
Ma and Chen Advances in Difference Equations  (2015) 2015:245 
DOI 10.1186/s13662-015-0547-y

R E S E A R C H Open Access

Delay-dependent exponential H∞ filter
for uncertain nonlinear singular time-delay
systems through T-S fuzzy model
Yuechao Ma and Menghua Chen*

*Correspondence:
chenmodehao_220@126.com
College of science, Yanshan
University, 438 Hebeidajie Road,
Qinhuangdao, P.R. China

Abstract
In this paper, the problem of delay-dependent exponential H∞ filter is investigated
for uncertain nonlinear singular systems with interval time-varying delay through T-S
fuzzy model. A new Lyapunov-Krasovskii functional (LKF) is constructed by
considering triple integral and the left and right endpoints of the time-delay to obtain
a less conservative condition, which can guarantee that the error system is not only
exponentially admissible but also satisfying a prescribed H∞ performance. Then, by
solving the linear matrix inequalities (LMIs), the filter parameter matrices can be
obtained. In the end, some numerical simulations are given to illustrate the
effectiveness and the benefits of the methods.

Keywords: nonlinear singular systems; interval time-varying delay; exponentially
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1 Introduction
Filter design is one of the fundamental problems in various engineering applications, espe-
cially in the fields of signal processing and control communities. In order to obtain the de-
sired signal and eliminate interference, the method of H∞ filter is very appropriate to some
practical applications, and there has been considerable attention to H∞ filter problems for
dynamic systems. Non-fragile H∞ filter was designed for discrete-time fuzzy systems with
multiplicative gain variations in []. Robust H∞ filtering for a class of uncertain linear sys-
tems with time-varying delay was studied in []. Delay-dependent robust H∞ filter for T-S
fuzzy time-delay systems with exponential stability was proposed in []. Exponential H∞
filtering for time-varying delay systems was studied through Markovian approach in [].

Singular systems have extensive applications in electrical circuits, power systems, eco-
nomics and other areas, so the filtering of a singular system is especially important and has
been extensively studied [, ]. Exponential H∞ filtering for singular systems with Marko-
vian jump parameters was put forward in []. H∞ filtering for a class of discrete-time
singular Markovian jump systems with time-varying delays was designed in []. In [],
the problem of exponential H∞ filtering was studied for discrete-time switched singular
time-delay systems.

On the other hand, time delay is frequently one of the main causes of instability and poor
performance of systems, and it is encountered in a variety of engineering systems such as
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[–, –]. But many of the results are about constant time-delay, in practice, which is
conservative to some extent. Recently, interval time-varying delay has been identified in
practical engineering systems. Interval time-varying delay is a time delay that varies in an
interval in which the lower bound is not restricted to be zero. For more details, we refer
readers to [–].

In the past two decades, the T-S fuzzy model has been used to represent many nonlin-
ear systems. And practice has proved that the T-S fuzzy model is very effective to simplify
many complex systems. In [], the filter was designed through discrete-time singularly
perturbed T-S fuzzy model. For T-S fuzzy discrete-time systems, H∞ descriptor fault de-
tection filter was designed in []. New results on H∞ filtering for fuzzy systems with
interval time-varying delays were obtained in []. However, to the authors’ knowledge,
the problem of delay-dependent exponential H∞ filter for nonlinear singular systems with
interval time-varying delay through T-S fuzzy model has rarely been reported.

Motivated by the above discussions, the problem of delay-dependent exponential H∞
filter for nonlinear singular systems with interval time-varying delay through T-S fuzzy
mode is considered in this paper. The main constructions of this paper can be concluded
as follows. () The triple integral was taken into account when constructing the LKF, which
can reduce the conservatism effectively. () The use of Lemma  refines the delay interval,
which is the other reason why the result is less conservative. () The parameters of the
filter can be obtained by solving the LMIs. () The comparisons with other references are
listed in the form of tables, which can clearly show the advantage of the proposed method
in this paper.

2 Preliminaries
Consider the following nonlinear system with interval time-varying delay which could be
approximated by a T-S singular model with r plant rules.

Plant rule i: If ξ(t) is Mi and ξ(t) is Mi · · · ξp(t) is Mpi, then

Eẋ(t) = (Ai + �Ai)x(t) + (Ai + �Ai)x
(
t – d(t)

)
+ (Bi + �Bi)ω(t),

y(t) = (Ci + �Ci)x(t) + (Ci + �Ci)x
(
t – d(t)

)
+ (Di + �Di)ω(t),

z(t) = (Li + �Li)x(t) + (Li + �Li)x
(
t – d(t)

)
,

x(t) = φ(t), t ∈ [–d, ],

()

where Mij denotes the fuzzy sets; r denotes the number of model rules; x(t) ∈ Rn is the
input vector; y(t) ∈ Rq is the measurement; z(t) ∈ Rp is the signal to be estimated; w(t) ∈ Rm

is the noise signal vector; φ(t) is a compatible vector valued initial function; E is a singular
matrix and assume that rank E = r ≤ n; Ai, Ai, Bi, Ci, Ci, Di, Li, Li are constant matrices
with appropriate dimensions; ξ(t), ξ(t), . . . , ξp(t) are the functions of state variables; d(t) is
time-varying delay and satisfies

 ≤ d ≤ d(t) ≤ d, ḋ(t) ≤ μ;

�Ai, �Ai, �Bi, �Ci, �Ci, �Di, �Li, �Li are unknown matrices describing the model
uncertainties, and they are assumed to be of the form
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[
�Ai �Ai �Bi

�Ci �Ci �Di

]

=

[
Hi

Hi

]

Fi[Ei Ei Ei],

�Li = HiFiEi, �Li = HiFiEi,

()

where Hi, Hi, Hi, Hi, Ei, Ei, Ei, Ei, Ei are known real constant matrices, and Fi is
unknown real time-varying matrix satisfying

FT
i Fi ≤ I. ()

The parametric uncertainties �Ai, �Ai, �Bi, �Ci, �Ci, �Di, �Li, �Li are said to
be admissible if both () and () hold.

