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Abstract
In this article, we present the existence of solutions for a higher-order coupled
fractional differential equations with the Caputo fractional derivative. Our main
approach is the coincidence degree theory due to Mawhin. The most interesting
point is the proof of the uniqueness of the solution for the higher-order coupled
fractional differential equations at resonance. We give an example to demonstrate our
results.
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1 Introduction
In this article, we study the higher-order coupled fractional differential equation

⎧
⎨

⎩

Dα
+ u(t) = f (t, v(t), v′(t), v′′(t), . . . , v(N–)(t)),  < t < ,

Dβ

+ v(t) = g(t, u(t), u′(t), u′′(t), . . . , u(N–)(t)),  < t < ,
(.)

with the coupled two-point boundary conditions

⎧
⎨

⎩

u() = u′() = · · · = u(N–) = , u(N–)() = u(N–)(),

v() = v′() = · · · = v(N–) = , v(N–)() = v(N–)(),
(.)

where N –  < α,β < N , N ≥ , Dα
+ and Dβ

+ denote the Caputo fractional derivative, and
f , g are given continuous functions.

Fractional differential equations have been studied extensively. It is caused both by the
intensive development of the theory of fractional calculus itself and by the applications
such as physics, chemistry, phenomena arising in engineering, economy and science; see
e.g. [–].

Recently, more and more authors paid attention to the boundary value problems of frac-
tional differential equations; see [–]. In [], the author has investigated the existence
of solutions to the coupled systems of fractional differential equations at nonresonance.
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Moreover, there have been many works related to the existence of solutions for bound-
ary value problems at resonance; see [–, –, , ]. Some papers have dealt with
the solutions of multipoint boundary value problems of a coupled fractional differential
equations at resonance; see [, ].

In [], Zhang et al. considered a three-point boundary value problem for a coupled
system of nonlinear fractional differential equations at resonance given by

⎧
⎪⎪⎨

⎪⎪⎩

Dα
+ u(t) = f (t, v(t), Dβ–

+ v(t)),  < t < ,

Dβ

+ v(t) = g(t, u(t), Dα–
+ u(t)),  < t < ,

u() = v() = , u() = σu(η), v() = σv(η),

where  < α,β ≤ ,  < η,η < , σ,σ > , ση
α–
 = ση

β–
 = , D is Riemann-Liouville

fractional derivative, and f , g : [, ] ×R
 →R are given functions.

In [], the authors discussed a two-point boundary value problem for a coupled system
of fractional differential equations at resonance:

⎧
⎪⎪⎨

⎪⎪⎩

Dα
+ u(t) = f (t, v(t), v′(t)),  < t < ,

Dβ

+ v(t) = g(t, u(t), u′(t)),  < t < ,

u() = v() = , u′() = u′(), v′() = v′(),

where Dα
+ , Dβ

+ is Caputo fractional derivative,  < α,β ≤ , and f , g : [, ] ×R
 → R are

given function.
From the above work, we see three facts. Firstly, although the two-point boundary value

problems for coupled system of fractional differential equations have been studied by some
authors, to the best of our knowledge, higher-order fractional differential equations with
the Caputo fractional derivative are seldom considered. Secondly, the nonlinear terms in
the equations of this paper satisfy a sublinear growth condition that is weaker than the
previous ones (see [, ]), meanwhile, the present work generalizes and improves the
available results (see [, ]). Thirdly, the uniqueness of the solution is useful for many
applications. As far as we know, there are few contributions to the uniqueness of a solution
for fractional differential equations. The objective of this paper is to fill the gap in the
relevant literature.

The rest of this paper is organized as follows. In Section , we give some necessary nota-
tions, definitions and lemmas. In Section , we study the existence of solutions of (.) and
(.) by the coincidence degree theory due to Mawhin []. Finally, an example is given to
illustrate our results in Section .

2 Preliminaries
We present the necessary definitions and lemmas from fractional calculus theory that will
be used to prove our main theorems.

Definition . ([]) The Riemann-Liouville fractional integral of order α >  of a function
f : (,∞) →R is given by

Iα
+f (t) =


�(α)

∫ t


(t – s)α–f (s) ds,

provided that the right-hand side is pointwise defined on (,∞).
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Definition . ([]) The Riemann-Liouville fractional derivative of order α >  of a con-
tinuous function f : (,∞) →R is given by

Dα
+ f (t) =


�(n – α)

∫ t



f (n)(s)
(t – s)α–n+ ds,

where n –  < α ≤ n, provided that the right-hand side is pointwise defined on (,∞).

