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Abstract
We consider a certain class of difference equations on an axis and a half-axis, and we
establish a correspondence between such equations and simpler kinds of operator
equations. The last operator equations can be solved by a special method like the
Wiener-Hopf method.
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1 Introduction
Difference equations of finite order arise very often in various problems in mathemat-
ics and applied sciences, for example in mathematical physics and biology. The theory
for solving such equations is very full for equations with constant coefficients [, ], but
fully incomplete for the case of variable coefficients. Some kinds of such equations were
obtained by the second author by studying general boundary value problems for mode
elliptic pseudo differential equations in canonical non-smooth domains, but there is no
solution algorithm for all situations [–]. There is a certain intermediate case between
the two mentioned above, namely it is a difference equation with constant coefficients of
infinite order. Here we will briefly describe these situations.

The general form of the linear difference equation of order n is the following [, ]:

n∑

k=

ak(x)u(x + k) = v(x), x ∈ M ⊂ R, ()

where the functions ak(x), k = , . . . , n, v(x) are defined on M and given, and u(x) is an
unknown function. Since n ∈ N is an arbitrary number and all points x, x + , . . . , x + n,
∀x ∈ M, should be in the set M, this set M may be a ray from a certain point or the whole R.

A more general type of difference equation of finite order is the equation

n∑

k=

ak(x)u(x + βk) = v(x), x ∈ M ⊂R, ()

where {βk}n
k= ⊂R.

Further, such equations can be equations with a continuous variable or a discrete one,
and this property separates such an equation on a class of properly difference equations
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and discrete equations. In this paper we will consider the case of a continuous variable x,
and a solution on the right-hand side will be considered in the space L(R) for all equations.

1.1 Difference equation of a finite order with constant coefficients
This is an equation of the type

n∑

k=

aku(x + βk) = v(x), x ∈R, ()

and it easily can be solved by the Fourier transform:

(Fu)(ξ ) ≡ ũ(ξ ) =
∫ +∞

–∞
e–ix·ξ u(x) dx.

Indeed, applying the Fourier transform to () we obtain

ũ(ξ )
n∑

k=

akeiβkξ = ṽ(ξ ),

or renaming

ũ(ξ )pn(ξ ) = ṽ(ξ ).

The function pn(ξ ) is called a symbol of a difference operator on the left-hand side ()
(cf. []). If pn(ξ ) �= , ∀ξ ∈R, then () can easily be solved,

u(x) = F–
ξ→x

(
p–

n (ξ )ṽ(ξ )
)
.

1.2 Difference equation of infinite order with constant coefficients
The same arguments are applicable for the case of an unbounded sequence {βk}+∞

–∞. Then
the difference operator with complex coefficients

D : u(x) 	−→
+∞∑

–∞
aku(x + βk), x ∈R, ak ∈C, ()

has the following symbol:

σ (ξ ) =
+∞∑

–∞
akeiβkξ .

Lemma  The operator D is a linear bounded operator L(R) → L(R) if {ak}+∞
–∞ ∈ l.

Proof The proof of this assertion can be obtained immediately. �

If we consider the operator () for x ∈ Z only

D : u(xd) 	−→
+∞∑

–∞
aku(xd + βk), xd ∈ Z, ()
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then its symbol can be defined by the discrete Fourier transform [, ]

σd(ξ ) =
+∞∑

–∞
akeiβkξ , ξ ∈ [–π ,π ].

1.3 Difference and discrete equations
Obviously there are some relations between difference and discrete equations. Particu-
larly, if {βk}+∞

–∞ = Z, then the operator () is a discrete convolution operator. For studying
discrete operators in a half-space the authors have developed a certain analytic technique
[–]. Below we will try to enlarge this technique for more general situations.

2 General difference equations
We consider the equation

(Du)(x) = v(x), x ∈R+, ()

where R+ = {x ∈R, x > }.
For studying this equation we will use methods of the theory of multi-dimensional sin-

gular integral and pseudo differential equations [, , ] which are non-usual in the theory
of difference equations. Our next goal is to study multi-dimensional difference equations,
and this one-dimensional variant is a model for considering other complicated situations.
This approach is based on the classical Riemann boundary value problem and the theory
of one-dimensional singular integral equations [–].

