,δp+,(c/ν)/κ / ×R× D(, ε).
Now, we put ρν,κ = (c/ν)/κ/. Using the fact that the function

u �→ ω
dp ,dp+
k

(u, m, ε) exp

(
–
(

u
εt

)k)
/u

is holomorphic on Sdp ,κ ,δp ,ρν,κ ∪ Sdp+,κ ,δp+,ρν,κ for all (m, ε) ∈R× D(, ε), its integral along
the union of a segment starting from  to (ρν,κ/)eiγp+ , an arc of circle with radius ρν,κ/
which connects (ρν,κ/)eiγp+ and (ρν,κ/)eiγp , and a segment starting from (ρν,κ/)eiγp to
, is equal to zero. Therefore, we can write the difference udp+ – udp as a sum of three
integrals,

udp+ (t, z, ε) – udp (t, z, ε)

=
k

(π )/

∫ +∞

–∞

∫

Lρν,κ /,γp+

ω
dp+
k

(u, m, ε)e–( u
εt )k eizm du

u
dm

–
k

(π )/

∫ +∞

–∞

∫

Lρν,κ /,γp

ω
dp
k

(u, m, ε)e–( u
εt )k eizm du

u
dm

+
k

(π )/

∫ +∞

–∞

∫

Cρν,κ /,γp ,γp+

ω
dp ,dp+
k

(u, m, ε)e–( u
εt )k eizm du

u
dm, ()

where Lρν,κ /,γp+ = [ρν,κ/, +∞)eiγp+ , Lρν,κ /,γp = [ρν,κ/, +∞)eiγp , and Cρν,κ /,γp ,γp+ is an arc
of circle with radius ρν,κ/ connecting (ρν,κ/)eiγp and (ρν,κ/)eiγp+ with a well chosen
orientation.

We give estimates for the quantity

I =
∣∣∣
∣

k

(π )/

∫ +∞

–∞

∫

Lρν,κ /,γp+

ω
dp+
k

(u, m, ε)e–( u
εt )k eizm du

u
dm

∣∣∣
∣.

By construction, the direction γp+ (which depends on εt) is chosen in such a way that
cos(k(γp+ – arg(εt))) ≥ δ, for all ε ∈ Ep ∩ Ep+, all t ∈ T , for some fixed δ > . From the
estimates (), we find that

I ≤ k

(π )/

∫ +∞

–∞

∫ +∞

ρν,κ /
C

ω
dp+
k

(
 + |m|)–μe–β|m| r

 + rk

× exp
(
ν ′rk

)
exp

(
–

cos(k(γp+ – arg(εt)))
|εt|k

rk

)
e–m Im(z) dr

r
dm

≤
kC

ω
dp+
k

(π )/

∫ +∞

–∞
e–(β–β ′)|m| dm

∫ +∞

ρν,κ /
exp

(
–
(

δ

|t|k
– ν ′|ε|k

)(
r
|ε|

)k)
dr

≤
kC

ω
dp+
k

(π )/

∫ +∞


e–(β–β ′)m dm

∫ +∞

ρν,κ /

|ε|k

( δ
|t|k – ν ′|ε|k )k( ρν,κ

 )k–

×
( δ
|t|k – ν ′|ε|k )krk–

|ε|k
exp

(
–
(

δ

|t|k
– ν ′|ε|k

)(
r
|ε|

)k)
dr
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≤
kC

ω
dp+
k

(π )/
|ε|k

(β – β ′)( δ
|t|k – ν ′|ε|k )k( ρν,κ

 )k–

× exp

(
–
(

δ

|t|k
– ν ′|ε|k

)
(ρν,κ/)k

|ε|k

)

≤
kC

ω
dp+
k

(π )/
|ε|k

(β – β ′)δk( ρν,κ
 )k– exp

(
–δ

(ρν,κ/)k

|ε|k

)
()

for all t ∈ T and | Im(z)| ≤ β ′ with |t| < ( δ
δ+ν′εk


)/k , for some δ > , for all ε ∈ Ep ∩ Ep+.

In the same way, we also give estimates for the integral

I =
∣∣
∣∣

k

(π )/

∫ +∞

–∞

∫

Lρν,κ /,γp

ω
dp
k

(u, m, ε)e–( u
εt )k eizm du

u
dm

∣∣
∣∣.

Namely, the direction γp (which depends on εt) is chosen in such a way that cos(k(γp –
arg(εt))) ≥ δ, for all ε ∈ Ep ∩Ep+, all t ∈ T , for some fixed δ > . Again from the estimates
() and following the same steps as in (), we find that

I ≤
kC

ω
dp
k

(π )/
|ε|k

(β – β ′)δk( ρν,κ
 )k– exp

(
–δ

(ρν,κ/)k

|ε|k

)
()

for all t ∈ T and | Im(z)| ≤ β ′ with |t| < ( δ
δ+ν′εk


)/k , for some δ > , for all ε ∈ Ep ∩ Ep+.

Finally, we give upper bound estimates for the integral

I =
∣∣
∣∣

k

(π )/

∫ +∞

–∞

∫

Cρν,κ /,γp ,γp+

ω
dp ,dp+
k

(u, m, ε)e–( u
εt )k eizm du

u
dm

∣∣
∣∣.

By construction, the arc of circle Cρν,κ /,γp ,γp+ is chosen in such a way that cos(k(θ –
arg(εt))) ≥ δ, for all θ ∈ [γp,γp+] (if γp < γp+), θ ∈ [γp+,γp] (if γp+ < γp), for all t ∈ T ,
all ε ∈ Ep ∩ Ep+, for some fixed δ > . Bearing in mind (), we find that

I ≤ k

(π )/

∫ +∞

–∞

∣∣
∣∣

∫ γp+

γp

max{C
ω
dp
k

, C
ω
dp+
k

}( + |m|)–μe–β|m| ρν,κ/
 + (ρν,κ/)k

× exp
(
ν ′(ρν,κ/)k

)
exp

(
–

cos(k(θ – arg(εt)))
|εt|k

(
ρν,κ



)k)
e–m Im(z) dθ

∣∣
∣∣dm

≤
k(max{C

ω
dp
k

, C
ω
dp+
k

})
(π )/

∫ +∞

–∞
e–(β–β ′)|m| dm

× |γp – γp+|ρν,κ


exp

(
–
(

δ

|t|k
– ν ′|ε|k

)(
ρν,κ/

|ε|
)k)

≤
k(max{C

ω
dp
k

, C
ω
dp+
k

})
(π )/(β – β ′)

|γp – γp+|ρν,κ


exp

(
–δ

(
ρν,κ/

|ε|
)k)

()

for all t ∈ T and | Im(z)| ≤ β ′ with |t| < ( δ
δ+ν′εk


)/k , for some δ > , for all ε ∈ Ep ∩ Ep+.
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Finally, gathering the three above inequalities, (), (), and (), we deduce from
the decomposition () that

∣∣udp+ (t, z, ε) – udp (t, z, ε)
∣∣

≤
k(C

ω
dp
k

+ C
ω
dp+
k

)

(π )/
|ε|k

(β – β ′)δk( ρν,κ
 )k– exp

(
–δ

(ρν,κ/)k

|ε|k

)

+
k(max{C

ω
dp
k

, C
ω
dp+
k

})
(π )/(β – β ′)

|γp – γp+|ρν,κ


exp

(
–δ

(
ρν,κ/

|ε|
)k)

for all t ∈ T and | Im(z)| ≤ β ′ with |t| < ( δ
δ+ν′εk


)/k , for some δ > , for all ε ∈ Ep ∩ Ep+.

Therefore, the inequality () holds.
In the last part of the proof, we show the estimates (). Again, we only describe the

arguments for the functions udp since exactly the same analysis can be made for the forcing
term f dp using the estimates () and () instead of () and ().

Let  ≤ p ≤ ς –  such that Udp ∩ Udp+ = ∅. We first consider the following.

Lemma  There exist two constants KA
p , MA

p >  such that

∣
∣Acc

dp+
k,k

(
ω
dp+
k

)
(τ , m, ε) – Acc

dp
k,k

(
ω
dp
k

)
(τ , m, ε)

∣
∣

≤ KA
p exp

(
–

MA
p

|τ |κ
)

(
 + |m|)–μe–β|m| ()

for all ε ∈ Ep+ ∩ Ep, all τ ∈ Sdp+,κ ,δp+,ρν,κ ∩ Sdp ,κ ,δp ,ρν,κ , all m ∈ R.