Let ε(t) = [ε(t) ε(t) · · · εp(t)]T , by using a center-average defuzzifier, product fuzzy in-
ference and singleton fuzzifier, the global model of the system is as follows:

Eẋ(t) =
r∑

i=

hi
(
ε(t)

)[
(Ai + �Ai)x(t) + (Ai + �Ai)x

(
t – d(t)

)
+ (Bi + �Bi)ω(t)

]
,

y(t) =
r∑

i=

hi
(
ε(t)

)[
(Ci + �Ci)x(t) + (Ci + �Ci)x

(
t – d(t)

)
+ (Di + �Di)ω(t)

]
,

z(t) =
r∑

i=

hi
(
ε(t)

)[
(Li + �Li)x(t) + (Li + �Li)x

(
t – d(t)

)]
,

()

where

hi
(
ε(t)

)
= βi

(
ε(t)

)/ r∑

i=

βi
(
ε(t)

)
, βi

(
ε(t)

)
=

p∏

j=

Mij
(
εj(t)

)
,

Mij(εj(t)) is the grade of membership of εj(t) in Mij. It is easy to see that βi(ε(t)) ≥  and
∑r

i= βi(ε(t)) ≥ . Hence, we have hi(ε(t)) ≥  and
∑r

i= hi(ε(t)) = .
In this paper, we consider the following delay-dependent fuzzy filter:

E ˙̂x(t) =
r∑

i=

hi
(
ε(t)

)[
Afix̂(t) + Bfiy(t) + Cfix̂

(
t – d(t)

)]
,

ẑ(t) =
r∑

i=

hi
(
ε(t)

)[
Lfix̂(t)

]
, i = , , . . . , r,

()

where x̂(t) ∈ Rk is the filter state vector, ẑ(t) ∈ Rp is the estimated vector, Afi, Bfi, Cfi, Lfi are
the filter matrices with appropriate dimensions, which are to be designed.

Remark  When E = I and Cfi = , the fuzzy filter () was studied in [], which is time-
independent filter. The simulations will demonstrate the advantage in this paper.

The filtering error system from () and () can be described by

Ē ˙̃x(t) =
r∑

i=

r∑

j=

hi
(
ξ (t)

)
hj

(
ξ (t)

)[
Aijx̃(t) + Adijx̃(t – d)+Bijw(t)

]
,

e(t) =
r∑

i=

r∑

j=

hi
(
ξ (t)

)
hj

(
ξ (t)

)[
Lijx̃(t) + Ldijx̃

(
t – d(t)

)]
,

()
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where

e(t) = z(t) – ẑ(t), x̃(t) =
[
xT (t) x̂T (t)

]T ,

Aij =

[
Ai + �Ai 

Bfj(Ci + �Ci) Afj

]

, Bij =

[
Bi + �Bi

Bfj(Di + �Di)

]

,

Adij =

[
Ai + �Ai 

Bfj(Ci + �Ci) Cfj

]

, Ē =

[
E 
 E

]

,

Lij = [Li + �Li –Lfj], Ldij = [Li + �Li ].

System () is simply denoted by the following form:

Ē ˙̃x(t) = Ãx̃(t) + Ãdx̃
(
t – di(t)

)
+ B̃w(t),

e(t) = L̃x̃(t) + L̃dx̃
(
t – d(t)

)
,

()

where

Ã =
r∑

i=

r∑

j=

hi
(
ε(t)

)
hj

(
ε(t)

)
Aij, Ãd =

r∑

i=

r∑

j=

hi
(
ε(t)

)
hj

(
ε(t)

)
Adij,

B̃ =
r∑

i=

r∑

j=

hi
(
ε(t)

)
hj

(
ε(t)

)
Bij, L̃ =

r∑

i=

r∑

j=

hi
(
ε(t)

)
hj

(
ε(t)

)
Lij,

L̃d =
r∑

i=

r∑

j=

hi
(
ε(t)

)
hj

(
ε(t)

)
Ldij.

Definition  The filtering error system () is said to be exponentially admissible if it sat-
isfies the following:

(a) The augmented system () with w(t) =  is said to be regular and impulse-free if the
pair (Ē, Ã), (Ē, Ã + Ãd) is regular and impulse-free;

(b) The filtering error system () is said to be exponentially stable if there exist scalars
δ >  and λ >  such that ‖x(t)‖ ≤ δe–λt‖φ(θ )‖d , where ‖φ(θ )‖d = sup–d≤θ≤ |φ(θ )|
and | · | is the Euclidean norm in Rn. When the above inequality is satisfied, λ, σ and
e–λt‖φ(θ )‖d are called the decay rate, the decay coefficient and an upper bound of
the state trajectories, respectively.

