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Abstract
Research reveals that most HIV infections come from undiagnosed people and
untreated people, but principally from unaware people. Human awareness results in
the reduction of susceptibility to infection, naturally, in the epidemiological study this
factor should be included. Researchers have produced a wealth of information about
the disease, including a number of critical tools and interventions to diagnose,
prevent and treat HIV. Broadcast media have tremendous reach and influence,
particularly with young people, so in this study, we incorporate the influence of
media and investigate the effect of awareness program in disease outbreaks. We
divided the whole susceptible and infected populations into two sub-classes:
‘unaware class’ and ‘aware class’. A detailed mathematical analysis has been carried
out and numerical simulations have been performed to show the role of some of the
important model parameters.
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1 Introduction
It has been nearly thirty years since the first cases of human immunodeficiency virus (HIV)
garnered the world’s attention. Without treatment and awareness, the virus slowly debili-
tates a person’s immune system until they fall prey to illness. The epidemic has claimed the
lives of nearly . million worldwide [] and has affected many more. In India, approxi-
mately . million [. to . million] people are acquiring HIV every year and more than
. to . million people [] are living with HIV. Unless we take bold actions, however,
we anticipate a new era of rising infections and even greater challenges in serving people
living with HIV and higher health care costs.

HIV/AIDS epidemic is a serious, growing public health problem worldwide. The cause
is known and the principal routes of transmission understood, but resources for treating
HIV infected patients and for combating the spread of the virus are limited. Though the
best way of disease control is mass vaccination, but for the case of HIV, the usage of vac-
cination is very costly and conferred immunities are temporary. We have observed that
basic mathematical models [–] mainly deal with the interaction between susceptible
and infective individuals. In view of controlling HIV/AIDS, there are many antiretroviral
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therapies (ART) available nowadays [–] which help the immune system in prevent-
ing the infection even though it is not possible to cure it. There are many other factors
such as unsafe sex and low condom usage, injecting drug use, widespread stigma, educa-
tion, migration and mobility etc. which also affect the wideness of this infectious disease.
Awareness programs introduce people with the disease and help them to take precautions
to reduce the chances of being infected. Moreover, it is important to mention that awak-
ing people through media in the population results in less interaction between susceptible
and infected individuals, which lowers the disease transmission rate into susceptible in-
dividuals. So, awareness factor can be considered as a strong tool against the expansion
of HIV/AIDS. Saying particulary, awareness factor has a great visitation not only on the
behavioral changes in individuals, but it also helps governmental health care interventions
to control the spread of the disease HIV/AIDS.

Many mathematical models have been developed to monitor HIV/AIDS and explore the
impact of intervention strategies that are being implemented. Misra et al. [, ] studied
the effect of awareness programs through media on disease dynamics in a variable popu-
lation with immigration. Van Segbroeck et al. [] analytically studied the disease dynam-
ics of a well-mixed population with rescaled infectiousness where the contact network
reshaping occurs much faster than disease spreading. Recently, Samanta and Chattopad-
hyay [] have studied a slow-fast dynamics with the effect of awareness program in disease
outbreak.

In this present study, we have analyzed a simple SI network epidemic model to study
the impact of awareness programs conducted through media campaigning on the spread
of HIV/AIDS in a variable population with immigration. However, these results will fall
into the non-network epidemic models category. We assume that the growth rate of the
cumulative density of awareness programs driven by media is proportional to the number
of the infective present in the population. We also assume that the awareness programs
against the disease will alert the susceptible to isolate themselves from infective individ-
uals and to form a separate class. We have formulated the mathematical model and also
discuss the equilibrium points and their stability. Lastly, we use an optimal control theory
paradigm to our mathematical model, in which the contact processes between unaware
susceptible and infected classes with aware susceptible and infected classes are controlled.
We also solve the model numerically and then discuss the analytical and numerical results
according to biological aspect.

2 Formulation of mathematical model with basic assumptions
We consider a basic HIV model

dS
dt

= � – βSI – dS,

dI
dt

= βSI – (d + δI)I,
()

where S(t) and I(t) are the densities of the susceptible and infected populations, respec-
tively, in the region under consideration at any time t. Therefore, the total population is
N(t) = S(t) + I(t). � is the constant recruitment rate in the susceptible population either
by birth or immigration; β is the disease transmission rate; d is the natural death rate of
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the population and δI is the additional death rate due to HIV infection. It is assumed that
the disease spreads due to direct contact between the susceptible and the infective only.

