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Abstract
A ratio-dependent predator-prey system with time delay due to the gestation of the
predator and stage structure for both the predator and the prey is investigated. By
analyzing the corresponding characteristic equations, the local stability of the
predator-extinction equilibrium and the coexistence equilibrium of the system are
discussed, respectively. Further, the existence of Hopf bifurcation at the coexistence
equilibrium is also studied. By comparison arguments, sufficient conditions are
obtained for the global stability of the predator-extinction equilibrium. By using an
iteration technique, sufficient conditions are derived for the global stability of the
coexistence equilibrium. Numerical simulations are carried out to illustrate the
analytical results.
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1 Introduction
Since the pioneering works of Arditi et al. [, ], ratio-dependent predator-prey models
have received much attention from scientists (see, for example, [–]). In [], Kuang and
Beretta studied the following ratio-dependent predator-prey model with the Michaelis-
Menten type functional response

{
ẋ(t) = rx(t)( – x(t)

K ) – ax(t)y(t)
x(t)+my(t) ,

ẏ(t) = ax(t)y(t)
x(t)+my(t) – dy(t),

(.)

where x(t) and y(t) are the densities of the prey and the predator population at time t,
respectively. The parameters r, K , a, a, d and m are positive constants representing the
prey intrinsic growth rate, carrying capacity, capturing rate, conversion rate, the predator
death rate and half capturing saturation constant, respectively. System (.) was system-
atically studied by Kuang and Beretta [], and the global stability of boundary equilibria,
the positive equilibrium, and permanence of the system were discussed. In [], Beretta and
Kuang incorporated a time delay due to the gestation of the predator into system (.). Suf-
ficient conditions were derived for the global stability of positive equilibrium of the delayed
system. In [], Xu and Ma incorporated stage structure for predator and time delay due
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to the gestation of the predator into system (.). Sufficient conditions were obtained for
the global stability of the boundary equilibrium and the global attractivity of the positive
equilibrium of the stage-structured system. Stage-structured models have received great
attention in recent years (for example, [–]). Most of the researchers consider models
with stage structure only for one species. However, it is of importance to discuss the effects
of stage structure for both the predator and the prey species.

Based on the above discussions, in this paper, we incorporate stage structure for both
the predator and the prey into system (.) and discuss the effects of time delay due to the
gestation of the predator on the global dynamics of the model. To this end, we study the
following delay differential system:

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

ẋ(t) = rx(t) – (r + d)x(t) – ax
 (t) – ax(t)y(t)

x(t)+my(t) ,
ẋ(t) = rx(t) – dx(t),
ẏ(t) = ax(t–τ )y(t–τ )

x(t–τ )+my(t–τ ) – (r + d)y(t),
ẏ(t) = ry(t) – dy(t),

(.)

where x(t), x(t), y(t) and y(t) represent the densities of the immature and the mature
prey, the immature and the mature predator at time t, respectively. The parameters a, a,
a, d, d, d, d, r, r, r and m are positive constants, in which r is the birth rate of the
prey; a is the intra-specific competition rate of the immature prey; d and d are the death
rates of the immature prey and the mature prey, respectively; r and r are the transfor-
mation rates from the immature individuals to mature individuals for the prey and the
predator, respectively; a is the capturing rate of the predator, a/a is the conversion rate
of nutrients into the reproduction of the predator; d and d are the death rates of the im-
mature predator and the mature predator, respectively; m is the half capturing saturation
constant. τ ≥  is a constant delay due to the gestation of the predator. We note that it is
assumed in (.) that only mature predators capture immature prey and have the ability to
reproduce.

The initial conditions for system (.) take the form

x(θ ) = φ(θ ) ≥ , x(θ ) = φ(θ ) ≥ ,

y(θ ) = ϕ(θ ) ≥ , y(θ ) = ϕ(θ ) ≥ , θ ∈ [–τ , ),

φ() > , φ() > , ϕ() > ,

ϕ() > ,
(
φ(θ ),φ(θ ),ϕ(θ ),ϕ(θ )

) ∈ C
(
[–τ , ], R

+
)
,

(.)

where R
+ = {(x, x, x, x) : xi ≥ , i = , , , }.