2.1 Background
The first step is the following. We will use the theory of so-called paired equations [] of
the type

(aP+ + bP–)U = V ()

in the space L(R), where a, b are convolution operators with corresponding functions
a(x), b(x), x ∈R, P± are projectors on the half-axis R±. More precisely,

(aP+U)(x) =
∫ +∞


a(x – y)U(y) dy, (bP–U)(x) =

∫ 

–∞
b(x – y)U(y) dy.

Applying the Fourier transform to () we obtain [] the following one-dimensional sin-
gular integral equation [–]:

ã(ξ )(PŨ)(ξ ) + b̃(ξ )(QŨ)(ξ ) = Ṽ (ξ ), ()

where P, Q are two projectors related to the Hilbert transform

(Hu)(x) = v.p.

π i

∫ +∞

–∞
u(y)
x – y

dy,

P =



(I + H), Q =



(I – H).
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Equation () is closely related to the Riemann boundary value problem [, ] for up-
per and lower half-planes. We now recall the statement of the problem: finding a pair
of functions �±(ξ ) which admit an analytic continuation on upper (C+) and lower (C–)
half-planes in the complex plane C and of which their boundary values on R satisfy the
following linear relation:

�+(ξ ) = G(ξ )�–(ξ ) + g(ξ ), ()

where G(ξ ), g(ξ ) are given functions on R.
There is a one-to-one correspondence between the Riemann boundary value problem

() and the singular integral equation (), and

G(ξ ) = ã–(ξ )b̃(ξ ), Ṽ (ξ ) = ã–(ξ )g(ξ ).

2.2 Topological barrier
We suppose that the symbol G(ξ ) is a continuous non-vanishing function on the compact-
ification Ṙ (G(ξ ) �= , ∀ξ ∈ Ṙ) and

Ind G ≡ 
π

∫ +∞

–∞
d arg G(t) = . ()

The last condition (), is necessary and sufficient for the unique solvability of the prob-
lem () in the space L(R) [, ]. Moreover, the unique solution of the problem () can
be constructed with a help of the Cauchy type integral

�+(t) = G+(t)P
(
G–

+ (t)g(t)
)
, �–(t) = –G–

– (t)Q
(
G–

+ (t)g(t)
)
,

where G± are factors of a factorization for the G(t) (see below),

G+(t) = exp
(
P
(
ln G(t)

))
, G–(t) = exp

(
Q

(
ln G(t)

))
.

2.3 Difference equations on a half-axis
Equation () can easily be transformed into () in the following way. Since the right-hand
side in () is defined on R+ only we will continue v(x) on the whole R so that this con-
tinuation lf ∈ L(R). Further we will rename the unknown function u+(x) and define the
function

u–(x) = (lf )(x) – (Du+)(x).

Thus, we have the following equation:

(Du+)(x) + u–(x) = (lf )(x), x ∈R, ()

which holds for the whole space R.
After the Fourier transform we have

σ (ξ )ũ+(ξ ) + ũ–(ξ ) = l̃v(ξ ),

where σ (ξ ) is called a symbol of the operator D.
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To describe a solving technique for () we recall the following (cf. [, ]).

Definition A factorization for an elliptic symbol is called its representation if it is in the
form

σ (ξ ) = σ+(ξ ) · σ–(ξ ),

where the factors σ+, σ– admit an analytic continuation into the upper and lower complex
half-planes C±, and σ±

± ∈ L∞(R).

Example  Let us consider the Cauchy type integral


π i

∫ +∞

–∞
u(t)
z – t

dt ≡ �(z), z = x ± iy.

It is well known this construction plays a crucial role for a decomposition L(R) on two
orthogonal subspaces, namely

L(R) = A+(R) ⊕ A–(R),

where A±(R) consists of functions admitting an analytic continuation onto C±.
The boundary values of the integral �(z) satisfy the Plemelj-Sokhotskii formulas [,

], and thus the projectors P and Q are corresponding projectors on the spaces of analytic
functions [].

The simple example we need is

exp(u) = exp(Pu) · exp(Qu).