Lemma . ([]) Let n –  < α ≤ n, u ∈ C(, ) ∩ L(, ), then

Iα
+Dα

+u(t) = u(t) + c + ct + · · · + cn–tn–,

where ci ∈R, i = , , . . . , n – .

Lemma . ([]) If β > , α + β > , then the equation

Iα
+Iβ

+f (x) = Iα+β
+ f (x),

is satisfied for continuous function f .

Now let us recall some notation about the coincidence degree continuation theorem.
Let Y , Z be real Banach spaces, L : dom L ⊂ Y → Z be a Fredholm map of index zero

and P : Y → Y , Q : Z → Z be continuous projectors such that ker L = Im P, Im L = ker Q,
and Y = ker L ⊕ ker P, Z = Im L ⊕ Im Q. It follows that L|dom L∩ker P : dom L ∩ ker P → Im L is
invertible. We denote the inverse of this map by KP . If � is an open bounded subset of Y ,
the map N will be called L-compact on � if QN(�) is bounded and KP,QN = KP(I – Q)N :
� → Y is compact.

Theorem . Let L be a Fredholm operator of index zero and N be L-compact on �. Sup-
pose that the following conditions are satisfied:

() Lx �= λNx for each (x,λ) ∈ [(dom L \ ker L) ∩ ∂�] × (, );
() Nx /∈ Im L for each x ∈ ker L ∩ ∂�;
() deg(JQN |ker L,� ∩ ker L, ) �= , where Q : Z → Z is a continuous projection as above

with Im L = ker Q and J : Im Q → ker L is any isomorphism.
Then the equation Lx = Nx has at least one solution in dom L ∩ �.

3 Main results
In this section, we will prove the existence and uniqueness results for (.) and (.).

We use the Banach space E = C[, ] with the norm ‖u‖∞ = max≤t≤ |u(t)|. We de-
fine a linear space X = {u(i) ∈ E : i = , , . . . , N – }. By means of the linear func-
tional analysis theory, we can prove that X is a Banach space with the norm ‖x‖X =
max{‖u‖∞,‖u′‖∞, . . . ,‖u(N–)‖∞}. Further we consider a Banach space Y = X ×X endowed
with the norm defined by ‖(u, v)‖Y = max{‖u‖X ,‖v‖X}, and Z = E × E is a Banach space
with the norm defined by ‖(x, y)‖Z = max{‖x‖∞,‖y‖∞}.

Define the linear operator L from dom L ∩ X to E by

Lu = Dα
+u,

where dom L = {u ∈ X|u(i)() = , u(N–)() = u(N–)(), i = , , . . . , N – }.
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Define the linear operator L from dom L ∩ X to E by

Lv = Dβ
+v,

where dom L = {v ∈ X|v(i)() = , v(N–)() = v(N–)(), i = , , . . . , N – }.
Define the operator L : dom L ∩ Y → Z by

L(u, v) = (Lu, Lv),

where dom L = {(u, v) ∈ Y |u ∈ dom L, v ∈ dom L}, and we define N : Y → Z by setting

N(u, v) = (Nv, Nu),

where N : X → E is defined by

Nv(t) = f
(
t, v(t), v′(t), v′′(t), . . . , v(N–)(t)

)
,

and N : X → E is defined by

Nu(t) = g
(
t, u(t), u′(t), u′′(t), . . . , u(N–)(t)

)
.

Then the problem (.) and (.) can be written by L(u, v) = N(u, v).

Lemma . The mapping L : dom L ⊂ Y → Z is a Fredholm operator of index zero.

Proof It is clear that Ker L = (ctN–, ctN–) ∼= R
.

Let (x, y) ∈ Im L, so there exists (u, v) ∈ dom L which satisfies L(u, v) = (x, y). By Lem-
ma ., we have

u(t) = Iα
+x(t) + c + ct + · · · + cN–tN–,

v(t) = Iα
+y(t) + d + dt + · · · + dN–tN–.

By the definition of dom L, we have ci = di = , i = , , . . . , N – . Hence

u(t) = Iα
+x(t) + cN–tN–, v(t) = Iβ

+y(t) + dN–tN–.