Proof We first notice that the functions τ �→ ω
dp
k

(τ , m, ε) and τ �→ ω
dp+
k

(τ , m, ε) are an-
alytic continuations of the common mk -Borel transform ωk (τ , m, ε) =

∑
n≥ Un(m, ε)τ n/

�(n/k), which defines a continuous function on D(,ρ)×R×D(, ε), holomorphic w.r.t.
(τ , ε) on D(,ρ) × D(, ε) for any m ∈ R with estimates: there exists a constant Cωk

> 
with

∣∣ωk (τ , m, ε)
∣∣ ≤ Cωk

(
 + |m|)–μe–β|m| |τ |

 + |τ |k
eν|τ |κ ()

for all τ ∈ D(,ρ), all m ∈ R, all ε ∈ D(, ε). From the proof of Proposition , we know
that the function G(τ , h) is holomorphic w.r.t. (τ , h) ∈ C whenever τ /h belongs to an
open unbounded sector with direction d =  and aperture π/κ . As a result, the integral of
the function h �→ ωk (h, m, ε)G(τ , h)/h, for all (m, ε) ∈ R× D(, ε), all τ ∈ Sdp+,κ ,δp+,ρν,κ ∩
Sdp ,κ ,δp ,ρν,κ , along the union of a segment starting from  to (ρ/)eiγ 

p+ , an arc of circle with
radius ρ/ which connects (ρ/)eiγ 

p+ and (ρ/)eiγ 
p and a segment starting from (ρ/)eiγ 

p

to , is equal to zero. Therefore, we can write the difference Acc
dp+
k,k

(ωdp+
k

) – Acc
dp
k,k

(ωdp
k

)
as a sum of three integrals

Acc
dp+
k,k

(
ω
dp+
k

)
(τ , m, ε) – Acc

dp
k,k

(
ω
dp
k

)
(τ , m, ε)

=
∫

L
ρ/,γ 

p+

ω
dp+
k

(h, m, ε)G(τ , h)
dh
h
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–
∫

L
ρ/,γ p

ω
dp
k

(h, m, ε)G(τ , h)
dh
h

+
∫

C
ρ/,γ p ,γ 

p+

ωk (h, m, ε)G(τ , h)
dh
h

, ()

where Lρ/,γ 
p+

= [ρ/, +∞)eiγ 
p+ , Lρ/,γ 

p
= [ρ/, +∞)eiγ 

p , and Cρ/,γ 
p ,γ 

p+
is an arc of circle

with radius ρ/ connecting (ρ/)eiγ 
p and (ρ/)eiγ 

p+ with a well-chosen orientation.
We give estimates for the quantity

IA =
∣
∣∣
∣

∫

L
ρ/,γ 

p+

ω
dp+
k

(h, m, ε)G(τ , h)
dh
h

∣
∣∣
∣.

From the estimates () and (), we find that

IA ≤
∫ +∞

ρ/
Cdp+

ωk

(
 + |m|)–μe–β|m| r

 + rk
eνrκ c exp

(
–c

(
r

|τ |
)κ)dr

r

≤ cCdp+
ωk

(
 + |m|)–μe–β|m|

∫ +∞

ρ/

|τ |κ
(c – |τ |κν)κ(ρ/)κ–

(c – |τ |κν)κrκ–

|τ |κ

× exp

(
–
(
c – |τ |κν)

(
r

|τ |
)κ)

dr

≤ cCdp+
ωk

(
 + |m|)–μe–β|m| |τ |κ

(c – |τ |κν)κ(ρ/)κ– exp

(
–
(
c – |τ |κν)

(
ρ/
|τ |

)κ)

≤ cCdp+
ωk

(
 + |m|)–μe–β|m| |τ |κ

c( – 
κ )κ(ρ/)κ–

× exp

(
–
(

c

(
 –


κ

)(
ρ/
|τ |

)κ))
()

for all ε ∈ Ep+ ∩ Ep, all τ ∈ Sdp+,κ ,δp+,ρν,κ ∩ Sdp ,κ ,δp ,ρν,κ , all m ∈R.
In the same way, we also give estimates for the integral

IA =
∣∣∣
∣

∫

L
ρ/,γ p

ω
dp
k

(h, m, ε)G(τ , h)
dh
h

∣∣∣
∣.

Namely, from the estimates () and (), following the same steps as above in (), we
find that

IA ≤ cCdp
ωk

(
 + |m|)–μe–β|m| |τ |κ

c( – 
κ )κ(ρ/)κ–

× exp

(
–
(

c

(
 –


κ

)(
ρ/
|τ |

)κ))
()

for all ε ∈ Ep+ ∩ Ep, all τ ∈ Sdp+,κ ,δp+,ρν,κ ∩ Sdp ,κ ,δp ,ρν,κ , all m ∈R.
Finally, we give upper bound estimates for the integral

IA =
∣∣
∣∣

∫

C
ρ/,γ p ,γ 

p+

ωk (h, m, ε)G(τ , h)
dh
h

∣∣
∣∣.
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Bearing in mind () and (), we find that

IA ≤
∣∣
∣∣

∫ γ 
p+

γ 
p

Cωk

(
 + |m|)–μe–β|m| ρ/

 + (ρ/)k
eν(ρ/)κ c exp

(
–c

(
ρ/
|τ |

)κ)
dθ

∣∣
∣∣

≤ cCωk

ρ


∣
∣γ 

p – γ 
p+

∣
∣( + |m|)–μe–β|m| exp

(
–
(
c – |τ |κν)(ρ/

|τ |
)κ)

≤ cCωk

ρ


∣
∣γ 

p – γ 
p+

∣
∣( + |m|)–μe–β|m| exp

(
–
(

c

(
 –


κ

))(
ρ/
|τ |

)κ)
()

for all ε ∈ Ep+ ∩ Ep, all τ ∈ Sdp+,κ ,δp+,ρν,κ ∩ Sdp ,κ ,δp ,ρν,κ , all m ∈R.
Finally, gathering the above inequalities, (), (), and (), we deduce from the de-

composition () that

∣∣Acc
dp+
k,k

(
ω
dp+
k

)
(τ , m, ε) – Acc

dp
k,k

(
ω
dp
k

)
(τ , m, ε)

∣∣

≤ c
(
Cdp+

ωk
+ Cdp

ωk

)(
 + |m|)–μe–β|m| ρκ

ν,κ

c( – 
κ )κ(ρ/)κ–

× exp

(
–
(

c

(
 –


κ

)(
ρ/
|τ |

)κ))

+ cCωk

ρ


∣
∣γ 

p – γ 
p+

∣
∣( + |m|)–μe–β|m| exp

(
–
(

c

(
 –


κ

))(
ρ/
|τ |

)κ)
()

for all ε ∈ Ep+ ∩ Ep, all τ ∈ Sdp+,κ ,δp+,ρν,κ ∩ Sdp ,κ ,δp ,ρν,κ , all m ∈ R. We conclude that the
inequality () holds. �

Using the analytic continuation property () and the fact that the functions u �→
ω
dp
k

(u, m, ε) exp(–( u
εt )k )/u (resp. u �→ ω

dp+
k

(u, m, ε) exp(–( u
εt )k )/u) are holomorphic on

Sb
dp ∪ Sdp (resp. on Sb

dp+ ∪ Sdp ), we can deform the straight lines of integration Lγp (resp.
Lγp+ ) in such a way that

udp+ (t, z, ε) – udp (t, z, ε)

=
k

(π )/

∫ +∞

–∞

∫

Lρν,κ /,γp+

ω
dp+
k

(u, m, ε) exp

(
–
(

u
εt

)k)
eizm du

u
dm

–
k

(π )/

∫ +∞

–∞

∫

Lρν,κ /,γp

ω
dp
k

(u, m, ε) exp

(
–
(

u
εt

)k)
eizm du

u
dm

+
k

(π )/

∫ +∞

–∞

∫

Cρν,κ /,θp,p+,γp+

ω
dp+
k

(u, m, ε) exp

(
–
(

u
εt

)k)
eizm du

u
dm

–
k

(π )/

∫ +∞

–∞

∫

Cρν,κ /,θp,p+,γp

ω
dp
k

(u, m, ε) exp

(
–
(

u
εt

)k)
eizm du

u
dm

+
k

(π )/

∫ +∞

–∞

∫

L,ρν,κ /,θp,p+

(
Acc

dp+
k,k

(
ω
dp+
k

)
(u, m, ε) – Acc

dp
k,k

(
ω
dp
k

)
(u, m, ε)

)