Theorem  Let σ (ξ ) ∈ C(Ṙ), Indσ = . Then () has unique solution in the space L(R+)
for arbitrary right-hand side v ∈ L(R+), and its Fourier transform is given by the formula

ũ(ξ ) =


σ –(ξ )l̃v(ξ ) +

σ –
+ (ξ )
π i

v.p.
∫ +∞

–∞
σ –

– (η)l̃v(η)
ξ – η

dη.

Proof We have

σ+(ξ )ũ+(ξ ) + σ –
– (ξ )ũ–(ξ ) = σ –

– (ξ )l̃v(ξ ).

Further, since σ –
– (ξ )l̃v(ξ ) ∈ L(R) we decompose it into two summands

σ –
– (ξ )l̃v(ξ ) = P

(
σ –

– (ξ )l̃v(ξ )
)

+ Q
(
σ –

– (ξ )l̃v(ξ )
)

and write

σ+(ξ )ũ+(ξ ) – P
(
σ –

– (ξ )l̃v(ξ )
)

= Q
(
σ –

– (ξ )l̃v(ξ )
)

– σ –
– (ξ )ũ–(ξ ).

The left-hand side of the last quality belongs to the space A+(R), but the right-hand side
belongs to A–(R), consequently these are zeros. Thus,

σ+(ξ )ũ+(ξ ) – P
(
σ –

– (ξ )l̃v(ξ )
)

= 
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and

ũ+(ξ ) = σ –
+ (ξ )P

(
σ –

– (ξ )l̃v(ξ )
)
, ()

or in the complete form

ũ+(ξ ) =


σ –(ξ )l̃v(ξ ) +

σ –
+ (ξ )
π i

v.p.
∫ +∞

–∞
σ –

– (η)l̃v(η)
ξ – η

dη. �

Remark  This result does not depend on the continuation lv. Let us denote by M±(x)
the inverse Fourier images of the functions σ –± (ξ ). Indeed, () leads to the following con-
struction:

u+(x) =
∫ +∞

–∞
M+(x – y)

(∫ +∞


M–(y – t)(lv)(t) dt

)
dy

=
∫ +∞

–∞
M+(x – y)

(∫ +∞


M–(y – t)v(t) dt

)
dy.

Remark  The condition σ (ξ ) ∈ C(Ṙ) is not a strong restriction. Such symbols exist for
example in the case that σ (ξ ) is represented by a finite sum, and βk ∈ Q. Then σ (ξ ) is a
continuous periodic function.

3 General solution
Since σ (ξ ) ∈ C(Ṙ), and Indσ is an integer, we consider the case æ ≡ Indσ ∈ N in this
section.

Theorem  Let Indσ ∈N. Then a general solution of () in the Fourier image can be writ-
ten in the form

ũ+(ξ ) = σ –
+ (ξ )ω–æ(ξ )P

(
σ –

– (ξ )l̃v(ξ )
)

+ (ξ – i)–æσ –
+ (ξ )Pæ–(ξ ),

and it depends on æ arbitrary constants.

Proof The function

ω(ξ ) =
ξ – i
ξ + i

has the index  [–], thus the function

ω–æ(ξ )σ (ξ ) =
(

ξ – i
ξ + i

)–æ

· σ (ξ )

has the index , and we can factorize this function

ω–æ(ξ )σ (ξ ) = σ+(ξ )σ–(ξ ).

Further, we write after ()

ωæ(ξ )ω–æ(ξ )σ (ξ )ũ+(ξ ) + ũ–(ξ ) = l̃v(ξ ),
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factorize ω–æ(ξ )σ (ξ ), and rewrite

ωæ(ξ )σ+(ξ )ũ+(ξ ) + σ –
– (ξ )ũ–(ξ ) = σ –

– (ξ )l̃v(ξ ).