According to Lemma ., we get

u(N–)(t) = DN–
+

(
Iα

+x(t) + cN–tN–) = Iα–N+
+ x(t) + cN–(N – )!,

v(N–)(t) = DN–
+

(
Iβ

+y(t) + dN–tN–) = Iβ–N+
+ y(t) + dN–(N – )!.

Taking into account u(N–)() = u(N–)() and v(N–)() = v(N–)(), we obtain

∫ 


( – s)α–N x(s) ds = ,

∫ 


( – s)β–N y(s) ds = .
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On the other hand, suppose (x, y) satisfies the above equations. Let u(t) = Iα
+x(t) and

v(t) = Iβ
+y(t), we can easily prove (u(t), v(t)) ∈ dom L.

Thus, we conclude that

Im L =
{

(x, y)
∣
∣
∣

∫ 


( – s)α–N x(s) ds = ;

∫ 


( – s)β–N y(s) ds = 

}

.

Consider the linear operators Q, Q : E → E defined by

Qx(t) = (α – N + )
∫ 


( – s)α–N x(s) ds,

Qy(t) = (β – N + )
∫ 


( – s)β–N y(s) ds.

Obviously, Q(x, y) = (Qx(t), Qy(t)) ∼= R
. Taking x(t) ∈ E, by a direct computation, we

have

Q
(
Qx(t)

)
= Qx(t) · (α – N + )

∫ 


( – s)α–N ds

= Qx(t).

Similarly, Q
 = Q. This gives Q(x, y) = Q(x, y). It is easy to check from (x, y) = (x, y) –

Q(x, y) + Q(x, y) that Z = Im L + Im Q. Moreover, we can see that Z = Im L ⊕ Im Q.
Now, Ind L = dim ker L – codim Im L = , and so L is a Fredholm mapping of index

zero. �

We can define the operators P : X → X, P : X → X and P : (u, v) → (Pu, Pv), where

Pu =
u(N–)()
(N – )!

tN–, Pv =
v(N–)()
(N – )!

tN–.

Obviously, P
 = P and P

 = P.
Note that

Ker P =
{

(u, v)|u(N–)() = , v(N–)() = 
}

.

Since (u, v) = (u, v) – P(u, v) + P(u, v), it is clear that Y = Ker P + Ker L. By a simple calcula-
tion, we get Ker L ∩ Ker P = {(, )}. Thus, we get Y = Ker L ⊕ Ker P.

For every (u, v) ∈ Y ,

∥
∥P(u, v)

∥
∥

Y =
∥
∥(Pu, Pv)

∥
∥

Y = max
{‖Pu‖X ;‖Pv‖X

}

= max

{ |u(N–)()|
(N – )!

∥
∥tN–∥∥

X ;
|v(N–)()|
(N – )!

∥
∥tN–∥∥

X

}

≤ max
{∣
∣u(N–)()

∣
∣;

∣
∣v(N–)()

∣
∣
}

. (.)

We define KP : Im L → dom L ∩ Ker P by KP(x, y) = (Iα
+x, Iβ

+y).
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For (x, y) ∈ Im L, we have

LKP(x, y) = L
(
Iα

+x, Iβ
+y

)
=

(
Dα

+Iα
+x, Dβ

+Iβ
+y

)
= (x, y).

For (u, v) ∈ dom L ∩ Ker P, we have u(N–)() = v(N–)() = , so the coefficients ci and di,
i = , , . . . , N – , in the expressions

u = Iα
+Dα

+u(t) + c + ct + · · · + cN–tN–,

v = Iβ
+Dβ

+u(t) + d + dt + · · · + dN–tN–,

are all equal to zero. Thus, we obtain

KpL(x, y) =
(
Iα

+Dα
+x, Iβ

+Dβ
+y

)
= (x, y).

That shows that KP = (Ldom L∩Ker P)–.
Again, for each (x, y) ∈ Im L,

∥
∥KP(x, y)

∥
∥

Y =
∥
∥
(
Iα

+x, Iβ
+y

)∥
∥

Y = max
{∥
∥Iα

+x
∥
∥

X ;
∥
∥Iβ

+y
∥
∥

X

}

≤ max

{


�(α – N + )
‖x‖∞;


�(β – N + )

‖y‖∞
}

= max
{

a‖x‖∞; b‖y‖∞
}

, (.)

where a = 
�(α–N+) , b = 

�(β–N+) .
With similar arguments to [], we obtain the following lemma.