× exp

(
–
(

u
εt

)k)
eizm du

u
dm, ()
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where Lρν,κ /,γp+ = [ρν,κ/, +∞)e
√

–γp+ , Lρν,κ /,γp = [ρν,κ/, +∞)e
√

–γp , Cρν,κ /,θp,p+,γp+ is
an arc of circle with radius ρν,κ/, connecting (ρν,κ/)e

√
–θp,p+ and (ρν,κ/)e

√
–γp+ with

a well-chosen orientation, where θp,p+ denotes the bisecting direction of the sector
Sdp+,κ ,δp+,ρν,κ ∩ Sdp ,κ ,δp ,ρν,κ and likewise Cρν,κ /,θp,p+,γp is an arc of circle with radius ρν,κ/,
connecting the points (ρν,κ/)e

√
–θp,p+ and (ρν,κ/)e

√
–γp with a well chosen orientation

and finally L,ρν,κ /,θp,p+ = [,ρν,κ/]e
√

–θp,p+ .
Following the same lines of arguments as in the estimates () and (), we get the

inequalities

J =
∣
∣∣
∣

k

(π )/

∫ +∞

–∞

∫

Lρν,κ /,γp+

ω
dp+
k

(u, m, ε) exp

(
–
(

u
εt

)k)
eizm du

u
dm

∣
∣∣
∣

≤
kC

ω
dp+
k

(π )/
|ε|k

(β – β ′)δk( ρν,κ
 )k– exp

(
–δ

(ρν,κ/)k

|ε|k

)
,

J =
∣∣∣
∣

k

(π )/

∫ +∞

–∞

∫

Lρν,κ /,γp

ω
dp
k

(u, m, ε) exp

(
–
(

u
εt

)k)
eizm du

u
dm

∣∣∣
∣

≤
kC

ω
dp
k

(π )/
|ε|k

(β – β ′)δk( ρν,κ
 )k– exp

(
–δ

(ρν,κ/)k

|ε|k

)
,

J =
∣∣
∣∣

k

(π )/

∫ +∞

–∞

∫

Cρν,κ /,θp,p+,γp+

ω
dp+
k

(u, m, ε) exp

(
–
(

u
εt

)k)
eizm du

u
dm

∣∣
∣∣

≤
kC

ω
dp+
k

(π )/(β – β ′)
|γp+ – θp,p+|ρν,κ


exp

(
–δ

(
ρν,κ/

|ε|
)k)

,

J =
∣
∣∣
∣

k

(π )/

∫ +∞

–∞

∫

Cρν,κ /,θp,p+,γp

ω
dp
k

(u, m, ε) exp

(
–
(

u
εt

)k)
eizm du

u
dm

∣
∣∣
∣

≤
kC

ω
dp
k

(π )/(β – β ′)
|γp – θp,p+|ρν,κ


exp

(
–δ

(
ρν,κ/

|ε|
)k)

()

for all t ∈ T and | Im(z)| ≤ β ′ with |t| < ( δ
δ+ν′εk


)/k , for some δ, δ > , for all ε ∈ Ep ∩Ep+.

In the last part of the proof, it remains to give upper bounds for the integral

J =
∣∣∣
∣

k

(π )/

∫ +∞

–∞

∫

L,ρν,κ /,θp,p+

(
Acc

dp+
k,k

(
ω
dp+
k

)
(u, m, ε) – Acc

dp
k,k

(
ω
dp
k

)
(u, m, ε)

)

× exp

(
–
(

u
εt

)k)
eizm du

u
dm

∣∣
∣∣.

By construction, there exists δ >  such that cos(k(θp,p+ – arg(εt))) ≥ δ for all ε ∈ Ep ∩
Ep+, all t ∈ T . From Lemma , we find that

J ≤ k

(π )/

∫ +∞

–∞

∫ ρν,κ /


KA

p
(
 + |m|)–μe–β|m| exp

(
–

MA
p

rκ

)

× exp

(
–

cos(k(θp,p+ – arg(εt)))
|εt|k

rk

)
e–m Im(z) dr

r
dm

≤ kKA
p

(π )/

∫ +∞

–∞
e–(β–β ′)|m| dm × J(εt), ()
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where

J(εt) =
∫ ρν,κ /


exp

(
–

MA
p

rκ

)
exp

(
–

δ

|εt|k
rk

)
dr
r

. ()

The study of estimates for J(εt) as ε tends to zero rests on the following two lemmas.

Lemma  (Watson’s lemma. Exercise , p. in []) Let b >  and f : [, b] →C be a contin-
uous function having the formal expansion

∑
n≥ antn ∈ C�t� as its asymptotic expansion

of Gevrey order κ >  at , meaning there exist C, M >  such that

∣∣
∣∣
∣
f (t) –

N–∑

n=

antn

∣∣
∣∣
∣
≤ CMN N !κ |t|N ,

for every N ≥  and t ∈ [, δ], for some  < δ < b. Then the function

I(x) =
∫ b


f (s)e– s

x ds

admits the formal power series
∑

n≥ ann!xn+ ∈C�x� as its asymptotic expansion of Gevrey
order κ +  at , it is to say, there exist C̃, K̃ >  such that

∣∣∣
∣∣
I(x) –

N–∑

n=

ann!xn+

∣∣∣
∣∣
≤ C̃K̃N+(N + )!+κ |x|N+,

for every N ≥  and x ∈ [, δ′] for some  < δ′ < b.

Lemma  (Exercise , p. in []) Let δ, q > , and ψ : [, δ] →C be a continuous function.
The following assertions are equivalent:

() There exist C, M >  such that |ψ(x)| ≤ CMnn!q|x|n, for every n ∈N, n ≥ , and
x ∈ [, δ].

() There exist C′, M′ >  such that |ψ(x)| ≤ C′e–M′/x

q , for every x ∈ (, δ].

We make the change of variable rk = s in the integral () and we get

J(εt) =

k

∫ (ρν,κ /)k


exp

(
–

MA
p

sκ/k

)
exp

(
–

δ

|εt|k
s
)

ds
s

.

We put ψA,p(s) = exp(– MA
p

sκ/k )/s. From Lemma , there exist constants C, M >  such that

∣∣ψA,p(s)
∣∣ ≤ CMn(n!)

k
κ |s|n

for all n ≥ , all s ∈ [, (ρν,κ/)k ]. In other words, ψA,p(s) admits the null formal series
̂ ∈C�s� as asymptotic expansion of Gevrey order k/κ on [, (ρν,κ/)k ]. By Lemma , we
deduce that the function

IA,p(x) =
∫ (ρν,κ /)k


ψA,p(s)e– s

x ds
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has the formal series ̂ ∈ C�x� as asymptotic expansion of Gevrey order k
κ

+  = k
k

on
some segment [, δ′] with  < δ′ < (ρν,κ/)k . Hence, using again Lemma , we get two
constants C′, M′ >  with

IA,p(x) ≤ C′ exp

(
–

M′

xk/k

)

for x ∈ [, δ′]. We deduce the existence of two constants CJ > , MJ >  with

J(εt) ≤ CJ exp

(
–

MJ

|εt|k

)
()

for all ε ∈ Ep ∩ Ep+, all t ∈ T ∩ D(, hA,p), for some hA,p > . Gathering the last inequality,
(), and () yields

J ≤ CJ kKA
p

(π )/(β – β ′)
exp

(
–

MJ

hk
A,p|ε|k

)
()

for all ε ∈ Ep ∩ Ep+, all t ∈ T ∩ D(, hA,p).
In conclusion, taking into account the above inequalities () and (), we deduce from

the decomposition () that

∣∣udp+ (t, z, ε) – udp (t, z, ε)
∣∣

≤
k(C

ω
dp+
k

+ C
ω
dp
k

)

(π )/
|ε|k

(β – β ′)δk( ρν,κ
 )k– exp

(
–δ

(ρν,κ/)k

|ε|k

)

+
k

(π )/(β – β ′)
(
C

ω
dp+
k

|γp+ – θp,p+| + C
ω
dp
k

|γp – θp,p+|
)ρν,κ



× exp

(
–δ

(
ρν,κ/

|ε|
)k)

+
CJ kKA

p

(π )/(β – β ′)
exp

(
–

MJ

hk
A,p|ε|k

)

for all t ∈ T with |t| < ( δ
δ+ν′εk


)/k and |t| ≤ hA,p for some constants δ, δ, hA,p > ,

| Im(z)| ≤ β ′, for all ε ∈ Ep ∩ Ep+. Therefore the inequality () holds. �

6 Existence of formal series solutions in the complex parameter and
asymptotic expansion in two levels

6.1 Summable and multisummable formal series and a Ramis-Sibuya theorem
with two levels

In the next definitions we recall the meaning of Gevrey asymptotic expansions for
holomorphic functions and k-summability. We also give the signification of (k, k)-
summability for power series in a Banach space, as described in [].