It is well known by the fundamental theory of functional differential equations [] that
system (.) has a unique solution (x(t), x(t), y(t), y(t)) satisfying initial conditions (.).

The organization of this paper is as follows. In the next section, we investigate the local
stability of the predator-extinction equilibrium and the coexistence equilibrium of system
(.). Further, we study the existence of a Hopf bifurcation for system (.) at the coexis-
tence equilibrium. In Section , by means of an iterative technique, sufficient conditions
are derived for the global stability of the coexistence equilibrium of system (.). By com-
parison arguments, we discuss the global stability of the predator-extinction of system
(.). Numerical simulations are carried out to illustrate the main results. A brief discus-
sion is given in Section  to conclude this work.
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2 Local stability and Hopf bifurcation
In this section, we discuss the local stability of equilibria and the existence of a Hopf bi-
furcation at the coexistence equilibrium of system (.).

It is easy to show that if rr > d(r + d), system (.) admits a predator-extinction equi-
librium E(x+

 , x+
 , , ), where

x+
 =

rr – d(r + d)
ad

, x+
 =

r[rr – d(r + d)]
ad


.

Further, if the following condition holds
(H) rr–d(r+d)

ad
> ar–d(r+d)

arm > ,
then system (.) has a unique coexistence equilibrium E∗(x∗

 , x∗
, y∗

 , y∗
), where

x∗
 =

a

a

[
rr – d(r + d)

ad
–

ar – d(r + d)
arm

]
, x∗

 =
r

d
x∗

 ,

y∗
 =

ar – d(r + d)
mr(r + d)

x∗
 , y∗

 =
ar – d(r + d)

md(r + d)
x∗

 .

The characteristic equation of (.) at the equilibrium E(x+
 , x+

 , , ) is of the form

[
λ + (r + d + d)λ + d(r + d) – are–λτ

]
× [

λ +
(
r + d + ax+

 + d
)
λ + rr – d(r + d)

]
= . (.)

Note that rr > d(r + d), it is easy to show that the equation

λ +
(
r + d + ax+

 + d
)
λ + rr – d(r + d) = 

always has two negative real roots. All other roots are given by the roots of equation

λ + (r + d + d)λ + d(r + d) – are–λτ = .

Let f (λ) = λ + (r + d + d)λ+ d(r + d) – are–λτ . If (H) holds and λ is a real number,
then we have

f () = d(r + d) – ar < ,

lim
x→+∞ f (x) = +∞.

Hence, f (λ) =  has at least one positive real root. Therefore, the equilibrium E is unstable.
If ar < d(r + d), we have f () >  and f ′(λ) = λ + r + d + d + arτe–λτ , then it is
easily seen that all roots of f (λ) =  have only negative real parts, that is, the equilibrium
E is stable. Therefore, if ar < d(r + d), by Kuang and So ([], Lemma B), we see that
the equilibrium E is locally stable for all τ > .

The characteristic equation of system (.) at the equilibrium E∗ takes the form

λ + pλ
 + pλ

 + pλ + p +
(
qλ

 + qλ + q
)
e–λτ = , (.)
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where

p = γ + d + r + d + d,

p = d(γ + d + r + d) + (γ + d)(r + d) + γ d – rr,

p = d(γ + d)(r + d) + (r + d + d)(γ d – rr),

p = d(r + d)(γ d – rr),

q = –arβ
, q = –arβ

(ax∗
 + r + d + d

)
,

q = arβ
(rr + damα – γ d

)
,

α =
ar – d(r + d)

arm
, β =

d(r + d)
ar

, γ = r + d + ax∗
 + amα.

When τ = , equation (.) becomes

λ + pλ
 + (p + q)λ + p + q = . (.)