Lemma  ([]) For any constant matrix R ∈ Rn×n, R = RT > , scalars d ≤ d(t) ≤ d, and
vector function ẋ : [–d, –d] → Rn such that the following integration is well defined, it
holds that

–(d – d)
∫ t–d

t–d

˙̃xT (s)R ˙̃x(s) ds ≤ ζ T (t)ζ (t),

where

ζ (t) =

⎡

⎢
⎣

x(t – d)
x(t – d(t))
x(t – d)

⎤

⎥
⎦ ,  =

⎡

⎢
⎣

–R R 
∗ –R R
∗ ∗ –R

⎤

⎥
⎦ .
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Lemma  For any symmetric positive-definite constant matrices M >  and any constant
matrix E ∈ Rn×n, and scalars d > d > , if there exists a vector function ẋ(·) : [–d, ] → Rn

such that the following integration is well defined, then it holds that

–
d

 – d




∫ –d

–d

∫ t

t+θ

(
Eẋ(t)

)T MEẋ(t) ds dθ

≤
[

x(t)
∫ t–d

t–d
x(s) ds

]T [
–d

ET ME dET ME
dET ME –ET ME

][
x(t)

∫ t–d
t–d

x(s) ds

]

.

Proof Notice that

[
(Eẋ(t))T MEẋ(t) (Eẋ(t))T

Eẋ(t) M–

]

=

[
(Eẋ(t))T M/ 

M–/ 

][
M/Eẋ(t) M–/

 

]

≥ .

Hence,

[∫ –d
–d

∫ t
t+θ

(Eẋ(t))T MEẋ(t) ds dθ
∫ –d

–d

∫ t
t+θ

(Eẋ(t))T ds dθ
∫ –d

–d

∫ t
t+θ

(Eẋ(t)) ds dθ
∫ –d

–d

∫ t
t+θ

M– ds dθ

]

≥ .

Using Schur complements and some simple manipulation, the lemma can be obtained.
�

Lemma  ([]) Suppose that a positive continuous function f (t) satisfies

f (t) ≤ ς sup
t–τ≤s≤t

f (s) + ςe–εt ,

where ε > , ς < , ς >  and τ > . Then f (t) satisfies

f (t) ≤ sup
–τ≤s≤

f (s)e–ξt +
ςe–ξt

 – ςeξτ
,

where ξ = min{ε, ξ} and  < ξ < –(/τ ) lnς.

Lemma  ([]) Given a set of suited dimension real matrices Q, H , E, Q is a symmetric
matrix such that Q + HFE + ET FT HT <  for all F satisfies FT F ≤ I if and only if there
exists ε >  such that

Q + εHHT + ε–ET E < .

Aims of this paper The exponential H∞ filter problem to be addressed in this paper is for-
mulated as follows: given the uncertain time-delay T-S fuzzy system () and a prescribed
level of noise attenuation γ > , determine an exponentially stable filter in the form of ()
such that the following requirements are satisfied:

(a) The filtering error system () is exponentially admissible;
(b) Under zero initial conditions, the filtering error system () satisfies

‖e(t)‖ < γ ‖ω(t)‖ for any nonzero ω(t) ∈ L[,∞) and all admissible uncertainties.
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3 Main results
3.1 Exponential stability and H∞ performance analysis
Theorem  For prescribed scalar  ≤ μ < , system () is exponentially admissible with
H∞ performance γ for any time delay d(t) satisfying  ≤ d ≤ d(t) ≤ d if there exist
positive-definitive matrices P, Q, Q, Q, R, R, Z, Z, Z, Z such that

ĒTP = PT Ē ≥ , ()

� =

⎡

⎢
⎣

  

∗  

∗ ∗ 

⎤

⎥
⎦ < , ()

where

 =

⎡

⎢
⎢⎢
⎣

� � � 
∗ � � �

∗ ∗ � 
∗ ∗ ∗ �

⎤

⎥
⎥⎥
⎦

,  =

[
dĒT RĒ dĒT RĒ PT B̃

× × ×

]

,

 =

⎡

⎢
⎢⎢⎢
⎣

Ã
T

L̃T

ÃT
d L̃T

d
 
 

⎤

⎥
⎥⎥⎥
⎦

,  = diag
{
�,�, –γ I

}
,  =

⎡

⎢
⎣

 
 

B̃T 

⎤

⎥
⎦ ,

 = diag
{

–W –, –I
}

, � = PT Ã + Ã
T

P + Q – ĒT ZĒ – ĒT Y Ē + Z,

� = PT Ãd, � = ĒT ZĒ, � = –( – μ)Q – ĒT ZĒ, � = ĒT ZĒ,

� = ĒT ZĒ, � = –Q + Q + Q – ĒT ZĒ – ĒT ZĒ, � = –Q – ĒT ZĒ,

� = –ĒT RĒ – Z, � = –ĒT RĒ – Z, d = d – d, ds =
d

 – d



,

W = d
 Z + d

Z +
d




R + d
s R, Y = d

 R + d
R, Z = d

 Z + d
Z.

Proof Firstly, we prove that system () is regular and impulse-free. We choose two non-
singular matrices U and V , note that

UĒV =

[
Ir 
 

]

, UÃV =

[
Ã Ã

Ã Ã

]

, UÃdV =

[
Ãd Ãd

Ãd Ãd

]

,

U–PV =

[
P P

P P

]

, V T ZV =

[
Z Z

Z Z

]

.

From () and the expression above, it is easy to obtain that P = . Pre- and post-
multiplying � <  by V T and V , we have

PT
Ã + ÃT

P + Z < ,

which means Ã is non-singular. So the pair (E, Ã) is regular and impulse-free.
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On the other hand, via the Schur complement, it can be seen from () that  < , pre-
multiplying and post-multiplying it, by [I I I I] and its transposition, we can get

PT
(Ã + Ãd) +

(
ÃT

 + ÃT
d

)
P + Z < ,

together with Z > , which implies Ã and Ãd are non-singular. Hence, the pair (Ē, Ã) and
(Ē, Ã + Ãd) is regular and impulse-free. According to Definition , system () is regular and
impulse-free.