Definition  Let (E,‖·‖E) be a complex Banach space and let E be a bounded open sector
centered at . Let k >  be a positive real number. We say that a holomorphic function f :
E → E admits a formal power series f̂ (ε) =

∑
n≥ anε

n ∈ E�ε� as its asymptotic expansion
of Gevrey order /k if, for any closed proper subsector W ⊂ E centered at , there exist
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C, M >  with
∥
∥∥
∥∥

f (ε) –
N–∑

n=

anε
n

∥
∥∥
∥∥
E

≤ CMN (N !)/k|ε|N ()

for all N ≥ , all ε ∈W .
If, moreover, the aperture of E is larger than π

k + δ for some δ > , then the function
f is the unique holomorphic function on E satisfying (). In that case, we say that f̂ is
k-summable on E and that f defines its k-sum on E . In addition, the function f can be
reconstructed from the analytic continuation of the k-Borel transform

B̂k f̂ (τ ) =
∑

n≥

an
τ n

�( + n
k

)

on an unbounded sector and by applying a k-Laplace transform to it; see Section . from
[].

Definition  Let (E,‖ · ‖E) be a complex Banach space and let  < k < k be two positive
real numbers. Let E be a bounded open sector centered at  with aperture π

k
+ δ for some

δ >  and let F be a bounded open sector centered at  with aperture π
k

+ δ for some
δ >  such that the inclusion E ⊂F holds.

A formal power series f̂ (ε) =
∑

n≥ anε
n ∈ E�ε� is said to be (k, k)-summable on E if

there exist a formal series f̂(ε) ∈ E�ε� which is k-summable on E with k-sum f : E → E

and a second formal series f̂(ε) ∈ E�ε� which is k-summable onF with k-sum f : F → E

such that f̂ = f̂ + f̂. Furthermore, the holomorphic function f (ε) = f(ε) + f(ε) defined on
E is called the (k, k)-sum of f̂ on E . In that case, the function f (ε) can be reconstructed
from the analytic continuation of the k-Borel transform of f̂ by applying successively some
acceleration operator and Laplace transform of order k; see Section . from [].

In this section, we state a version of the classical Ramis-Sibuya theorem (see [], The-
orem XI--) with two different Gevrey levels which describes also the case when mul-
tisummability holds on some sector. We mention that a similar multi-level version of the
Ramis-Sibuya theorem has already been stated in [] and also in a previous work of the
authors; see [].

Theorem (RS) Let  < k < k be positive real numbers. Let (E,‖ · ‖E) be a Banach space
over C and {Ei}≤i≤ν– be a good covering in C

∗; see Definition . For all  ≤ i ≤ ν – , let
Gi be a holomorphic function from Ei into the Banach space (E,‖ · ‖E) and let the cocycle
�i(ε) = Gi+(ε) – Gi(ε) be a holomorphic function from the sector Zi = Ei+ ∩Ei into E (with
the convention that Eν = E and Gν = G). We make the following assumptions.

() The functions Gi(ε) are bounded as ε ∈ Ei tends to the origin in C, for all  ≤ i ≤ ν – .
() For some finite subset I ⊂ {, . . . ,ν – } and for all i ∈ I, the functions �i(ε) are ex-

ponentially flat on Zi of order k, for all  ≤ i ≤ ν – . This means that there exist constants
Ki, Mi >  such that

∥
∥�i(ε)

∥
∥
E

≤ Ki exp

(
–

Mi

|ε|k

)
()

for all ε ∈ Zi.
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() For all i ∈ I = {, . . . ,ν – } \ I, the functions �i(ε) are exponentially flat of order k

on Zi, for all  ≤ i ≤ ν – . This means that there exist constants Ki, Mi >  such that

∥∥�i(ε)
∥∥
E

≤ Ki exp

(
–

Mi

|ε|k

)
()

for all ε ∈ Zi.
Then there exist a convergent power series a(ε) ∈ E{ε} near ε =  and two formal series

Ĝ(ε), Ĝ(ε) ∈ E�ε� such that Gi(ε) obeys the following decomposition:

Gi(ε) = a(ε) + G
i (ε) + G

i (ε), ()

where G
i (ε) is holomorphic on Ei and has Ĝ(ε) as asymptotic expansion of Gevrey order

/k on Ei, G
i (ε) is holomorphic on Ei and carries Ĝ(ε) as asymptotic expansion of Gevrey

order /k on Ei, for all  ≤ i ≤ ν – .
Assume, moreover, that some integer i ∈ I is such that Iδ,i,δ = {i – δ, . . . , i, . . . , i +

δ} ⊂ I for some integers δ, δ ≥  and with the property that

Ei ⊂ Sπ/k ⊂
⋃

h∈Iδ,i,δ

Eh, ()

where Sπ/k is a sector centered at  with aperture a bit larger than π/k. Then the formal
series Ĝ(ε) is (k, k)-summable on Ei and its (k, k)-sum is Gi (ε) on Ei .

Proof We consider two holomorphic cocycles �
i (ε) and �

i (ε) defined on the sectors Zi

in the following way:

�
i (ε) =

⎧
⎨

⎩
�i(ε) if i ∈ I,

 if i ∈ I,
�

i (ε) =

⎧
⎨

⎩
 if i ∈ I,

�i(ε) if i ∈ I

for all ε ∈ Zi, all  ≤ i ≤ ν – . We need the following lemma.

Lemma  () For all  ≤ i ≤ ν –, there exist bounded holomorphic functions �
i : Ei →C

such that

�
i (ε) = �

i+(ε) – �
i (ε) ()

for all ε ∈ Zi, where by convention �
ν(ε) = �

(ε). Moreover, there exist coefficients ϕ
m ∈ E,

m ≥ , such that, for each  ≤ l ≤ ν –  and any closed proper subsector W ⊂ El , centered
at , there exist two constants K̆l, M̆l >  with

∥
∥∥∥
∥
�

l (ε) –
M–∑

m=

ϕ
mεm

∥
∥∥∥
∥
E

≤ K̆l(M̆l)M(M!)/k |ε|M ()

for all ε ∈W , all M ≥ .
() For all  ≤ i ≤ ν – , there exist bounded holomorphic functions �

i : Ei →C such that

�
i (ε) = �

i+(ε) – �
i (ε) ()
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for all ε ∈ Zi, where by convention �
ν (ε) = �

(ε). Moreover, there exist coefficients ϕ
m ∈ E,

m ≥ , such that, for each  ≤ l ≤ ν –  and any closed proper subsector W ⊂ El , centered
at , there exist two constants K̂l, M̂l >  with

∥∥
∥∥
∥
�

l (ε) –
M–∑

m=

ϕ
mεm

∥∥
∥∥
∥
E

≤ K̂l(M̂l)M(M!)/k |ε|M ()

for all ε ∈W , all M ≥ .

Proof The proof is a consequence of Lemma XI-- from [], which provides the so-
called classical Ramis-Sibuya theorem in Gevrey classes. �

We consider now the bounded holomorphic functions

ai(ε) = Gi(ε) – �
i (ε) – �

i (ε)

for all  ≤ i ≤ ν – , all ε ∈ Ei. By definition, for i ∈ I or i ∈ I, we have

ai+(ε) – ai(ε) = Gi+(ε) – Gi(ε) – �
i (ε) – �

i (ε) = Gi+(ε) – Gi(ε) – �i(ε) = 

for all ε ∈ Zi. Therefore, each ai(ε) is the restriction on Ei of a holomorphic function a(ε)
on D(, r) \ {}. Since a(ε) is, moreover, bounded on D(, r) \ {}, the origin turns out to
be a removable singularity for a(ε), which, as a consequence, defines a convergent power
series on D(, r).

Finally, one can write the following decomposition:

Gi(ε) = a(ε) + �
i (ε) + �

i (ε)

for all ε ∈ Ei, all  ≤ i ≤ ν – . Moreover, a(ε) is a convergent power series and from ()
we know that �

i (ε) has the series Ĝ(ε) =
∑

m≥ ϕ
mεm as asymptotic expansion of Gevrey

order /k on Ei and due to () �
i (ε) carries the series Ĝ(ε) =

∑
m≥ ϕ

mεm as asymptotic
expansion of Gevrey order /k on Ei, for all  ≤ i ≤ ν – . Therefore, the decomposition
() holds.