Clearly p > . If the following condition holds
(H) rr–d(r+d)

ad
> ar–d(r+d)

arm ( + d(r+d)
ar

) > ,
then we have

p(p + q) – (p + q) > ,

(p + q)
[
p(p + q) – (p + q)

]
> p

(p + q).

Hence, the coexistence equilibrium E∗ of system (.) is locally asymptotically stable.
If iω (ω > ) is a solution of (.), separating real and imaginary parts, we have the fol-

lowing:

(
qω

 – q
)

sinωτ + qω cosωτ = pω
 – pω,(

qω
 – q

)
cosωτ – qω sinωτ = ω – pω

 + p.
(.)

Squaring and adding the two equations of (.), it follows that

ω + hω
 + hω

 + hω
 + h = , (.)

where

h = p
 – q

, h = p
 – pp + qq – q

 ,

h = p
 + p – pp – q

, h = p
 – p.

Let (H) hold, it is easy to show that

h = γ  + d
 + (r + d) + d

 + rr > ,

h =
(
d

 + γ  + rr
)[

(r + d) + d

]

+ (γ d – rr) + d
(r + d) –

(
arβ

) > ,
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h = (γ d – rr)[d
 + (r + d)]

+
[
d

(r + d) –
(
arβ

)](d
 + γ  + rr

)
+ 

(
arβ

)amα(r + d + ax∗

)

> .

If the following condition holds
(H) rr–d(r+d)

ad
> ar–d(r+d)

arm ( +  d(r+d)
ar+d(r+d) ) > ,

then h > . Hence, the coexistence equilibrium E∗ of system (.) is locally asymptotically
stable for all τ > . If the following condition holds

(H) rr–d(r+d)
ad

< ar–d(r+d)
arm ( +  d(r+d)

ar+d(r+d) ),
then h < . Hence, equation (.) has a unique positive root ω, that is, the characteristic
equation (.) admits a pair of purely imaginary roots of the form ±iω. From (.), we
see that τk corresponding to ω is

τk =


ω
arccos

qω

(pω


 – p) + (qω


 – q)(ω

 – pω

 + p)

(qω) + (qω

 – q)

+
kπ

ω
, k = , , , . . . . (.)

Hence, by the general theory on characteristic equation of delay differential equation from
[], if (H) and (H) hold, E∗ remains stable for τ < τ.

We now claim that

d(Re(λ))
dτ

∣∣∣∣
τ=τ

> .

This will signify that there exists at least one eigenvalue with positive real part for τ > τ.
Moreover, the conditions for the existence of a Hopf bifurcation [] are then satisfied. To
this end, differentiating equation (.) with respect to τ , it follows that

[(
λ + pλ

 + pλ + p
)

+ (qλ + q)e–λτ – τ
(
qλ

 + qλ + q
)
e–λτ

]dλ

dτ

= λ
(
qλ

 + qλ + q
)
e–λτ .

From this equation, we can obtain

(
dλ

dτ

)–

=
λ + pλ

 + pλ + p

–λ(λ + pλ + pλ + pλ + p)
+

qλ + q

λ(qλ + qλ + q)
–

τ

λ
.

Hence, we derive that

sign

{
d(Reλ)

dτ

}
λ=iω

= sign

{
Re

(
dλ

dτ

)–}
λ=iω

= sign

{
Re

[
λ + pλ

 + pλ + p

–λ(λ + pλ + pλ + pλ + p)
+

qλ + q

λ(qλ + qλ + q)

]
λ=iω

}
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= sign

{
(ω

 – p)(ω
 – pω


 + p) + (pω


 – p)(pω


 – p)

(ω
 – pω


 + p) + ω

(pω

 – p)

+
–q

 – q(qω

 – q)

(qω

 – q) + (qω)

}
.

Note that (ω
 – pω


 + p) + ω

(pω

 – p) = (qω


 – q) + (qω), then

sign

{
d(Reλ)

dτ

}
λ=iω

= sign

{
ω

 + hω

 + hω


 + h

(qω

 – q) + (qω)

}
.