Lemma . KP(I – Q)N : Y → Y is completely continuous.

To obtain our main results, we need the following conditions.

(H) There exist positive constants a, a, bi, ci, and θi,λi ∈ [, ], i = , , . . . , N , such that
for all (x, x, . . . , xN ) ∈R

N ,

∣
∣f (t, x, x, . . . , xN )

∣
∣ ≤ a + b|x|θ + b|x|θ + · · · + bN |xN |θN , ∀t ∈ [, ],

∣
∣g(t, x, x, . . . , xN )

∣
∣ ≤ a + c|x|λ + c|x|λ + · · · + cN |xN |λN , ∀t ∈ [, ].

(H) There exists a constant A >  such that for any c, c ∈ R
, if min{|c|, |c|} > A, one

has either

c · N
(
ctN–) > , c · N

(
ctN–) > ,

or

c · N
(
ctN–) < , c · N

(
ctN–) < .

(H) max{a
∑N

i= bi, a
∑N

i= bi + b
∑N

i= ci, b
∑N

i= ci} < .



Hu and Zhang Advances in Difference Equations  (2015) 2015:202 Page 7 of 14

Lemma . � = {(u, v) ∈ dom L \ Ker L : L(u, v) = λN(u, v),λ ∈ [, ]} is bounded.

Proof For (u, v) ∈ �, thus λ �= . Also, L(u, v) = λN(u, v) ∈ Im L = Ker Q, that is,

λ(α – N + )
∫ 


( – s)α–N f

(
s, v(s), v′(s), v′′(s), . . . , v(N–)(s)

)
ds = ,

λ(β – N + )
∫ 


( – s)β–N g

(
s, u(s), u′(s), u′′(s), . . . , u(N–)(s)

)
ds = .

By the integral mean value theorem, there exist t, t ∈ [, ] such that

f
(
t, v(t), v′(t), v′′(t), . . . , v(N–)(t)

)
= ,

g
(
t, u(t), u′(t), u′′(t), . . . , u(N–)(t)

)
= .

From (H), we get |u(N–)(t)| ≤ A and |v(N–)(t)| ≤ A.
Again for (u, v) ∈ �, (u, v) ∈ dom(L) \ Ker(L), then (I – P)(u, v) ∈ dom L ∩ Ker P and

LP(u, v) = (, ), thus from (.), we have

∥
∥(I – P)(u, v)

∥
∥

Y =
∥
∥KPL(I – P)(u, v)

∥
∥

Y =
∥
∥KP(Lu, Lv)

∥
∥

Y

≤ max
{

a‖Nv‖∞; b‖Nu‖∞
}

. (.)

By Lu = λNu and u ∈ dom L, we have

u(t) =


�(α)

∫ t


(t – s)α–f

(
s, v(s), . . . , v(N–)(s)

)
ds

– u() – u′()t – · · · –
u(N–)()
(N – )!

tN–.

Furthermore, we have

u(N–)(t) =


�(α – N + )

∫ t


(t – s)α–N f

(
s, v(s), . . . , v(N–)(s)

)
ds – u(N–)().

Substituting t = t into the above equation, we get

u(N–)(t) =


�(α – N + )

∫ t


(t – s)α–N f

(
s, v(s), . . . , v(N–)(s)

)
ds – u(N–)().

Together with |u(N–)(t)| ≤ A, we derive that

∣
∣u(N–)()

∣
∣ ≤

∣
∣
∣
∣


�(α – N + )

∫ t


(t – s)α–N f

(
s, v(s), . . . , v(N–)(s)

)
ds

∣
∣
∣
∣

+
∣
∣u(N–)(t)

∣
∣

≤ A +


�(α – N + )

∫ t


(t – s)α–N ∣

∣f
(
s, v(s), . . . , v(N–)(s)

)∣
∣ds

≤ A +


�(α – N + )

∫ t


(t – s)α–N

(

a +
N∑

i=

bi
∣
∣v(i–)∣∣θi

)

ds
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≤ A +


�(α – N + )

(

a +
N∑

i=

bi
∥
∥v(i–)∥∥θi

∞

)

·
∫ t


(t – s)α–N ds

≤ A + aa + a
N∑

i=

bi
∥
∥v(i–)∥∥θi

∞. (.)