Assume now that some integer i ∈ I is such that Iδ,i,δ = {i – δ, . . . , i, . . . , i + δ} ⊂
I for some integers δ, δ ≥  and with the property (). Then, in the decomposition
(), we observe from the construction above that the function G

i (ε) can be analytically
continued on the sector Sπ/k and has the formal series Ĝ(ε) as asymptotic expansion of
Gevrey order /k on Sπ/k (this is the consequence of the fact that �

h(ε) =  for h ∈ Iδ,i,δ ).
Hence, G

i (ε) is the k-sum of Ĝ(ε) on Sπ/k in the sense of Definition . Moreover, we
already know that the function G

i (ε) has Ĝ(ε) as an asymptotic expansion of Gevrey
order /k on Ei , meaning that G

i (ε) is the k-sum of Ĝ(ε) on Ei . In other words, by
Definition , the formal series Ĝ(ε) is (k, k)-summable on Ei and its (k, k)-sum is the
function Gi (ε) = a(ε) + G

i (ε) + G
i (ε) on Ei . �
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6.2 Construction of formal power series solutions in the complex parameter with
two levels of asymptotics

In this subsection, we establish the second main result of our work, namely the existence
of a formal power series û(t, z, ε) in the parameter ε whose coefficients are bounded holo-
morphic functions on the product of a sector with small radius centered at  and a strip
in C that is a solution of () and which is the common Gevrey asymptotic expansion of
order /k of the actual solutions udp (t, z, ε) of () constructed in Theorem . Further-
more, this formal series û and the corresponding functions udp have a fine structure which
involves two levels of Gevrey asymptotics.

We first start by showing that the forcing terms f dp (t, z, ε) share a common formal power
series f̂ (t, z, ε) in ε as asymptotic expansion of Gevrey order /k on Ep.

Lemma  Let us assume that the hypotheses of Theorem  hold. Then there exists a formal
power series

f̂ (t, z, ε) =
∑

m≥

fm(t, z)εm/m!

whose coefficients fm(t, z) belong to the Banach space F of bounded holomorphic functions
on (T ∩ D(, h′′)) × Hβ ′ equipped with supremum norm, where h′′ >  is constructed in
Theorem , which is the common asymptotic expansion of Gevrey order /k on Ep of the
functions f dp , seen as holomorphic functions from Ep into F, for all  ≤ p ≤ ς – .

Proof We consider the family of functions f dp (t, z, ε),  ≤ p ≤ ς –  constructed in ().
For all  ≤ p ≤ ς – , we define Gf

p(ε) := (t, z) �→ f dp (t, z, ε), which is by construction a
holomorphic and bounded function from Ep into the Banach space F of bounded holo-
morphic functions on (T ∩ D(, h′′)) × Hβ ′ equipped with the supremum norm, where T
is introduced in Definition  and h′′ >  is set in Theorem .

Bearing in mind the estimates () and () and from the fact that k > k, we see
in particular that the cocycle �

f
p(ε) = Gf

p+(ε) – Gf
p(ε) is exponentially flat of order k on

Zp = Ep ∩ Ep+, for all  ≤ p ≤ ς – .
From Theorem (RS) stated above in Section ., we deduce the existence of a convergent

power series af (ε) ∈ F{ε} and a formal series Ĝ,f (ε) ∈ F�ε� such that Gf
p(ε) obeys the

following decomposition:

Gf
p(ε) = af (ε) + G,f

p (ε),

where G,f
p (ε) is holomorphic on Ep and has Ĝ,f (ε) as its asymptotic expansion of Gevrey

order /k on Ep, We define

f̂ (t, z, ε) =
∑

m≥

fm(t, z)εm/m! := af (ε) + Ĝ,f (ε).
�

The second main result of this work can be stated as follows.

Theorem  (a) Let us assume that the hypotheses of Theorem  hold. Then there exists a
formal power series

û(t, z, ε) =
∑

m≥

hm(t, z)εm/m!,
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a solution of the equation

Q(∂z)
(
∂t û(t, z, ε)

)

= c,(ε)
(
Q(∂z)û(t, z, ε)

)(
Q(∂z)û(t, z, ε)

)

+ ε(δD–)(k+)–δD+t(δD–)(k+)∂
δD
t RD(∂z)û(t, z, ε) +

D–∑

l=

ε�l tdl∂
δl
t Rl(∂z)û(t, z, ε)

+ c(t, z, ε)R(∂z)û(t, z, ε) + cF (ε)f̂ (t, z, ε) ()

whose coefficients hm(t, z) belong to the Banach space F of bounded holomorphic functions
on (T ∩ D(, h′′)) × Hβ ′ equipped with supremum norm, where h′′ >  is constructed in
Theorem , which is the common asymptotic expansion of Gevrey order /k on Ep of the
functions udp , seen as holomorphic functions from Ep into F, for all  ≤ p ≤ ς – . Addi-
tionally, the formal series can be decomposed into a sum of three terms,

û(t, z, ε) = a(t, z, ε) + û(t, z, ε) + û(t, z, ε),

where a(t, z, ε) ∈ F{ε} is a convergent series near ε =  and û(t, z, ε), û(t, z, ε) belong to
F�ε� with the property that, accordingly, the function udp shares a similar decomposition:

udp (t, z, ε) = a(t, z, ε) + udp
 (t, z, ε) + udp

 (t, z, ε),

where ε �→ udp
 (t, z, ε) is a F-valued function having û(t, z, ε) as asymptotic expansion of

Gevrey order /k on Ep and where ε �→ udp
 (t, z, ε) is a F-valued function having û(t, z, ε)

as asymptotic expansion of Gevrey order /k on Ep, for all  ≤ p ≤ ς – .
(b) We make now the further assumption completing the four properties described in

Definition  that the good covering {Ep}≤p≤ς– and that the family of unbounded sectors
{Udp}≤p≤ς– satisfy the following property:

() There exist  ≤ p ≤ ς –  and two integers δ, δ ≥  such that, for all p ∈ Iδ,p,δ =
{p – δ, . . . , p, . . . , p + δ}, the unbounded sectors Udp are such that the intersection Udp ∩
Udp+ contains the sector Udp ,dp+ = {τ ∈ C∗/ arg(τ ) ∈ [dp,dp+]} and such that

Ep ⊂ Sπ/k ⊂
⋃

h∈Iδ,p,δ

Eh,

where Sπ/k is a sector centered at  with aperture slightly larger than π/k.
Then the formal series û(t, z, ε) is (k, k)-summable on Ep and its (k, k)-sum is given

by udp (t, z, ε).

Proof We consider the family of functions udp (t, z, ε),  ≤ p ≤ ς –  constructed in Theo-
rem . For all  ≤ p ≤ ς – , we define Gp(ε) := (t, z) �→ udp (t, z, ε), which is by construction
a holomorphic and bounded function from Ep into the Banach space F of bounded holo-
morphic functions on (T ∩ D(, h′′)) × Hβ ′ equipped with the supremum norm, where
T is introduced in Definition , h′′ >  is set in Theorem  and β ′ >  is the width of the
strip Hβ ′ on which the coefficient c(t, z, ε) and the forcing term f dp (t, z, ε) are defined with
respect to z; see () and ().
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Bearing in mind the estimates () and () we see that the cocycle �p(ε) = Gp+(ε) –
Gp(ε) is exponentially flat of order k on Zp = Ep ∩ Ep+, for all p ∈ I ⊂ {, . . . ,ς – } such
that the intersection Udp ∩ Udp+ contains the sector Udp ,dp+ and is exponentially flat of
order k on Zp = Ep ∩Ep+, for all p ∈ I ⊂ {, . . . ,ς –} such that the intersection Udp ∩Udp+

is empty.
From Theorem (RS) stated above in Section ., we deduce the existence of a convergent

power series a(ε) ∈ F{ε} and two formal series Ĝ(ε), Ĝ(ε) ∈ F�ε� such that Gp(ε) obeys
the following decomposition:

Gp(ε) = a(ε) + G
p(ε) + G

p(ε),

where G
p(ε) is holomorphic on Ep and has Ĝ(ε) as its asymptotic expansion of Gevrey

order /k on Ep, G
p(ε) is holomorphic on Ep and carries Ĝ(ε) as its asymptotic expansion

of Gevrey order /k on Ep, for all  ≤ p ≤ ν – . We set

û(t, z, ε) =
∑

m≥

hm(t, z)εm/m! := a(ε) + Ĝ(ε) + Ĝ(ε).