Accordingly, if (H) holds, then we have that

sign

{
d(Reλ)

dτ

}
λ=iω

> .

Therefore, the transversal condition holds and a Hopf bifurcation occurs at τ = τ, ω = ω.
We therefore obtain the following results.

Theorem . For system (.), we have the following:
(i) Let rr > d(r + d), if ar < d(r + d), then the predator-extinction equilibrium

E(x+
 , x+

 , , ) is locally asymptotically stable; if ar > d(r + d), then the
equilibrium E is unstable.

(ii) If (H) holds, then the positive equilibrium E∗ is locally asymptotically stable for all
τ ≥ .

(iii) If (H) and (H) hold, then there exists a positive number τ such that the
coexistence equilibrium E∗ is locally asymptotically stable if  < τ < τ and unstable
if τ > τ. Further, system (.) undergoes a Hopf bifurcation at E∗ when τ = τ.

3 Global stability
In this section, we are concerned with the global stability of the coexistence equilibrium
E∗ and the predator-extinction equilibrium E of system (.), respectively.

Theorem . Let (H) hold, then the coexistence equilibrium E∗(x∗
 , x∗

, y∗
 , y∗

) of system
(.) is globally stable provided that

(H) ar < d(r + d), rr–d(r+d)
ad

> 
m .

Proof Let (x(t), x(t), y(t), y(t)) be any positive solution of system (.) with initial con-
ditions (.). Let

Uxi = lim sup
t→+∞

xi(t), Lxi = lim inf
t→+∞ xi(t),

Uyi = lim sup
t→+∞

yi(t), Lyi = lim inf
t→+∞ yi(t) (i = , ).

We now claim that Uxi = Lxi = x∗
i , Uyi = Lyi = y∗

i . The strategy of the proof is to use an
iteration technique.

We derive from the first and the second equations of system (.) that

ẋ(t) ≤ rx(t) – (r + d)x(t) – ax
 (t),

ẋ(t) = rx(t) – dx(t).
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Consider the following auxiliary equations:

ż(t) = rz(t) – (r + d)z(t) – az
 (t),

ż(t) = rz(t) – dz(t).
(.)

Since rr > d(r + d) holds, by Lemma . of [], it follows from (.) that

lim
t→+∞ z(t) =

rr – d(r + d)
ad

, lim
t→+∞ z(t) =

r[rr – d(r + d)]
ad


.

A comparison argument shows that

Ux = lim sup
t→+∞

x(t) ≤ rr – d(r + d)
ad

:= Mx
 ,

Ux = lim sup
t→+∞

x(t) ≤ r[rr – d(r + d)]
ad


:= Mx

 .
(.)

Hence, for ε >  sufficiently small, there exists T >  such that if t > T, x(t) ≤ Mx
 + ε.

For ε >  sufficiently small, we derive from the third and the fourth equations of system
(.) that for t > T + τ ,

ẏ(t)≤ a(Mx
 + ε)y(t – τ )

Mx
 + ε + my(t – τ )

– (d + r)y(t),

ẏ(t) = ry(t) – dy(t).

Consider the following auxiliary equations:

u̇(t)=
a(Mx

 + ε)u(t – τ )
Mx

 + ε + mu(t – τ )
– (d + r)u(t),

u̇(t) = ru(t) – du(t).
(.)

Since (H) holds, by Lemma . of [], it follows from (.) that

lim
t→+∞ u(t) =

(Mx
 + ε)[ar – d(r + d)]

mr(r + d)
,

lim
t→+∞ u(t) =

(Mx
 + ε)[ar – d(r + d)]

md(r + d)
.

By comparison, we derive that

Uy = lim sup
t→+∞

y(t) ≤ (Mx
 + ε)[ar – d(r + d)]

mr(r + d)
,

Uy = lim sup
t→+∞

y(t) ≤ (Mx
 + ε)[ar – d(r + d)]

md(r + d)
.