Next, we show the exponential stability of system (). Choose the following Lyapunov
functional

V (x̃t) =
∑

i=

Vi(x̃t), ()

where

V(x̃t) = x̃T (t)ĒT Px̃(t),

V(x̃t) =
∫ t

t–d

x̃T (s)Qx̃(s) ds +
∫ t–d

t–d

x̃T (s)Qx̃(s) ds +
∫ t–d

t–d(t)
x̃T (s)Qx̃(s) ds,

V(x̃t) = d

∫ 

–d

∫ t

t+θ

˙̃xT (s)ĒT ZĒ ˙̃x(s) ds dθ + d

∫ –d

–d

∫ t

t+θ

˙̃xT (s)ĒT ZĒ ˙̃x(s) ds dθ ,

V(x̃t) = d

∫ 

–d

∫ t

t+θ

x̃T (s)Zx̃(s) ds dθ + d

∫ –d

–d

∫ t

t+θ

x̃T (s)Zx̃(s) ds dθ ,

V(x̃t) =
d





∫ 

–d

∫ 

θ

∫ t

t+λ

˙̃xT (s)ĒRĒ ˙̃x(s) ds dλdθ

+ ds

∫ –d

–d

∫ 

θ

∫ t

t+λ

˙̃xT (s)ĒT RĒ ˙̃x(s) ds dλdθ ,

where x̃t = x̃(t + α), –d ≤ α ≤ .
Then the time-derivative of V (x̃t) along the solution of system () gives

V̇(x̃t) = x̃T (t)ĒT P ˙̃x(t),

V̇ (x̃t) ≤ x̃T (t)Qx̃(t) + x̃T (t – d)(–Q + Q + Q)x̃(t – d)

– x̃T (t – d)Qx̃(t – d) – ( – μ)x̃T(
t – d(t)

)
Qx̃

(
t – d(t)

)
,

V̇ (x̃t) = ˙̃xT (t)ĒT(
d

 Z + d
Z

)
Ē ˙̃x(t) – d

∫ t

t–d

˙̃xT (s)ĒT ZĒ ˙̃x(s) ds

– d

∫ t–d

t–d

˙̃xT (s)ĒT ZĒ ˙̃x(s) ds,

V̇ (x̃t) = x̃T (t)
(
d

 Z + d
Z

)
x̃(t) – d

∫ t

t–d

x̃T (s)Zx̃(s) ds

– d

∫ t–d

t–d

x̃T (s)Zx̃(s) ds,
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V̇ (x̃t) = ˙̃xT (t)ĒT
(

d



Z + d

s Z

)
Ē ˙̃x(t) –

d




∫ 

–d

∫ t

t+θ

˙̃xT (s)ĒT RĒ ˙̃x(s) ds dθ

– ds

∫ –d

–d

∫ t

t+θ

˙̃xT (s)ĒT RĒ ˙̃x(s) ds dθ .

Taking into account the lemma (Jensen’s integral inequality), Lemma  and Lemma ,
we get

–d

∫ t

t–d

˙̃xT (s)ĒT ZĒ ˙̃x(s) ds

≤
[

x̃(t)
x̃(t – d)

]T [
–ĒT ZĒ ĒT ZĒ

∗ –ĒT ZĒ

][
x̃(t)

x̃(t – d)

]

,

–d

∫ t–d

t–d

˙̃xT (s)ĒT ZĒ ˙̃x(s) ds

≤
⎡

⎢
⎣

x̃(t – d)
x̃(t – d(t))
x̃(t – d)

⎤

⎥
⎦

T ⎡

⎢
⎣

–ĒT ZĒ ĒT ZĒ 
∗ –ĒT ZĒ ĒT ZĒ
∗ ∗ –ĒT ZĒ

⎤

⎥
⎦

⎡

⎢
⎣

x̃(t – d)
x̃(t – d(t))
x̃(t – d)

⎤

⎥
⎦ ,

–
d





∫ 

–d

∫ t

t+θ

˙̃xT (s)ĒT RĒ ˙̃x(s) ds dθ

≤
∫ 

–d

∫ t

t+θ

˙̃xT (s) ds dθ
(
–ĒT RĒ

)∫ 

–d

∫ t

t+θ

˙̃x(s) ds dθ

≤
[

x(t)
∫ t

t–d
x(s) ds

]T [
–d

ĒT RĒ dĒT RĒ
∗ –ĒT RĒ

][
x(t)

∫ t
t–d

x(s) ds

]

,

–ds

∫ –d

–d

∫ t

t+θ

˙̃xT (s)ĒT RĒ ˙̃x(s) ds dθ

≤
∫ –d

–d

∫ t

t+θ

˙̃xT (s) ds dθ
(
–ĒT RĒ

)∫ –d

–d

∫ t

t+θ

˙̃x(s) ds dθ

≤
[

x(t)
∫ t–d

t–d
x(s) ds

]T [
–d

ĒT RĒ dĒT RĒ
∗ –ĒT RĒ

][
x(t)

∫ t–d
t–d

x(s) ds

]

.

Then we have

V̇ (xt) + eT (t)e(t) – γ ωT (t)ω(t) ≤ ξT (t)
(
� + �T

 W� + �T
 �

)
ξ (t),

where

ξT (t) =
[

x(t)T x
(
t – d(t)

)T x(t – d)T x(t – d)T
∫ t

t–d

x(s)T ds

∫ t–d

t–d

x(s)T ds ωT (t)
]

,

� = [Ã Ãd     B̃], � = [L̃ L̃d     ],
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� =

⎡

⎢
⎢⎢⎢
⎢⎢
⎢⎢
⎢⎢
⎢
⎣

� � �  dĒT RĒ dĒT RĒ PT B̃
∗ � � �   
∗ ∗ �    
∗ ∗ ∗ �   
∗ ∗ ∗ ∗ �  
∗ ∗ ∗ ∗ ∗ � 
∗ ∗ ∗ ∗ ∗ ∗ –I

⎤

⎥
⎥⎥⎥
⎥⎥
⎥⎥
⎥⎥
⎥
⎦

.