This yields the first part (a) of Theorem .
Furthermore, under the assumption (b) () described above, Theorem (RS) claims that

the formal series Ĝ(ε) = a(ε)+Ĝ(ε)+Ĝ(ε) is (k, k)-summable on Ep and that its (k, k)-
sum is given by Gp (ε).

It remains to show that the formal series û(t, z, ε) solves the main equation (). Since
udp (t, z, ε) (resp. f dp (t, z, ε) ) has û(t, z, ε) (resp. f̂ (t, z, ε)) as its asymptotic expansion of
Gevrey order /k on Ep, we have in particular

lim
ε→,ε∈Ep

sup
t∈T ∩D(,h′′),z∈Hβ′

∣∣∂m
ε udp (t, z, ε) – hm(t, z)

∣∣ = ,

lim
ε→,ε∈Ep

sup
t∈T ∩D(,h′′),z∈Hβ′

∣
∣∂m

ε f dp (t, z, ε) – fm(t, z)
∣
∣ = 

()

for all  ≤ p ≤ ς –, all m ≥ . Now, we choose some p ∈ {, . . . ,ς –}. By construction, the
function udp (t, z, ε) is a solution of (). We take the derivative of order m ≥  w.r.t. ε on
the left- and right-hand side of (). From the Leibniz rule, we deduce that ∂m

ε udp (t, z, ε)
verifies the following equation:

Q(∂z)∂t ∂
m
ε udp (t, z, ε)

=
∑

m+m+m=m

m!
m!m!m!

∂m
ε c,(ε)

(
Q(∂z)∂m

ε udp (t, z, ε)
)

× (
Q(∂z)∂m

ε udp (t, z, ε)
)

+
∑

m+m=m

m!
m!m!

∂m
ε

(
ε(δD–)(k+)–δD+)t(δD–)(k+)

× ∂
δD
t RD(∂z)∂m

ε udp (t, z, ε)

+
D–∑

l=

( ∑

m+m=m

m!
m!m!

∂m
ε

(
ε�l

)
tdl∂

δl
t Rl(∂z)∂m

ε udp (t, z, ε)
)
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+
∑

m+m=m

m!
m!m!

∂m
ε c(t, z, ε)R(∂z)∂m

ε udp (t, z, ε)

+
∑

m+m=m

m!
m!m!

∂m
ε cF (ε)∂m

ε f dp (t, z, ε) ()

for all m ≥ , all (t, z, ε) ∈ (T ∩ D(, h′′)) × Hβ ′ × Ep. If we let ε tend to zero in () and if
we use (), we get the recursion

Q(∂z)∂thm(t, z)

=
∑

m+m+m=m

m!
m!m!m!

(
∂m
ε c,

)
()

(
Q(∂z)hm (t, z)

)(
Q(∂z)hm (t, z)

)

+
m!

(m – ((δD – )(k + ) – δD + ))!
t(δD–)(k+)∂

δD
t RD(∂z)hm–((δD–)(k+)–δD+)(t, z)

+
D–∑

l=

m!
(m – �l)!

tdl∂
δl
t Rl(∂z)hm–�l (t, z)

+
∑

m+m=m

m!
m!m!

(
∂m
ε c

)
(t, z, )R(∂z)hm (t, z)

+
∑

m+m=m

m!
m!m!

(
∂m
ε cF

)
()fm (t, z) ()

for all m ≥ max≤l≤D–{�l, (δD – )(k + ) – δD + }, all (t, z) ∈ (T ∩ D(, h′′)) × Hβ ′ . Since
the functions c,(ε), c(t, z, ε), and cF (ε) are analytic w.r.t. ε at , we know that

c,(ε) =
∑

m≥

(∂m
ε c,)()

m!
εm, c(t, z, ε) =

∑

m≥

(∂m
ε c)(t, z, )

m!
εm,

cF (ε) =
∑

m≥

(∂m
ε cF )()

m!
εm

()

for all ε ∈ D(, ε), all z ∈ Hβ ′ . On the other hand, one can check by direct inspection from
the recursion () and the expansions () that the series û(t, z, ε) =

∑
m≥ hm(t, z)εm/m!

formally solves (). �

7 Application. Construction of analytic and formal solutions in a complex
parameter of a nonlinear initial value Cauchy problem with analytic
coefficients and forcing term near the origin in C

3

In this section, we give sufficient conditions on the forcing term F(T , m, ε) for the func-
tions udp (t, z, ε) and its corresponding formal power series expansion û(t, z, ε) w.r.t. ε con-
structed in Theorem  and Theorem  to solve a nonlinear problem with holomorphic
coefficients and forcing term near the origin given by ().

7.1 A linear convolution initial value problem satisfied by the formal forcing term
F(T , m,ε)

Let k ≥  be the integer defined above in Section  and let D ≥  be an integer. For  ≤
l ≤ D, let dl, δl,�l ≥ , be nonnegative integers. We assume that
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 = δ, δl < δl+, ()

for all  ≤ l ≤ D – . We make also the assumption that

dD = (δD – )(k + ), dl > (δl – )(k + ),

�l – dl + δl –  ≥ , �D = dD – δD + 
()

for all  ≤ l ≤ D – . Let Q(X), Rl(X) ∈C[X],  ≤ l ≤ D, be polynomials such that

deg(Q) ≥ deg(RD) ≥ deg(Rl), Q(im) �= , RD(im) �=  ()

for all m ∈ R, all  ≤ l ≤ D – . Let β ,μ >  be the integers defined above in Section .
We consider sequences of functions m �→ C,n(m, ε), for all n ≥ , and m �→ Fn(m, ε), for
all n ≥ , that belong to the Banach space E(β ,μ) and which depend holomorphically on
ε ∈ D(, ε). We assume that there exist constants K, T >  such that

∥∥C,n(m, ε)
∥∥

(β ,μ) ≤ K

(


T

)n

,
∥∥Fn(m, ε)

∥∥
(β ,μ) ≤ K

(


T

)n

()

for all n ≥ , for all ε ∈ D(, ε). We define

C(T , m, ε) =
∑

n≥

C,n(m, ε)Tn, F(T , m, ε) =
∑

n≥

Fn(m, ε)Tn

which are convergent series on D(, T/) with values in E(β ,μ). Let c(ε), c,(ε) and cF(ε)
be bounded holomorphic functions on D(, ε) which vanish at the origin ε = .

We make the assumption that the formal series F(T , m, ε) =
∑

n≥ Fn(m, ε)Tn, where the
coefficients Fn(m, ε) are defined after the problem () in Section  satisfies the linear
initial value problem

Q(im)
(
∂T F(T , m, ε)

)

=
D∑

l=

Rl(im)ε�l–dl+δl–Tdl∂
δl
T F(T , m, ε)

+ ε– c(ε)
(π )/

∫ +∞

–∞
C(T , m – m, ε)R(im)F(T , m, ε) dm

+ ε– c,(ε)
(π )/

∫ +∞

–∞
C,(m – m, ε)R(im)F(T , m, ε) dm

+ ε–cF(ε)F(T , m, ε) ()

for given initial data F(, m, ε) = .
The existence and uniqueness of the formal power series solution of () is ensured by

the following.

Proposition  There exists a unique formal series

F(T , m, ε) =
∑

n≥

Fn(m, ε)Tn,
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a solution of () with initial data F(, m, ε) ≡ , where the coefficients m �→ Fn(m, ε)
belong to E(β ,μ) for β ,μ >  given above and depend holomorphically on ε in D(, ε).