Since these inequalities are true for arbitrary ε > , it follows that Uy ≤ My
 , Uy ≤ My

 ,
where

My
 =

ar – d(r + d)
mr(r + d)

Mx
 , My

 =
ar – d(r + d)

md(r + d)
Mx

 . (.)
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Therefore, for ε >  sufficiently small, there is T ≥ T + τ such that if t > T, y(t) ≤
My

 + ε.
For ε >  sufficiently small, it follows from the first and the second equations of system

(.) that for t > T,

ẋ(t) ≥ rx(t) – (r + d)x(t) – ax
 (t) –

a

m
x(t),

ẋ(t) = rx(t) – dx(t).
(.)

Since (H) holds, by Lemma . of [] and a comparison argument, it follows from (.)
that

Vx = lim inf
t→+∞ x(t) ≥ m[rr – d(d + r)] – ad

amd
:= Nx

 ,

Vx = lim inf
t→+∞ x(t) ≥ mr[rr – d(d + r)] – ard

amd


:= Nx
 .

Therefore, for ε >  sufficiently small, there is T ≥ T such that if t > T, x(t) ≥ Nx
 – ε.

For ε >  sufficiently small, it follows from the third and the fourth equations of system
(.) that for t > T + τ ,

ẏ(t) ≥ a(Nx
 – ε)y(t – τ )

Nx
 – ε + my(t – τ )

– (r + d)y(t),

ẏ(t) = ry(t) – dy(t).
(.)

Since ar > d(r + d) holds, by Lemma . of [] and a comparison argument, it follows
from (.) that

Vy = lim inf
t→+∞ y(t) ≥ [ar – d(d + r)](Nx

 – ε)
mr(d + r)

,

Vy = lim inf
t→+∞ y(t) ≥ [ar – d(d + r)](Nx

 – ε)
md(d + r)

.

Since these two inequalities hold for arbitrary ε >  sufficiently small, we conclude that
Vy ≥ Ny

 , Vy ≥ Ny
 , where

Ny
 =

ar – d(d + r)
mr(d + r)

Nx
 , Ny

 =
ar – d(d + r)

md(d + r)
Nx

 .

Therefore, for ε >  sufficiently small, there is T ≥ T +τ such that if t > T, y(t) ≥ Ny
 –ε.

For ε >  sufficiently small, it follows from the first and the second equations of system
(.) that for t > T,

ẋ(t) ≤ rx(t) – (r + d)x(t) – ax
 (t) –

a(Ny
 – ε)

Mx
 + ε + m(Ny

 – ε)
x(t),

ẋ(t) = rx(t) – dx(t).

(.)
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Since (H) holds, by Lemma . of [] and a comparison argument, for arbitrary ε > 
sufficiently small, it follows from (.) that

Ux = lim sup
t→+∞

x(t) ≤ rr – d(r + d)
ad

–
aNy



a(Mx
 + mNy

 )
:= Mx

 ,

Ux = lim sup
t→+∞

x(t) ≤ r

d
Mx

 := Mx
 .

Hence, for ε >  sufficiently small, there is T ≥ T such that if t > T, x(t) ≤ Mx
 + ε. We

therefore obtain from the third and the fourth equations of system (.) that for t > T + τ ,

ẏ(t)≤ a(Mx
 + ε)y(t – τ )

Mx
 + ε + my(t – τ )

– (r + d)y(t),

ẏ(t) = ry(t) – dy(t).
(.)

Since ar > d(r + d) holds, by Lemma . of [] and a comparison argument, for arbi-
trary ε >  sufficiently small, it follows from (.) that

Uy = lim sup
t→+∞

y(t) ≤ ar – d(r + d)
mr(r + d)

Mx
 := My

 ,

Uy = lim sup
t→+∞

y(t) ≤ ar – d(r + d)
md(r + d)

Mx
 := My

 .