With similar arguments, we obtain

∣
∣v(N–)()

∣
∣ ≤ A + ab + b

N∑

i=

ci
∥
∥u(i–)∥∥λi

∞. (.)

From (.) and (.), we have

∥
∥(u, v)

∥
∥

Y =
∥
∥P(u, v) + (I – P)(u, v)

∥
∥

Y

≤ ∥
∥P(u, v)

∥
∥

Y +
∥
∥(I – P)(u, v)

∥
∥

Y

≤ max
{∣
∣u(N–)()

∣
∣ + a‖Nv‖∞,

∣
∣u(N–)()

∣
∣ + b‖Nu‖∞,

∣
∣v(N–)()

∣
∣ + a‖Nv‖∞,

∣
∣v(N–)()

∣
∣ + b‖Nu‖∞

}
.

In what follows, the proof can be divided into four cases.
Case . ‖(u, v)‖Y ≤ |u(N–)()| + a‖Nv‖∞.
By (.) and (H), we have

∥
∥(u, v)

∥
∥

Y ≤ ∣
∣u(N–)()

∣
∣ + a‖Nv‖∞

≤ A + aa + a
N∑

i=

bi
∥
∥v(i–)∥∥θi

∞ + a‖Nv‖∞

≤ A + aa + a
N∑

i=

bi
∥
∥v(i–)∥∥θi

∞ + a
∥
∥f

(
t, v(t), v′(t), . . . , v(N–)(t)

)∥
∥∞

≤ A + aa + a
N∑

i=

bi
∥
∥v(i–)∥∥θi

∞ + a
N∑

i=

bi
∥
∥v(i–)∥∥θi

∞

= A + aa + a
N∑

i=

bi
∥
∥v(i–)∥∥θi

∞.

According to (H) and the definition of ‖(u, v)‖Y , we can derive ‖v‖X are bounded. There-
fore � is bounded.

Case . ‖(u, v)‖Y ≤ |v(N–)()| + b‖Nu‖∞. The proof is similar to Case . Here, we omit
it.

Case . ‖(u, v)‖Y ≤ |u(N–)()| + b‖Nu‖∞.
From (.) and (H), we obtain

∥
∥(u, v)

∥
∥

Y ≤ ∣
∣u(N–)()

∣
∣ + b‖Nu‖∞

≤ A + aa + a
N∑

i=

bi
∥
∥v(i–)∥∥θi

∞ + b‖Nu‖∞
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≤ A + aa + a
N∑

i=

bi
∥
∥v(i–)∥∥θi

∞ + b
∥
∥g

(
t, u(t), u′(t), . . . , u(N–)(t)

)∥
∥∞

≤ A + aa + ba + a
N∑

i=

bi
∥
∥v(i–)∥∥θi

∞ + b
N∑

i=

ci
∥
∥u(i–)∥∥λi

∞.

By (H), we easily conclude that ‖(u, v)‖Y is bounded. Therefore � is bounded.
Case . ‖(u, v)‖∞ ≤ |v(N–)()| + a‖Nv‖∞. The proof is similar to the Case . Here, we

omit it.
According to the above arguments, we prove that � is bounded. �

Lemma . � = {(u, v) ∈ Ker L : N(u, v) ∈ Im L} is bounded.

Proof Let (u, v) ∈ Ker L, so we have u = ctN–, v = ctN–, c, c ∈ R. In view of N(u, v) =
(Nv, Nu) ∈ Im L = Ker Q, we have

∫ 


( – s)α–N f

(
t, ctN–, (N – )ctN–, . . . , c(N – )!

)
dt = ,

∫ 


( – s)β–N g

(
t, ctN–, (N – )ctN–, . . . , c(N – )!

)
dt = .

By the integral mean value theorem, there exist constants t, t ∈ [, ] such that

f
(
t, ctN–

 , (N – )ctN–
 , . . . , c(N – )!

)
= ,

g
(
t, ctN–

 , (N – )ctN–
 , . . . , c(N – )!

)
= ,

which together with (H) imply |ci| ≤ A
(N–)! , i = , . Hence, � is bounded. �

Lemma . � = {(u, v) ∈ Ker L : λ(u, v) + ( – λ)QN(u, v) = (, ),λ ∈ [, ]} is bounded.

Proof Let (u, v) ∈ Ker L, so we have u = ctN–, v = ctN–, c, c ∈ R, and

λctN– + ( – λ)QN(v) = , λctN– + ( – λ)QN(u) = ,

that is to say,

λctN– + ( – λ)
∫ 


f
(
t, ctN–, c(N – )tN–, . . . , c(N – )!