Proof From Proposition , we find that the coefficients Fn(m, ε) of F(T , m, ε) are well de-
fined, belong to E(β ,μ) for all ε ∈ D(, ε), all n ≥ , and satisfy the following recursion
relation:

(n + )Fn+(m, ε)

=
D∑

l=

Rl(im)
Q(im)

(

ε�l–dl+δl–
δl–∏

j=

(n + δl – dl – j)

)

Fn+δl–dl (m, ε)

+
ε–c(ε)
Q(im)

∑

n+n=n,n≥,n≥


(π )/

∫ +∞

–∞
C,n (m – m, ε)R(im)Fn (m, ε) dm

+
ε–c,(ε)

(π )/Q(im)

∫ +∞

–∞
C,(m – m, ε)R(im)Fn(m, ε) dm

+
ε–cF(ε)
Q(im)

Fn(m, ε) ()

for all n ≥ max≤l≤D dl . �

7.2 Analytic solutions for an auxiliary linear convolution problem resulting from
a mk1 -Borel transform applied to the linear initial value convolution problem

Using (.) from [], p., we can expand the operators Tδl(k+)∂
δl
T in the form

Tδl(k+)∂
δl
T =

(
Tk+∂T

)δl +
∑

≤p≤δl–

Aδl ,pTk(δl–p)(Tk+∂T
)p, ()

where Aδl ,p, p = , . . . , δl –  are real numbers, for all  ≤ l ≤ D. We define integers dl,k ≥ 
to satisfy

dl + k +  = δl(k + ) + dl,k ()

for all  ≤ l ≤ D. Multiplying () by Tk+ and using (), () we can rewrite ()
in the form

Q(im)
(
Tk+∂T F(T , m, ε)

)

=
D∑

l=

Rl(im)
(

ε�l–dl+δl–Tdl,k
(
Tk+∂T

)δl F(T , m, ε)

+
∑

≤p≤δl–

Aδl ,pε
�l–dl+δl–Tk(δl–p)+dl,k

(
Tk+∂T

)pF(T , m, ε)
)

+ ε–Tk+ c(ε)
(π )/

∫ +∞

–∞
C(T , m – m, ε)R(im)F(T , m, ε) dm

+ ε–Tk+ c,(ε)
(π )/

∫ +∞

–∞
C,(m – m, ε)R(im)F(T , m, ε) dm

+ ε–cF(ε)Tk+F(T , m, ε). ()
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As above, we denote ψk (τ , m, ε) the formal mk -Borel transform of F(T , m, ε) w.r.t. T
and ϕk (τ , m, ε) the formal mk -Borel transform of C(T , m, ε) with respect to T and
ψk (τ , m, ε) the formal mk -Borel transform of F(T , m, ε) w.r.t. T ,

ψk (τ , m, ε) =
∑

n≥

Fn(m, ε)
τ n

�( n
k

)
, ϕk (τ , m, ε) =

∑

n≥

C,n(m, ε)
τ n

�( n
k

)
,

ψk (τ , m, ε) =
∑

n≥

Fn(m, ε)
τ n

�( n
k

)
.

Following a similar reasoning as in the steps (), (), (), and (), using () we
find that ϕk (τ , m, ε) ∈ Fdp

(ν,β ,μ,k,k) and ψk (τ , m, ε) ∈ Fdp
(ν,β ,μ,k,k), for all ε ∈ D(, ε), for all

the unbounded sectors Udp centered at  and bisecting direction dp ∈ R introduced in
Definition , for some ν > .

Observe that dD,k = . Using the computation rules for the formal mk -Borel transform
in Proposition , we deduce the following equation satisfied by ψk (τ , m, ε):

Q(im)
(
kτ

kψk (τ , m, ε)
)

= RD(im)
(

kδD
 τ δDkψk (τ , m, ε)

+
∑

≤p≤δD–

AδD ,p
τ k

�(δD – p)

∫ τk



(
τ k – s

)δD–p–(kp
 spψk

(
s/k , m, ε

))ds
s

)

+
D–∑

l=

Rl(im)
(

ε�l–dl+δl– τ k

�( dl,k
k

)

∫ τk



(
τ k – s

) dl,k
k

–(kδl
 sδlψk

(
s/k , m, ε

))ds
s

+
∑

≤p≤δl–

Aδl ,pε
�l–dl+δl– τ k

�( dl,k
k

+ δl – p)

×
∫ τk



(
τ k – s

) dl,k
k

+δl–p–(kp
 spψk

(
s/k , m, ε

))ds
s

)

+ ε– τ k

�( + 
k

)

∫ τk



(
τ k – s

)/k
(

c(ε)
(π )/ s

∫ s



∫ +∞

–∞
ϕk

(
(s – x)/k , m – m, ε

)

× R(im)ψk

(
x/k , m, ε

) 
(s – x)x

dx dm

)
ds
s

+ ε– τ k

�( + 
k

)

∫ τk



(
τ k – s

)/k c,(ε)
(π )/

×
(∫ +∞

–∞
C,(m – m, ε)R(im)ψk

(
s/k , m, ε

)
dm

)
ds
s

+ ε–cF(ε)
τ k

�( + 
k

)

∫ τk



(
τ k – s

)/kψk

(
s/k , m, ε

)ds
s

. ()

We make the additional assumption that there exists an unbounded sector

SQ,RD =
{

z ∈C/|z| ≥ rQ,RD ,
∣∣arg(z) – dQ,RD

∣∣ ≤ ηQ,RD

}
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with direction dQ,RD ∈R, aperture ηQ,RD >  for some radius rQ,RD > , such that

Q(im)
RD(im)

∈ SQ,RD ()

for all m ∈ R. We factorize the polynomial Pm(τ ) = Q(im)k – RD(im)kδD
 τ (δD–)k in the

form

Pm(τ ) = –RD(im)kδD


(δD–)k–∏

l=

(
τ – ql(m)

)
, ()

where

ql(m) =
( |Q(im)|

|RD(im)|kδD–


) 
(δD–)k

× exp

(√
–

(
arg

(
Q(im)

RD(im)kδD–


)


(δD – )k
+

π l
(δD – )k

))
()

for all  ≤ l ≤ (δD – )k – , all m ∈R.
We choose the family of unbounded sectors Udp centered at , a small closed disc D̄(,ρ)

(introduced in Definition ) and we prescribe the sector SQ,RD in such a way that the fol-
lowing conditions hold.

() There exists a constant M >  such that

∣∣τ – ql(m)
∣∣ ≥ M

(
 + |τ |) ()

for all  ≤ l ≤ (δD – )k – , all m ∈R, all τ ∈ Udp ∪ D̄(,ρ), for all  ≤ p ≤ ς – .
() There exists a constant M >  such that

∣∣τ – ql (m)
∣∣ ≥ M

∣∣ql (m)
∣∣ ()

for some l ∈ {, . . . , (δD – )k – }, all m ∈R, all τ ∈ Udp ∪ D̄(,ρ), for all  ≤ p ≤ ς – .
By construction of the roots () in the factorization () and using the lower bound

estimates (), (), we get a constant CP >  such that

∣
∣Pm(τ )

∣
∣ ≥ M(δD–)k–

 M
∣
∣RD(im)

∣
∣kδD



( |Q(im)|
|RD(im)|kδD–



) 
(δD–)k (

 + |τ |)(δD–)k–

≥ M(δD–)k–
 M

kδD


(kδD–
 )


(δD–)k

(rQ,RD )


(δD–)k
∣
∣RD(im)

∣
∣

×
(

min
x≥

( + x)(δD–)k–

( + xk )(δD–)– 
k

)
(
 + |τ |k

)(δD–)– 
k

= CP(rQ,RD )


(δD–)k
∣∣RD(im)

∣∣( + |τ |k
)(δD–)– 

k ()

for all τ ∈ Udp ∪ D̄(,ρ), all m ∈R, all  ≤ p ≤ ς – .
In the next proposition, we give sufficient conditions under which () has a solution

ψ
dp
k

(τ , m, ε) in the Banach space Fdp
(ν,β ,μ,k,k) where β , μ are defined above.
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Proposition  Under the assumption that

δD ≥ δl +

k

()

for all  ≤ l ≤ D – , there exist a radius rQ,RD > , a constant υ > , and constants
ς,,ς,ς ,ς ,,ςF ,ς >  (depending on k, CP, μ, ν , ε, Rl , �l , δl , dl for  ≤ l ≤ D) such
that if

sup
ε∈D(,ε)

∣∣
∣∣
c(ε)

ε

∣∣
∣∣ ≤ ς ,,

∥
∥ϕk (τ , m, ε)

∥
∥

(ν,β ,μ,k,k) ≤ ς ,

sup
ε∈D(,ε)

∣∣∣
∣
c,(ε)

ε

∣∣∣
∣ ≤ ς,,

∥∥C,(m, ε)
∥∥

(β ,μ) ≤ ς,

sup
ε∈D(,ε)

∣
∣∣
∣
cF(ε)

ε

∣
∣∣
∣ ≤ ςF ,

∥∥ψk (τ , m, ε)
∥∥

(ν,β ,μ,k,k) ≤ ς

()

for all ε ∈ D(, ε), () has a unique solution ψ
dp
k

(τ , m, ε) in the space Fdp
(ν,β ,μ,k,k) with the

property that ‖ψdp
k

(τ , m, ε)‖(ν,β ,μ,k,k) ≤ υ , for all ε ∈ D(, ε), where β ,μ >  are defined
above, for any unbounded sector Udp and disc D̄(,ρ) that satisfy the constraints (),
(), for all  ≤ p ≤ ς – .