Now, applying the Schur complements, when ω(t) = , it is easy to see from () that there
exists a scalar δ >  such that for any t ≥ d,

V̇ (x̃t) ≤ –δ
∥
∥x̃(t)

∥
∥. ()

Moreover, by the definition of V (x̃t), there exist positive scalars δ > , δ > , ε >  such
that

V (x̃t) ≤ εδ
∥∥x̃(t)

∥∥ + εδ

∫ t

t–d

∥∥x̃(s)
∥∥ ds.

Now, we have

d
dt

[
eεtV (x̃t)

]
= eεt[εV (x̃t) + V̇ (x̃t)

]

≤ eεt
[

(εδ – δ)
∥∥x̃(t)

∥∥ + εδ

∫ t

t–d

∥∥x̃(s)
∥∥ ds

]
.

Integrating both sides from  to T >  gives

eεT V (x̃T ) – V (x̃) = (εδ – δ)
∫ T


eεt∥∥x̃(t)

∥
∥ dt + εδ

∫ T


eεt dt

∫ t

t–d

∥
∥x̃(s)

∥
∥ ds.

By interchanging the integration sequence, we can get that

∫ T


eεt dt

∫ t

t–d

∥
∥x̃(s)

∥
∥ ds

=
∫ 

–d

∥∥x̃(s)
∥∥ ds

∫ s+d


eεt dt

+
∫ T–d



∥
∥x̃(s)

∥
∥ ds

∫ s+d

s
eεt dt +

∫ T

T–d

∥
∥x̃(s)

∥
∥ ds

∫ T

s
eεt dt

≤
∫ 

–d

deε(s+d)∥∥x̃(s)
∥∥ ds +

∫ T–d


det(s+d)∥∥x̃(s)

∥∥ ds +
∫ T

T–d

deε(s+d)∥∥x̃(s)
∥∥ ds

= deεd

∫ T

–d

eεs∥∥x̃(s)
∥∥ ds.

Let the scalar ε >  be small enough such that εδ – δ + dεδeεd < . Then we get that
there exists a scalar κ >  such that

eεT V (x̃T ) ≤ V (x̃) +
[
εδ – δ + dεδeεd

] ∫ T


eεt∥∥x̃(t)

∥
∥ dt ≤ κ

∥
∥φ(θ )

∥
∥

d
.
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It is not difficult to see that, for any T > ,

V (x̃T ) ≤ κe–εT∥
∥φ(θ )

∥
∥

d
. ()

Note that the regularity and the absence of impulses of the pair (E, Ã) imply that there
always exist two non-singular matrices M and N such that

MĒN =

[
Ir 
 

]

, MÃN =

[
A 
 In–r

]

, ()

MÃdN =

[
Ad Ad

Ad Ad

]

, M–T PN =

[
P P

P P

]

,

NT QN =

[
Q Q

QT
 Q

]

.

()

Substituting the partition into () yields that P > , P = .
Define

ε(t) =

[
ε(t)
ε(t)

]

= N–x̃(t). ()

Using the expressions in (), () and (), system () can be written as

ε̇(t) = Aε(t) + Adε
(
t – d(t)

)
+ Adε

(
t – d(t)

)
,

 = ε(t) + Adε
(
t – d(t)

)
+ Adε

(
t – d(t)

)
.

()

It is easy to show that

V (x̃t , t) ≥ x̃T (t)ĒT Px̃(t) = x̃T (t)N–T(
NT ĒT MT)(

M–T PN
)
N–x̃(t)

= εT (t)

[
Ir 
 

][
P P

P P

]

ε(t) = εT
 (t)Pε(t) ≥ 

‖P
–‖

∥
∥ε(t)

∥
∥.

Hence, for any t ≥ d,

∥∥ε(t)
∥∥ ≤ ∥∥P

–∥∥κe–εT∥∥φ(θ )
∥∥

d
. ()

Define ς (t) = Adε(t – d(t)), then from () a scalar m >  can be found such that for
any t > , ‖ς (t)‖ ≤ me–εt‖φ(θ )‖

d
.

To study the exponential stability of ε(t), we construct a function as

J(t) = εT
 (t)Qε(t) – εT


(
t – d(t)

)
Qε

(
t – d(t)

)
. ()

By pre-multiplying the second equation of () with εT
 (t)PT

 , we obtain that

 = εT
 (t)PT

 ε(t) + εT
 (t)PT

 Adε
(
t – d(t)

)
+ εT

 (t)PT
 ς (t). ()
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Adding () in () and using Lemma  yields that

J(t) = εT
 (t)

(
PT

 + P + Q
)
ε(t) + εT

 (t)PT
 Adε

(
t – d(t)

)

– εT

(
t – d(t)

)
Qε

(
t – d(t)

)
+ εT

 (t)PT
 ς (t)

≤
[

ε(t)
ε(t – d(t))

]T [
PT

 + P + Q PT
 Ad

∗ –Q

][
ε(t)

ε(t – d(t))

]

+ γε
T
 (t)ε(t) + γ –

 ςT (t)PT
 Pς (t), ()

where γ is any positive scalar.
Pre-multiplying and post-multiplying

[
� �

∗ �

]

< ,

by

[
N 
 N

]T

and

[
N 
 N

]

,

respectively, a scalar γ >  can be found such that

[
PT

 + P + Q PT
 Ad

∗ –Q

]

≤ –

[
γI 
 

]

.