)
dt = , (.)

λctN– + ( – λ)
∫ 


g
(
t, ctN–, c(N – )tN–, . . . , c(N – )!

)
dt = . (.)

If λ = , then |ci| ≤ A
(N–)! , i = , . If λ ∈ (, ], then we can have |ci| ≤ A

(N–)! , i = , . Other-
wise, if |ci| > A

(N–)! , i = , , in view of the first part of (H), one has

λc
 tN– + ( – λ)

∫ 


cf

(
t, ctN–, c(N – )tN–, . . . , c(N – )!

)
dt > ,

λc
tN– + ( – λ)

∫ 


cg

(
t, ctN–, c(N – )tN–, . . . , c(N – )!

)
dt > ,

which contradict (.) and (.). Thus, � is bounded. �
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Remark . If the second part of (H) holds, then the set

�′
 =

{
(u, v) ∈ Ker L : –λ(u, v) + ( – λ)QN(u, v) = (, ),λ ∈ [, ]

}

is bounded.

Theorem . Suppose (H)-(H) hold, then the problem (.) and (.) has at least on so-
lution in Y .

Proof Let � to be a bounded open subset of Y , such that
⋃

i= �i ⊂ �. It follows from
Lemma . that N is L-compact on �. By Lemma ., Lemma ., and Lemma ., we
get:

() Lu �= λNu, for every (u, v,λ) ∈ [(dom L \ Ker L) ∩ ∂�] × (, ).
() Nu /∈ Im L for every u ∈ Ker L ∩ ∂�.
() Let H((u, v),λ) = ±λI(u, v) + ( – λ)JQN(u, v), where I is the identical operator. Via

the homotopy property of the degree, we obtain

deg(JQN |ker L,� ∩ ker L, ) = deg
(
H(·, ),� ∩ ker L, 

)

= deg
(
H(·, ),� ∩ ker L, 

)

= deg(I,� ∩ ker L, ) =  �= .

Applying Theorem ., we conclude that L(u, v) = N(u, v) has at least one solution in
dom L ∩ �. �

Under the stronger conditions imposed on f , we can prove the uniqueness of the solu-
tions to BVP (.) and (.).

Theorem . Suppose the condition (H) in Theorem . is replaced by the following con-
ditions:

(H′
) There exist positive constants ai, bi, i = , , . . . , N – , such that for all (x, x, . . . , xN ),

(y, y, . . . , yN ) ∈R
N one has

∣
∣f (t, x, x, . . . , xN ) – f (t, y, y, . . . , yN )

∣
∣ ≤ a|x – y| + · · · + aN–|xN – yN |,

∣
∣g(t, x, x, . . . , xN ) – g(t, y, y, . . . , yN )

∣
∣ ≤ b|x – y| + · · · + bN–|xN – yN |.

(H′′
 ) There exist positive constants ki, li, i = , , . . . , N – , such that for all (x, x, . . . , xN ),

(y, y, . . . , yN ) ∈R
N , one has

∣
∣f (t, x, x, . . . , xN ) – f (t, y, y, . . . , yN )

∣
∣

≥ lN–|xN – yN | – l|x – y| – l|x – y| – · · · – lN–|xN– – yN–|,
∣
∣g(t, x, x, . . . , xN ) – g(t, y, y, . . . , yN )

∣
∣

≥ kN–|xN – yN | – k|x – y| – k|x – y| – · · · – kN–|xN– – yN–|.
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Then BVP (.) and (.) has a unique solution, provided that

max{p + q + r, p + q + r,

p + q + r + r, p + q + r + r} < , (.)

where p = l
lN–

, p = k
kN–

, q =
∑N–

i=
li

lN–
, q =

∑N–
i=

ki
kN–

, r = a
∑N–

i= ai, r = b
∑N–

i= bi.

Proof We let yi = , i = , , . . . , N , a = maxt∈[,] |f (t, , . . . , )| and a = maxt∈[,] |g(t, ,
. . . , )|, then from (.) we can show that the condition (H) is satisfied. Therefore, the
existence of a solution for the coupled system (.) and (.) follows from Theorem ..