Taking into account our notations we have

σ+(ξ )ũ+(ξ ) + ω–æ(ξ )σ –
– (ξ )ũ–(ξ )

= ω–æ(ξ )P
(
σ –

– (ξ )l̃v(ξ )
)

+ ω–æ(ξ )Q
(
σ –

– (ξ )l̃v(ξ )
)
, ()

because

σ –
– (ξ )l̃v(ξ ) = P

(
σ –

– (ξ )l̃v(ξ )
)

+ Q
(
σ –

– (ξ )l̃v(ξ )
)

and

σ+(ξ )ũ+(ξ ) – ω–æ(ξ )P
(
σ –

– (ξ )l̃v(ξ )
)

= ω–æ(ξ )Q
(
σ –

– (ξ )l̃v(ξ )
)

– ω–æ(ξ )σ –
– (ξ )ũ–(ξ ) ()

and we conclude from the last that the left-hand side and the right-hand side also are a
polynomial Pæ–(ξ ) of order æ – . It follows from the generalized Liouville theorem [,
] because the left-hand side has one pole of order æ in C in the point z = i. So, we have

ũ+(ξ ) = σ –
+ (ξ )ω–æ(ξ )P

(
σ –

– (ξ )l̃v(ξ )
)

+ (ξ – i)–æσ –
+ (ξ )Pæ–(ξ ). �

Remark  This result does not depend on the choice of the continuation l.

Corollary  Let v(x) ≡ , æ ∈ N. Then a general solution of the homogeneous equation ()
is given by the formula

ũ+(ξ ) = (ξ – i)–æσ –
+ (ξ )Pæ–(ξ ).

4 Solvability conditions
Theorem  Let – Indσ ∈N. Then () has a solution from L(R+) iff the following conditions
hold:

∫ +∞

–∞
(ξ – i)k–σ –

– (ξ )l̃v(ξ ) dξ = , k = , , . . . , |æ|.

Proof We argue as above and use the equality (); we write it as

(ξ – i)æσ+(ξ )ũ+(ξ ) – (ξ + i)æP
(
σ –

– (ξ )l̃v(ξ )
)

= (ξ + i)æQ
(
σ –

– (ξ )l̃v(ξ )
)

– (ξ + i)æσ –
– (ξ )ũ–(ξ ). ()

Since we work with L(R) both the left-hand side and the right-hand side are equal to
zero at infinity, hence these are zeros, and

ũ+(ξ ) = σ –
+ (ξ )

(
ξ – i
ξ + i

)–æ

P
(
σ –

– (ξ )l̃v(ξ )
)
.
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But there is some inaccuracy. Indeed, this solution belongs to the space A+(R), but more
exactly it belongs to its subspace Ak

+(R). This subspace consists of functions analytic in C+

with zeros of the order –æ in the point z = i. To obtain a solution from L(R+) we need
some corrections in the last formula. Since the operator P is related to the Cauchy type
integral we will use certain decomposition formulas for this integral (see also [–]).

Let us denote σ –
– (ξ )l̃v(ξ ) ≡ g(ξ ) and consider the following integral:

∫ +∞

–∞
g(η) dη

z – η
, z = ξ + iτ ∈C.

Using a simple formula for a kernel


z – η

=
|æ|∑

k=

(η – i)k–

(z – i)k +
(η – i)|æ|

(z – i)|æ|(z – η)

we obtain the following decomposition:

∫ +∞

–∞
g(η) dη

z – η
=

|æ|∑

k=

(z – i)–k
∫ +∞

–∞
(η – i)k–g(η) dη +

∫ +∞

–∞
(η – i)|æ|g(η) dη

(z – i)|æ|(z – η)
.

So, we have a following property. If the conditions

∫ +∞

–∞
(η – i)k–g(η) dη = , k = , , . . . , |æ|,

hold, then we obtain

∫ +∞

–∞
g(η) dη

z – η
= (z – i)æ

∫ +∞

–∞
(η – i)|æ|g(η) dη

z – η
.

Hence the boundary values on R for the left-hand side and the right-hand one are equal,
and thus

P
(
g(ξ )

)
= (ξ – i)æP

(
(ξ – i)|æ|g(ξ )

)
.

Substituting the last formula into the solution formula we write

ũ+(ξ ) = σ –
+ (ξ )(ξ + i)æP

(
(ξ – i)|æ|σ –

– (ξ )l̃v(ξ )
)
. �

5 Conclusion
It seems this approach to difference equations may be useful for studying the case that
the variable x is a discrete one. We have some experience in the theory of discrete equa-
tions [–], and we hope that we can be successful in this situation also. Moreover, in
our opinion the developed methods might be applicable for multi-dimensional difference
equations.
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