The proof of Proposition  follows exactly the same steps as the corresponding one of
Proposition , therefore we skip completely the details.

As a result, we find that the mk -Borel transform ψk (τ , m, ε) of the formal series
F(T , m, ε) solution of () is convergent w.r.t. τ on D(,ρ) as series in coefficients in
E(β ,μ), for all ε ∈ D(, ε), and can be analytically continued on each unbounded sector
Udp as a function τ �→ ψ

dp
k

(τ , m, ε) which belongs to the space Fdp
(ν,β ,μ,k,k). In other words,

the assumed constraints () are fulfilled.

7.3 A linear initial value Cauchy problem satisfied by the analytic forcing terms
fdp (t, z,ε)

We keep the notations and the assumptions made in the previous subsection. From the
assumption (), we deduce that the functions

Č(T , z, ε) = c,(ε)F–(m �→ C,(m, ε)
)
(z)

+
∑

n≥

c(ε)F–(m �→ C,n(m, ε)
)
(z)Tn,

F̌(T , z, ε) =
∑

n≥

F–(m �→ Fn(m, ε)
)
(z)Tn

()

represent bounded holomorphic functions on D(, T/) × Hβ ′ × D(, ε) for any  < β ′ <
β (where F– denotes the inverse Fourier transform defined in Proposition ). We define
the coefficients

c(t, z, ε) = Č(εt, z, ε), f(t, z, ε) = F̌(εt, z, ε), ()

which are holomorphic and bounded on D(, r) × Hβ ′ × D(, ε) where rε ≤ T/.
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Proposition  Under the constraints (), (), (), () and the assumptions
(), (), (), (), (), the forcing term f dp (t, z, ε) represented by () solves the
following linear Cauchy problem:

Q(∂z)
(
∂t f dp (t, z, ε)

)

= ε(δD–)(k+)–δD+t(δD–)(k+)∂
δD
t RD(∂z)f dp (t, z, ε)

+
D–∑

l=

ε�l tdl∂
δl
t Rl(∂z)f dp (t, z, ε) + c(t, z, ε)R(∂z)f dp (t, z, ε) + cF(ε)f(t, z, ε) ()

for given initial data f dp (, z, ε) ≡ , for all t ∈ T , z ∈ Hβ ′ , and ε ∈ Ep (provided that the
radius rT of T fulfills the restriction εrT ≤ min(h′, T/, T/)).

Proof From Proposition , we know that the formal series F(T , m, ε) =
∑

n≥ Fn(m, ε)Tn

is mk -summable w.r.t. T in all directions dp,  ≤ p ≤ ς –  (in the sense of Definition ).
Therefore, from the estimates (), we deduce that the mk -Laplace transform

Ldp
mk

(
τ �→ ψ

dp
k

(τ , m, ε)
)
(T) = k

∫

Ldp

ψ
dp
k

(u, m, ε)e–( u
T )k du

u

defines a bounded and holomorphic function on any sector Sdp ,θk ,h′
k

w.r.t. T , for all m ∈
R, all ε ∈ D(, ε), where Sdp ,θk ,h′

k
is a sector with bisecting direction dp, aperture π

k
<

θk < π
k

+ ap(Udp ), and some radius h′
k

> . Moreover, using the algebraic properties of
the mk -sums we deduce that Ldp

mk
(τ �→ ψ

dp
k

(τ , m, ε))(T) solves () and then () for
all T ∈ Sdp ,θk ,h′

k
, all m ∈ R, all ε ∈ D(, ε), vanishes at T = . Now, let Fdp (T , m, ε) be as

defined in ().

Lemma  The identity

Fdp (T , m, ε) = Ldp
mk

(
τ �→ ψ

dp
k

(τ , m, ε)
)
(T)

holds, for all T ∈ Sdp ,θ ,h′ , m ∈ R, ε ∈ D(, ε), as defined just after the definition (), for
π
k

< θ < π
k

+ ap(Sdp ), and some radius h′ > .

Proof By construction, we can write

Fdp (T , m, ε) = k

∫

Ldp

(∫

Ldp

ψ
dp
k

(h, m, ε)

×
(

–
kk

iπ
uk

∫

Vdp ,k,δ′
exp

(
–
(

h
v

)k

+
(

u
v

)k) dv
vk+

)
dh
h

)
e–( u

T )k du
u

for some  < δ′ < π
κ

, where Vdp ,k,δ′ is defined in Proposition . Using Fubini’s theorem
yields

Fdp (T , m, ε) = k

∫

Ldp

ψ
dp
k

(h, m, ε)A(T , h)
dh
h

, ()
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where

A(T , h) = k

∫

Ldp

–k

iπ
uk

(∫

Vdp ,k,δ′
exp

(
–
(

h
v

)k

+
(

u
v

)k) dv
vk+

)
e–( u

T )k du
u

= Ldp
mk

(
u �→ (

Bdp
mk

(
v �→ e–( h

v )k ))(u)
)
(T) ()

for all T ∈ Sdp ,θ ,h′ , m ∈ R, ε ∈ D(, ε). But we observe from the inversion formula ()
that A(T , h) = exp(–(h/T)k ). Gathering () and () yields Lemma . �

From Lemma , we deduce that Fdp (T , m, ε) solves () for all T ∈ Sdp ,θ ,h′ , all m ∈
R, and all ε ∈ D(, ε). Hence, using the properties of the Fourier inverse transform
from Proposition , we deduce that the analytic forcing term f dp (t, z, ε) = F–(m �→
Fdp (εt, m, ε))(z) solves the linear Cauchy problem (), for all t ∈ T , all z ∈ Hβ ′ , and all
ε ∈ Ep. �

We are in a position to state the main result of this section.

Theorem  We take for granted that the assumptions of Theorem  hold. We also make the
hypothesis that the constraints (), (), (), () and the assumptions (), (),
(), (), () hold. We denote P(t, z, ε, ∂t , ∂z) and P(t, z, ε, ∂t , ∂z) the linear differential
operators

P(t, z, ε, ∂t , ∂z) = Q(∂z)∂t – ε(δD–)(k+)–δD+t(δD–)(k+)∂
δD
t RD(∂z)

–
D–∑

l=

ε�l tdl∂
δl
t Rl(∂z) – c(t, z, ε)R(∂z),

P(t, z, ε, ∂t , ∂z) = Q(∂z)∂t – ε(δD–)(k+)–δD+t(δD–)(k+)∂
δD
t RD(∂z)

–
D–∑

l=

ε�l tdl∂
δl
t Rl(∂z) – c(t, z, ε)R(∂z).

()

Then the functions udp (t, z, ε) constructed in Theorem  solve the following nonlinear PDE:

P(t, z, ε, ∂t , ∂z)P(t, z, ε, ∂t , ∂z)udp (t, z, ε)

= c,(ε)P(t, z, ε, ∂t , ∂z)
(
Q(∂z)udp (t, z, ε)Q(∂z)udp (t, z, ε)

)

+ cF (ε)cF(ε)f(t, z, ε) ()

whose coefficients and forcing term f are analytic functions on D(, rT ) × Hβ ′ × D(, ε),
with vanishing initial data udp (, z, ε) ≡ , for all t ∈ T , all z ∈ Hβ ′ and all ε ∈ Ep. Moreover,
the formal power series û(t, z, ε) =

∑
m≥ hm(t, z)εm/m! constructed in Theorem  formally

solves the same equation ().

Proof The reason why udp (t, z, ε) solves () follows directly from the fact that udp (t, z, ε)
solves the nonlinear equation

P(t, z, ε, ∂t , ∂z)udp (t, z, ε)

= c,(ε)
(
Q(∂z)udp (t, z, ε)Q(∂z)udp (t, z, ε)

)
+ cF (ε)f dp (t, z, ε)
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according to Theorem  and from the additional feature that f dp (t, z, ε) solves the linear
equation

P(t, z, ε, ∂t , ∂z)f dp (t, z, ε) = cF(ε)f(t, z, ε),

as shown in Proposition . Finally in order to show that û(t, z, ε) formally solves ()
we see that with the help of the second equality in () and following exactly the same
lines of arguments as in the last part of Theorem , one can show that the power series
f̂ (t, z, ε) =

∑
m≥ fm(t, z)εm/m! constructed in Lemma  formally solves the linear equation

P(t, z, ε, ∂t , ∂z)f̂ (t, z, ε) = cF(ε)f(t, z, ε). ()

Combining () and () yields the result. �
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