Suppose (ui, vi) ∈ Y , i = ,  are two solutions of BVP (.) and (.), then

Dα
+ ui(t) = f

(
t, vi(t), v′

i(t), . . . , v(N–)
i (t)

)
,

Dβ

+ vi(t) = g
(
t, ui(t), u′

i(t), . . . , u(N–)
i (t)

)
.

Note u = u – u, v = v – v, thus we have the following equations:

Dα
+ u(t) = f

(
t, v(t), v′

(t), . . . , v(N–)
 (t)

)
– f

(
t, v(t), v′

(t), . . . , v(N–)
 (t)

)
,

Dβ

+ v(t) = g
(
t, u(t), u′

(t), . . . , u(N–)
 (t)

)
– g

(
t, u(t), u′

(t), . . . , u(N–)
 (t)

)
.

(.)

By Im L = Ker Q, we have

∫ 


( – s)α–N f

(
t, v(t), v′

(t), . . . , v(N–)
 (t)

)
– f

(
t, v(t), v′

(t), . . . , v(N–)
 (t)

)
dt = ,

∫ 


( – s)β–N g

(
t, u(t), u′

(t), . . . , u(N–)
 (t)

)
– g

(
t, u(t), u′

(t), . . . , u(N–)
 (t)

)
dt = .

By the integral mean value theorem, there exist ξ ,η ∈ [, ], such that

f
(
ξ , v(ξ ), v′

(ξ ), . . . , v(N–)
 (ξ )

)
– f

(
ξ , v(ξ ), v′

(ξ ), . . . , v(N–)
 (ξ )

)
= ,

g
(
η, u(η), u′

(η), . . . , u(N–)
 (η)

)
– g

(
η, u(η), u′

(η), . . . , u(N–)
 (η)

)
= .

By (H′′
 ), we have

 =
∣
∣f

(
ξ , v(ξ ), v′

(ξ ), . . . , v(N–)
 (ξ )

)
– f

(
ξ , v(ξ ), v′

(ξ ), . . . , v(N–)
 (ξ )

)∣
∣

≥ lN–
∣
∣v(N–)(ξ )

∣
∣ – l

∣
∣v(ξ )

∣
∣ – l

∣
∣v′(ξ )

∣
∣ – · · · – lN–

∣
∣v(N–)(ξ )

∣
∣,

 =
∣
∣g

(
η, u(η), u′

(η), . . . , u(N–)
 (η)

)
– g

(
η, u(η), u′

(η), . . . , u(N–)
 (η)

)∣
∣

≥ kN–
∣
∣u(N–)(η)

∣
∣ – k

∣
∣u(η)

∣
∣ – k

∣
∣u′(η)

∣
∣ – · · · – kN–

∣
∣u(N–)(η)

∣
∣.

It follows from the two inequalities above that

∣
∣v(N–)(ξ )

∣
∣ ≤ l

lN–

∣
∣v(ξ )

∣
∣ +

l

lN–

∣
∣v′(ξ )

∣
∣ + · · · +

lN–

lN–

∣
∣v(N–)(ξ )

∣
∣

≤ l

lN–
‖v‖∞ +

N–∑

i=

li

lN–

∥
∥v(i)∥∥∞

≤ (p + q)‖v‖X
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and

∣
∣u(N–)(η)

∣
∣ ≤ k

kN–
‖u‖∞ +

N–∑

i=

ki

kN–

∥
∥u(i)∥∥∞

≤ (p + q)‖u‖X . (.)

By (.), we obtain

u(N–)(t) = Iα–(N–)
+

[
f
(
t, v(t), v′

(t), . . . , v(N–)
 (t)

)

– f
(
t, v(t), v′

(t), . . . , v(N–)
 (t)

)]
– u(N–)().

Substituting t = η into the above equation, we get

u(N–)(η) = Iα–(N–)
+

[
f
(
t, v(t), v′

(t), . . . , v(N–)
 (t)

)

– f
(
t, v(t), v′

(t), . . . , v(N–)
 (t)

)]

t=η
– u(N–)().

By (H′
), (.) and the definition of ‖v‖X , we have

∣
∣u(N–)()

∣
∣ ≤ ∣

∣u(N–)(η)
∣
∣ +


�(α – N + )

∫ η


(η – s)α–N ds ·

N–∑

i=

ai
∥
∥v(i)∥∥∞

≤ ∣
∣u(N–)(η)

∣
∣ + ‖v‖X · 

�(α – N + )

∫ η


(η – s)α–N ds ·

N–∑

i=

ai

≤ (p + q)‖u‖X + ‖v‖X · a
N–∑

i=

ai

= (p + q)‖u‖X + r‖v‖X . (.)