Hence, for ε >  sufficiently small, there is T ≥ T + τ such that if t > T, y(t) ≤ My
 + ε.

Again, for ε >  sufficiently small, it follows from the first and the second equations of
system (.) that for t > T,

ẋ(t) ≥ rx(t) – (r + d)x(t) – ax
 (t) –

a(My
 + ε)

Nx
 – ε + m(My

 + ε)
x(t),

ẋ(t) = rx(t) – dx(t).

(.)

Since (H) holds, by Lemma . of [] and a comparison argument, for arbitrary ε > 
sufficiently small, it follows from (.) that

Vx = lim inf
t→+∞ x(t) ≥ rr – d(r + d)

ad
–

aMy


a(Nx
 + mMy

 )
:= Nx

 ,

Vx = lim inf
t→+∞ x(t) ≥ r

d
Nx

 := Nx
 .

Therefore, for ε >  sufficiently small, there is T ≥ T such that if t > T, x(t) ≥ Nx
 – ε.

For ε >  sufficiently small, we derive from the third and the fourth equations of system
(.) that for t > T + τ ,

ẏ(t) ≥ a(Nx
 – ε)y(t – τ )

Nx
 – ε + my(t – τ )

– (d + r)y(t),

ẏ(t) = ry(t) – dy(t).
(.)
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Since ar > d(d + r) holds, by Lemma . of [] and a comparison argument, for arbi-
trary ε >  sufficiently small, it follows from (.) that

Vy = lim inf
t→+∞ y(t) ≥ ar – d(d + r)

mr(d + r)
Nx

 := Ny
 ,

Vy = lim inf
t→+∞ y(t) ≥ ar – d(d + r)

md(d + r)
Nx

 := Ny
 .

Continuing this process, we derive eight sequences Mx
k , Mx

k , My
k , My

k , Nx
k , Nx

k , Ny
k ,

Ny
k (k = , , . . .) such that for k ≥ ,

Mx
k =

rr – d(r + d)
ad

–
aNy

k–

a(Mx
k– + mNy

k–)
, Mx

k =
r

d
Mx

k ,

My
k =

ar – d(r + d)
mr(r + d)

Mx
k , My

k =
ar – d(r + d)

md(r + d)
Mx

k ,

Nx
k =

rr – d(r + d)
ad

–
aMy

k

a(Nx
k– + mMy

k )
, Nx

k =
r

d
Nx

k ,

Ny
k =

ar – d(r + d)
mr(r + d)

Nx
k , Ny

k =
ar – d(d + r)

md(r + d)
Nx

k .

(.)

It is readily seen that

Nxi
k ≤ Vxi ≤ Uxi ≤ Mxi

k , Nyi
k ≤ Vyi ≤ Uyi ≤ Myi

k (i = , ). (.)

It is easy to show that the sequences Mxi
k , Myi

k are nonincreasing and the sequences Nxi
k , Nyi

k
are nondecreasing. Hence, the limit of each sequence in Mxi

k , Myi
k , Nxi

k , Nyi
k exists. Denote

x̄i = lim
t→+∞ Mxi

n , xi = lim
t→+∞ Nxi

n , ȳi = lim
t→+∞ Myi

n , y
i
= lim

t→+∞ Nyi
n , i = , .

We therefore obtain from (.) that

x̄ =
rr – d(r + d)

ad
–

ay


a(x̄ + my

)
, x̄ =

r

d
x̄,

ȳ =
ar – d(r + d)

mr(r + d)
x̄, ȳ =

ar – d(r + d)
md(r + d)

x̄,

x =
rr – d(r + d)

ad
–

aȳ

a(x + mȳ)
, x =

r

d
x,

y


=
ar – d(r + d)

mr(r + d)
x, y


=

ar – d(r + d)
md(r + d)

x.

(.)