Then

J(t) ≤ (γ – γ)εT
 (t)ε(t) + γ –

 ςT (t)PPT
 ς (t).

On the other hand, since γ can be chosen arbitrarily, γ can be chosen small enough
such that γ – γ > . Then a scalar γ >  can always be found such that

Q – (γ – γ)I ≥ γQ. ()

It follows from (), () and () that

εT
 (t)Qε(t) ≤ γ –

 εT

(
t – d(t)

)
Qε

(
t – d(t)

)
+ (γγ)–ςT (t)PPT

 ς (t),

which infers f (t) ≤ γ –
 supt–d≤s≤t f (s) + τe–σ t , where  < σ < min{ε, d– lnγ}, f (t) =

εT
 (t)Qε(t) and τ = (γγ)–m‖P‖‖φ(t)‖

d
.

Therefore, applying Lemma , we can obtain that

∥
∥ε(t)

∥
∥ ≤ λ–

min(Q)λmax(Q)e–σ t∥∥ε(t)
∥
∥ +

λ–
min(Q)τe–σ t

 – γ –
 eσd

,

which means, combining (), that system () is exponentially stable, that is, system ()
is exponentially stable.
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Finally, we show that for any nonzero ω(t) ∈ L[,∞), system () satisfies ‖e(t)‖ <
γ ‖ω(t)‖ under the zero initial condition.

Observing (), we have

V̇ (x̃t) + eT (t)e(t) – γ ωT (t)ω(t) < .

Integrating both sides from  to T >  gives

V (T) – V () +
∫ T



∥∥e(t)
∥∥ dt –

∫ T


γ ∥∥ω(t)

∥∥ dt < .

Since V () = , when T → ∞, we have
∫ ∞



∥∥e(t)
∥∥ dt <

∫ ∞


γ ∥∥ω(t)

∥∥ dt,

which implies ‖e(t)‖ < γ ‖ω(t)‖ for any nonzero ω(t) ∈ L[,∞). This completes the
proof. �

Remark  It should be pointed out that LKF () is chosen here based on triple integral
and both left and right endpoints of the time-varying delay interval, which will decrease
the conservatism.

Remark  In [],
∫ 

–h
∫ t

t+θ
ξ̇

T (s)Zξ̇ (s) ds dθ was estimated as

hξ̇T (t)Zξ̇ (t) –
∫ t

t–d(t)
ξ̇

T (s)Zξ̇ (s) ds,

and the term –
∫ t–d(t)

t–h ξ̇
T (s)Zξ̇ (s) ds was ignored, which may lead to considerable conser-

vativeness. In this paper, by using Lemma , the shortcoming can be avoided and a less
conservative result can be obtained.

3.2 Delay-dependent filter design
Based on the sufficient conditions above, the design problem of robust H∞ filter can be
transformed into a problem of LMIs.

Theorem  Given a finite scalar γ > , the exponential H∞ filter problem is solved for
system () if there exist constant scalars εij > , symmetric matrix

�

Q,
�

Q,
�

Q,
�

R,
�

R,
�

Z,
�

Z, and matrix P = diag(P, P), P > , such that

ET P = PT
 E ≥ , ET P = PT

 E ≥ , ()

�ii < , i = , , . . . , r,

�ij + �ji < , i < j, i, j = , , . . . , r,
()

where

�ij =

⎡

⎢
⎣

�ij � εij�
T


∗ –εijI 
∗ ∗ –εijI

⎤

⎥
⎦ , �ij =

⎡

⎢
⎣

�ij �ij �ij

∗ �ij 
∗ ∗ �ij

⎤

⎥
⎦ ,
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�ij =

⎡

⎢⎢
⎢⎢
⎢⎢
⎢⎢
⎣

ω ω ω  ω ω

∗ ω ω ω ω ω

∗ ∗ ω ω ω ω

∗ ∗ ∗ ω ω ω

∗ ∗ ∗ ∗ ω ω

∗ ∗ ∗ ∗ ∗ ω

⎤

⎥⎥
⎥⎥
⎥⎥
⎥⎥
⎦

, �ij =

⎡

⎢⎢
⎢⎢
⎢⎢
⎢⎢
⎣

ω ω LT
i

ω ω –LT
fj

 ω LT
i

 CT
fj 

  
  

⎤

⎥⎥
⎥⎥
⎥⎥
⎥⎥
⎦

,

�ij =

⎡

⎢
⎢⎢
⎢⎢⎢
⎢⎢
⎣

  ω ω ω ω

  ω ω ω ω

ω ω    
ω ω    
     
     

⎤

⎥
⎥⎥
⎥⎥⎥
⎥⎥
⎦

,

�ij =

⎡

⎢
⎢⎢
⎢⎢
⎢⎢⎢
⎣

ω ω    
∗ ω    
∗ ∗ ω ω  
∗ ∗ ∗ ω,  
∗ ∗ ∗ ∗ ω, ω,

∗ ∗ ∗ ∗ ∗ ω,

⎤

⎥
⎥⎥
⎥⎥
⎥⎥⎥
⎦

, �ij =

⎡

⎢
⎣

–γ I ω, 
∗ –Q 
∗ ∗ –I

⎤

⎥
⎦ ,

� =

⎡

⎢⎢
⎢⎢
⎢⎢
⎣

PT
 Hi  

MjHi  
× × ×

Hi + BfjHi  
 Hi Hi

⎤

⎥⎥
⎥⎥
⎥⎥
⎦

, � =

⎡

⎢
⎣

Ei  Ei × Ei  
Ei   ×   
  Ei ×   

⎤

⎥
⎦ ,

ω = PT
 Ai + AT

iP – ET �

ZE +
�

Q – E
�

YE +
�

Z,

ω = CT
i M

T
j – ET �

ZE +
�

Q – ET �

YE +
�

Z, ω = PT
 Ai,

ω = ω = ω = ω = ET �

ZE, ω = ω = ω = ω = dET �

RE,

ω = PT
 Bi, ω = AT

i + CT
i B

T
fj , ω = ω = ω = ω = dET �

RE,

ω = MT
j + Mj – ET �

ZE +
�

Q – ET YE +
�

Z, ω = MjCi, ω = Mj,

ω = MjDi, ω = AT
fj , ω = ω = ω = –( – μ)