Similarly,

∣
∣v(N–)()

∣
∣ ≤ l

l
‖v‖∞ +

N–∑

i=

li

l

∥
∥v(i–)∥∥∞ + ‖u‖X · b

N–∑

i=

bi

= (p + q)‖v‖X + r‖u‖X . (.)

According to (.), (.), and (.), we have

∥
∥(u, v)

∥
∥

Y =
∥
∥P(u, v) + (I – P)(u, v)

∥
∥

Y ≤ ∥
∥P(u, v)

∥
∥

Y +
∥
∥(I – P)(u, v)

∥
∥

Y

= max
{∣
∣u(N–)()

∣
∣;

∣
∣v(N–)()

∣
∣
}

+ max
{

a‖Lu‖∞; b‖Lv‖∞
}

≤ max
{

(p + q)‖u‖X + r‖v‖X + a‖Lu‖∞,

(p + q)‖u‖X + r‖v‖X + b‖Lv‖∞,

(p + q)‖v‖X + r‖u‖X + a‖Lu‖∞,

(p + q)‖v‖X + r‖u‖X + b‖Lv‖∞
}

.

Our proof can be divided into four cases.
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Case . ‖(u, v)‖Y ≤ (p + q)‖u‖X + r‖v‖X + a‖Lu‖∞.
By (H′

) and the definition of ‖(u, v)‖Y , we have

∥
∥(u, v)

∥
∥

Y ≤ (p + q)‖u‖X + r‖v‖X + a‖Lu‖∞

≤ (p + q)‖u‖X + r‖v‖X + a

(

a‖v‖∞ +
N–∑

i=

ai
∥
∥v(i)∥∥∞

)

≤ (p + q)‖u‖X + r‖v‖X

≤ (p + q + r)
∥
∥(u, v)

∥
∥

Y . (.)

By the assumption (.), the coefficient on the right side of (.) is less than . So we have
‖u‖X = ‖v‖X = , i.e., u = u, v = v.

Case . ‖(u, v)‖Y ≤ (p + q)‖v‖X + r‖u‖X + b‖Lv‖∞. The proof is similar to Case . So
we omit it.

Case . ‖(u, v)‖∞ ≤ (p + q)‖u‖X + r‖v‖X + b‖Lv‖∞.
By (H′

) and the definition of ‖(u, v)‖Y , we have

∥
∥(u, v)

∥
∥

Y ≤ (p + q)‖u‖X + r‖v‖X + b‖Lv‖∞

≤ (p + q)‖u‖X + r‖v‖X + b

(

b‖u‖∞ +
N–∑

i=

bi
∥
∥u(i)∥∥∞

)

≤ (p + q + r)‖u‖X + r‖v‖X

≤ (p + q + r + r)
∥
∥(u, v)

∥
∥

Y . (.)

By our assumption (.), the coefficients on the right side of (.) are all less than . So
we have ‖u‖ = ‖v‖ = , so that u = u, v = v.

Case . ‖(u, v)‖Y ≤ (p + q)‖v‖X + r‖u‖X + a‖Lu‖∞. The proof is similar to Case .
Here, we omit it.

By the above argument, we have derived that BVP (.) and (.) has exactly one solution.
The proof is finished. �

4 Example
Let us consider the following coupled system of fractional differential equations at reso-
nance:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

D.
+ u(t) = f (t, v, v′, v′′, v′′′),  < t < ,

D.
+ v(t) = g(t, u, u′, u′′, u′′′),  < t < ,

u() = u′() = u′′() = , u′′′() = u′′′(),

v() = v′() = v′′() = , v′′′() = v′′′(),

(.)

where

f (t, x, x, x, x) =
t


+ arctan x +



e–|x| + cos x +



x,

g(t, y, y, y, y) = t +



sin y + sin(yy) +



(y)

 .
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Corresponding to BVP (.) and (.), we have α = . and β = .. Take a = 
 + π

 ,
a = 

 , bi = ci = , i = , , , b = 
 , c = 

 , θi = λi = , i = , , , θ = , λ = 
 , and A = .

Then we can calculate that (H)-(H) hold.
By Theorem ., we see that BVP (.) has at least one solution.
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