To complete the proof, it is sufficient to prove that x̄i = xi, ȳi = y
i
(i = , ). It follows from

(.) that

adx̄
 + ad

ar – d(r + d)
d(r + d)

x̄x

=
[
rr – d(r + d)

]
x̄ +

[
m

(
rr – d(r + d)

)
– ad

]ar – d(r + d)
md(r + d)

x, (.)
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adx
 + ad

ar – d(r + d)
d(r + d)

x̄x

=
[
rr – d(r + d)

]
x +

[
m

(
rr – d(r + d)

)
– ad

]ar – d(r + d)
md(r + d)

x̄. (.)

Equation (.) minus (.),

ad
(
x̄

 – x

)

=
[
rr – d(r + d)

]
(x̄ – x)

–
[ar – d(r + d)][m(rr – d(r + d)) – a(r + d)]

md(r + d)
× (x̄ – x). (.)

Assume that x̄ 	= x, then we derive from (.) that

ad(x̄ + x) = rr – d(r + d)

–
[
m

(
rr – d(r + d)

)
– ad

]ar – d(r + d)
md(r + d)

. (.)

Equation (.) plus (.),

ad(x̄ + x) + ad
ar – d(r + d)

d(r + d)
x̄x

=
[

rr – d(r + d) +
(
m

(
rr – d(r + d)

)
– ad

)ar – d(r + d)
md(r + d)

]

× (x̄ + x). (.)

Substituting (.) into (.), it follows that

ad
[
ar – d(r + d)

]
x̄x

=
[
ar – d(r + d)

][
rr – d(r + d) –

ad

m

]
(x̄ + x). (.)

Note that x̄ > , x >  and (H) holds. This is a contradiction. Accordingly, we have
x̄ = x. It therefore follows from (.) that x̄ = x, ȳ = y


and ȳ = y


. Hence, the pos-

itive equilibrium E∗ is global stability. The proof is complete. �

Theorem . The predator-extinction equilibrium E(x+
 , x+

 , , ) of system (.) is globally
stable provided that

(H) ar < d(r + d), rr–d(r+d)
ad

> 
m .

Proof Let (x(t), x(t), y(t), y(t)) be any positive solution of system (.) with initial con-
ditions (.). It follows from the first and the second equations of (.) that

ẋ(t) ≤ rx(t) – (r + d)x(t) – ax
 (t),

ẋ(t) = rx(t) – dx(t).
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Consider the following auxiliary equations:

ż(t) = rz(t) – (r + d)z(t) – az
 (t),

ż(t) = rz(t) – dz(t).
(.)

Since rr > d(r + d), by Lemma . of [], it follows from (.) that

lim
t→+∞ z(t) =

rr – d(r + d)
ad

, lim
t→+∞ z(t) =

r[rr – d(r + d)]
ad


.

By comparison, we obtain that

lim sup
t→+∞

x(t) ≤ rr – d(r + d)
ad

, lim sup
t→+∞

x(t) ≤ r[rr – d(r + d)]
ad


. (.)

Hence, for ε >  sufficiently small, there is T >  such that if t > T, then x(t) ≤ x+
 + ε. We

therefore derive from the third and the fourth equations of system (.) that for t > T + τ ,

ẏ(t) ≤ a(x+
 + ε)y(t – τ )

x+
 + ε + my(t – τ )

– (r + d)y(t),

ẏ(t) = ry(t) – dy(t).

Consider the following auxiliary equations:

u̇(t) =
a(x+

 + ε)u(t – τ )
x+

 + ε + mu(t – τ )
– (r + d)u(t),

u̇(t) = ru(t) – du(t).
(.)

Since (H) holds, by Lemma . of [], it follows from (.) that

lim
t→+∞ u(t) = , lim

t→+∞ u(t) = .

A comparison argument shows that

lim
t→+∞ y(t) = , lim

t→+∞ y(t) = .

Hence, for ε >  sufficiently small, there is T > T such that if t > T, y(t) < ε.
It follows from the first and the second equations of system (.) that for t > T,

ẋ(t) ≥ rx(t) – (r + d)x(t) – ax
 (t) –

aεx(t)
mε + x(t)

,

ẋ(t) = rx(t) – dx(t).