�

Q – ET �

ZE,

ω = ω = ω = ω = ET �

ZE, ω = ω = ω = –
�

Q – ET �

ZE,

ω = ω = ω = ω = ET �

ZE, ω = AT
i + CT

iB
T
fj ,

ω = ω = ω = –
�

Q +
�

Q +
�

Q – ET �

ZE – ET �

ZE,

ω = ω = ω, = –ET �

RE –
�

Z, ω, = ω, = ω, = –ET �

RE –
�

Z,

ω, = BT
i + DT

i BT
fj , Q = Ŵ

–
,

�

Y = d


�

R + d


�

R,
�

Z = d


�

Z + d


�

Z.

Proof From () we have (). From Theorem , let H = [I I], Qi = HT �

QiH (i = , , ), Zi =

HT �

ZiH (i = , , , ), Ri = HT �

RiH (i = , ).
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Then we have

r∑

i=

r∑

j=

hi
(
ε(t)

)
hj

(
ε(t)

)
(�ij + ��ij) < ,

where

�ij =

⎡

⎢
⎣

ϕij �ij ϕij

∗ �ij 
∗ ∗ ϕij

⎤

⎥
⎦ , ϕij =

⎡

⎢⎢
⎢⎢⎢
⎢⎢
⎢
⎣

ω ϕ ω  ω ω

∗ ϕ ϕ ϕ ω ω

∗ ∗ ω ω ω ω

∗ ∗ ∗ ω ω ω

∗ ∗ ∗ ∗ ω ω

∗ ∗ ∗ ∗ ∗ ω

⎤

⎥⎥
⎥⎥⎥
⎥⎥
⎥
⎦

,

ϕij =

⎡

⎢⎢
⎢⎢
⎢⎢
⎢⎢
⎣

ω ω LT
i

ϕ ω –LT
fj

 ω LT
i

 CT
fj 

  
  

⎤

⎥⎥
⎥⎥
⎥⎥
⎥⎥
⎦

, ϕij =

⎡

⎢
⎣

–γ I ω, 
∗ –Ŵ

–


∗ ∗ –I

⎤

⎥
⎦ ,

ϕ = CT
i B

T
fj P – ET �

ZE +
�

Q – E
�

YE +
�

Z, ϕ = PT
 BfjDi, ϕ = PT

 BfjCi,

ϕ = PT
 Afj + AT

fj P – ET �

ZE +
�

Q – E
�

YE +
�

Z, ϕ = PT
 Cfj,

and other items are defined in Theorem .
Based on () and from Lemma , we obtain that

��ij = ηFiη + ηT
 FT

i ηT
 ≤ ε–

ij ηη
T
 + εijη

T
 η,

where

η =

⎡

⎢⎢
⎢⎢
⎢⎢
⎣

PT
 Hi  

PT
 BfjHi  
× × ×

Hi + BfjHi  
 Hi Hi

⎤

⎥⎥
⎥⎥
⎥⎥
⎦

, η =

⎡

⎢
⎣

Ei  Ei × Ei  
Ei   ×   
  Ei ×   

⎤

⎥
⎦ .

Via the Schur complement, we obtain that

r∑

i=

r∑

j=

hi
(
ε(t)

)
hj

(
ε(t)

)
�ij < , ()

where

�ij =

⎡

⎢
⎣

�ij η εijη
T


∗ –εijI 
∗ ∗ –εijI

⎤

⎥
⎦ .
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It can be easily shown that inequality () equals the following condition:

r∑

i=

h
i
(
ε(t)

)
�ii +

r∑

i<j

hi
(
ε(t)

)
hj

(
ε(t)

)
(�ji + �ij) < .

Let Q = Ŵ –, Mi = PT
 Afi, Mi = PT

 Bfi, Mi = PT
 Cfi, and then it leads to LMIs (). This

completes the proof. �

The parameters of the H∞ filter are given by

Afi =
(
P–


)T Mi, Bfi =

(
P–


)T Mi, Cfi =

(
P–


)T Mi, Lfi.

4 Numerical value examples
Example  In order to show the advantage of the proposed method in this paper, we
consider the time-delay T-S fuzzy systems as the system shown in Example  in [] with
two rules:

IF x is W i (i = , ), THEN

Eẋ(t) = (Ai + �Ai)x(t) + (Adi + �Adi)x
(
t – d(t)

)
+ (Bi + �Bi)ω(t),

y(t) = (Ci + �Ci)x(t) + (Cdi + �Cdi)x
(
t – d(t)

)
+ (Di + �Di)ω(t),

z(t) = (Li + �Li)x(t) + (Ldi + �Ldi)x
(
t – d(t)

)
,

where

A =

[
 .

–. 

]

, A =

[
 .

–. 

]

, Ad =

[
 .

–. .

]

,

Ad =

[
 .
 .

]

, B =

[



]

, B =

[



]

, C = [ ],

Cd = [–. .], C = [. –.], Cd = [–. .],

L = D = [–. .], L = D = [–. ],

H =

[
.