Consider the following auxiliary equations:

ż(t) = rz(t) – (r + d)z(t) – az
 (t) –

aεz(t)
mε + z(t)

,

ż(t) = rz(t) – dz(t).
(.)
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Since (H) holds, by Lemma . of [], we can obtain

lim
t→+∞ z(t) =

√(
rr – d(r + d)

ad
–

m


ε

)

+ ε

[
m

rr – d(r + d)
ad

–
a

a

]

+
rr – d(r + d)

ad
–

m


ε := z∗
 ,

lim
t→+∞ z(t) = lim

t→+∞
r

d
z∗

 .

For ε >  is arbitrary small, by comparison, we derive that

lim inf
t→+∞ x(t) ≥ rr – d(r + d)

ad
, lim inf

t→+∞ x(t) ≥ r[rr – d(r + d)]
ad


,

which, together with (.), yields

lim
t→+∞ x(t) =

rr – d(r + d)
ad

, lim
t→+∞ x(t) =

r[rr – d(r + d)]
ad


.

This completes the proof. �

We now give some examples to illustrate the main results above.

Example  In (.), let a = , a = , a = , d = d = , d = d = /, r = , r = , r = 
and m = . With above coefficients, system (.) has a unique coexistence equilibrium
E∗(., ., ., .). It is easy to show that rr–d(r+d)

ad
– ar–d(r+d)

arm (+ d(r+d)
ar

) ≈
., ar –d(r +d) = –., rr–d(r+d)

ad
– 

m = . By Theorem ., E∗ is globally asymp-
totically stable. Numerical simulation illustrates this fact (see Figure ).

Example  In (.), we let a = , a = , a = , d = d = , d = d = , r = , r = , r = /
and m = . System (.) with the above coefficients has a unique coexistence equilib-
rium E∗(., ., ., .). Clearly, rr–d(r+d)

ad
– ar–d(r+d)

arm ( + d(r+d)
ar

) ≈
., rr–d(r+d)

ad
– ar–d(r+d)

arm ( +  d(r+d)
ar+d(r+d) ) ≈ –.. By Theorem ., there is

τ >  such that for τ < τ, the coexistence equilibrium E∗ is locally stable; for τ > τ, the
coexistence equilibrium E∗ is unstable. Numerical simulation illustrates this result (see
Figure ).

Figure 1 The temporal solution found by
numerical integration of system (1.2) with τ = 3;
(φ1,φ2,ϕ1,ϕ2) = (1, 1, 1, 1).
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Figure 2 The temporal solution found by
numerical integration of system (1.2) with
τ = 128; (φ1,φ2,ϕ1,ϕ2) = (1, 1, 1, 1).

Figure 3 The temporal solution found by
numerical integration of system (1.2) with τ = 3;
(φ1,φ2,ϕ1,ϕ2) = (1, 1, 1, 1).

Example  In (.), let a = , a = , a = , d = d = , d = d = , r = , r = , r = /
and m = . System (.) with the above coefficients has a predator-extinction equilibrium
E(, , , ). It is easy to show that ar – d(r + d) = –, rr–d(r+d)

ad
– 

m = . By The-
orem ., E is globally asymptotically stable. Numerical simulation illustrates our result
(see Figure ).

4 Discussion
In this paper, we have incorporated stage structure for both the predator and the prey into
a predator-prey model with time delay due to the gestation of the predator. By using the
iteration technique and comparison arguments, we have established sufficient conditions
for the global stability of the coexistence equilibrium and the predator-extinction equilib-
rium. As a result, we have shown the threshold for the permanence and extinction of the
system. By Theorems . and ., we see that: (i) if (H) holds, the predator population
will go to extinction; (ii) if (H) and (H) hold, then both the prey and the predator species
of system (.) are permanent.
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