–.

]

, H = H =

[
.

–.

]

, H =

[
–.
.

]

,

H = H =

[
–.
.

]

, H = H =

[
–.
.

]

,

E = E = E = [–. .], E = [–. .],

E = E = [. –.], E = [–. –.],

E = [–. .], E = [–. .], E = [. –.].

Firstly, consider that E is nonsingular, let E = I , using Theorem  of this paper, the min-
imum γ = ., it is less than the minimal level . in [].
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Then consider that E is singular, suppose

E =

[
 .

. .

]

,

and let μ = , d = , d = , γ = . The filter parameters can be obtained as follows:

Af  =

[
–. .
–. –.

]

, Af  =

[
–. .
–. –.

]

,

Bf  =

[
.
.

]

, Bf  =

[
–.
.

]

,

Cf  =

[
–. –.
–. –.

]

, Cf  =

[
. .

–. –.

]

,

Lf  = [. .], Lf  = [–. –.].

However, it cannot be solved by criterion in [] because of the emergence of the impulse
phenomenon. Based on the discussion above, the results obtained in this paper are more
widely applicable and less conservative.

Example  Consider the example in [] with two fuzzy rules and without uncertainties:
IF x is W i (i = , ), THEN

ẋ(t) = Aix(t) + Adix
(
t – d(t)

)
+ Biω(t),

y(t) = Cix(t) + Cdix
(
t – d(t)

)
+ Diω(t),

z(t) = Eix(t) + Edix
(
t – d(t)

)
,

where

A =

[
–. .

 –

]

, A =

[
–. 
–. –.

]

, Ad =

[
–. .
–. –.

]

,

Ad =

[
–. 
–. –.

]

, B =

[


–.

]

, B =

[
.
.

]

, C = [ ],

C = [. –.], Cd = [–. .], Cd = [–. ],

D = ., D = –., E = [ –.], E = [–. .],

Ed = [. ], Ed = [ .].

Let the fuzzy weighting functions be h(θ (t)) = sin(t) and h(θ (t)) = cos(t). For σ =  in
[], Table  gives different values of d and yields minimum γ for d = , μ = .. From
the table, it is clear that the results in this paper are much less conservative than the ones
obtained in [] and [].
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Table 1 The minimum γ with different d2 (Example 2)

d2 0.5 0.6 0.8 1

[17] 0.38 0.43 0.83 2.22
[19] 0.27 0.31 0.58 1.57
Theorem 2 0.14 0.27 0.42 1.44

Table 2 Comparison of minimum γ (Example 3)

Method [21] [19] [20] This paper

γ 0.7 0.4338 0.3449 0.2748

Figure 1 Tunnel diode circuit (Example 4).

Example  Consider TS fuzzy system () without uncertainties and the fuzzy rule r = 
in [], the parameters are as follows:

A =

[
–. .

 –

]

, A =

[
–. .
–. –.

]

, A =

[
–. 
–. –.

]

,

A =

[
–. 
–. –.

]

, B =

[


–.

]

, B =

[
.
.

]

, C = [ ],

C = [–. .], C = [. –.], C = [–. ],

D = ., D = –., L = [ –.], L = [–. .],

L = [. ], L = [ .].

Set d = , d = ., μ = .. Table  lists the comparison results of the minimum of γ

with [–] (δ = ).
From the comparison, it is clear that the minimum γ obtained in this paper is smaller. It

has to be mentioned that the value of γ depends on the parameter δ in [–]; however,
δ is not easy to determine. In this paper, this drawback can be avoided.

To sum up, the method in this paper is less conservative and easily computed.

Example  Consider a tunnel diode circuit shown in Figure , whose fuzzy model was
done in []. x(t) = vc(t), x(t) = iL(t), ω(t) is the disturbance noise input, y(t) is the mea-
surement output, and z(t) is the controlled output. Based on the discussion of [], the
nonlinear network can be approximated by the following two fuzzy rules.
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Figure 2 Error response of e(t) (Example 4).

Plant rule i (i = , ): IF x(t) is Mi(x(t)), THEN

ẋ(t) = Aix(t) + Biω(t),

y(t) = Cix(t) + Diω(t),

z(t) = Lix(t),

where

A =

[
–. 
– –

]

, A =

[
–. 
– –

]

, B = B =

[



]

,

C = C = [ ], D = D = , L = L = [ ].

The fuzzy membership function is assumed as follows:

h(t) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

x(t)+
 , – ≤ x(t) ≤ ,

, x(t) < –,
–x(t)

 ,  ≤ x(t) ≤ ,
, x(t) > ,

h(t) =  – h(t).

Give the H∞ performance γ = , the following filter parameter matrices could be ob-
tained:

Af  =

[
–. –.
–. –.

]

, Bf  =

[
–.
–.

]

, Lf  = [. .],

Af  =

[
–. –.
–. –.

]

, Bf  =

[
.
.

]

, Lf  = [. .].

We assume the disturbance ω(t) = .e.t , using this filter, Figure  plots the response
of the filter error of e(t). It is clear that the proposed method is feasible to deal with the
problem of tunnel diode circuit.
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5 Conclusion
In this paper, based on the T-S fuzzy model, we have treated the delay-dependent exponen-
tial H∞ filter for a class of nonlinear singular systems with interval time-varying delay. In
order to obtain a less conservative result, a new filter and new LKF has been constructed.
The new H∞ filter guarantees the error system to be regular, impulse-free, exponentially
stable and satisfies a prescribed H∞ performance. Three numerical examples have demon-
strated the effectiveness and superiority of the proposed approach.
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