Furthermore, the total susceptible and infected, each population is divided into two sub-
classes such that S(t) = S–(t) + S+(t) and I(t) = I–(t) + I+(t) due to the awareness programs
driven by the media M(t), where the ‘–’ sign denotes the unaware class and ‘+’ sign rep-
resents the aware class. As the awareness disperses, people respond to it and change their
behavior to alter their susceptibility. It is also assumed that due to awareness programs,
aware susceptible and infected individuals avoid being in contact with the infective, form
separate ‘aware classes’ (S+(t) and I+(t)) and do not get involved in sexual relations or in
any other means that causes AIDS. But due to lack of their memory, a portion of aware
people ignore the indemnities and become unaware again. We assume that this transfer
rate from aware class to unaware class is λi (i = , ).

On the basis of the above assumptions, system () reduces to

dS–

dt
= � – βS–I– – αS–M + λS+ – dS–,

dS+

dt
= αS–M – λS+ – dS+,

dI–

dt
= βS–I– – αI–M + λI+ – (d + δI)I–,

dI+

dt
= αI–M – λI+ – (d + δI)I+,

dM
dt

= ηI– – ηM

()

with the initial conditions S–() = S–, S+() = S+, I–() = I–, I+() = I+, M() = M,
where αi (i = , ) is the contact rate between unaware individuals and media. Awareness
programs are implemented proportionally with the change of unaware infective individ-
uals at a rate η and cut down at a rate η due to their ineffectiveness. Note that aware
individuals die out with a lower, but very smaller rate than that of unaware individuals. So,
with no loss of generality, we assume that aware susceptible and aware infected classes of
people die at the same rates as unaware classes, i.e., d and d + δI , respectively. Therefore,
N = S– + S+ + I– + I+, and using this fact, the above system () reduces to

dN
dt

= � – dN – δI(I– + I+),

dS+

dt
= α(N – S+ – I– – I+)M – λS+ – dS+,

dI–

dt
= β(N – S+ – I– – I+)I– – αI–M + λI+ – (d + δI)I–, ()

dI+

dt
= αI–M – λI+ – (d + δI)I+,

dM
dt

= ηI– – ηM.

Since the model monitors human populations and media coverage, it is assumed that all
the state variables are non-negative at time t = . All parameters of the model are assumed
to be non-negative. It then follows from the differential equations that the variables are



Roy et al. Advances in Difference Equations  (2015) 2015:217 Page 4 of 18

non-negative for all t ≥ . In the absence of HIV infection, N → �
d as t → ∞, provided

N() < �
d . Thus, the following feasible region

D =
{

(N , S+, I–, I+, M) ∈ �
+ : S+ ≤ N ≤ �

d
;  ≤ I–, I+;  ≤ M ≤ η�

ηd

}

is positively invariant. It is therefore sufficient to consider solutions in D. In this region,
the usual existence, uniqueness and continuation results hold for the system.

3 Equilibrium points and stability analysis
In order to obtain equilibrium points, we set all equations of () equal to zero as

� – dN – δI(I– + I+) = , ()

α(N – S+ – I– – I+)M – λS+ – dS+ = , ()

β(N – S+ – I– – I+)I– – αI–M + λI+ – (d + δI)I– = , ()

αI–M – λI+ – (d + δI)I+ = , ()

ηI– – ηM = . ()

System () has two non-negative equilibria.

3.1 Disease-free equilibrium point
The disease-free equilibrium always exists and is of the form

E(N, S
+, I

–, I
+, M) =

(
�

d
, , , , 

)
.

The linearization of the second, third, fourth and fifth equations of model () at the
disease-free state E can be rewritten in the following form:

dX
dt

= (F – V )X,

where

X = [S+, I–, I+, M]T ,

F =

⎡
⎢⎢⎢⎣

   α�
d

 β�

d λ 
   
 η  

⎤
⎥⎥⎥⎦ ,

V =

⎡
⎢⎢⎢⎣

λ + d   
 d + δI  
  λ + d + δI 
   η

⎤
⎥⎥⎥⎦ .

A threshold criterion R, which is referred to as basic reproductive number, can be de-
rived using the spectral radius of the next-generation matrix []. Therefore, to find R,



Roy et al. Advances in Difference Equations  (2015) 2015:217 Page 5 of 18

we must find the largest eigenvalue of FV –. Thus,

R = max
|κ|

det
(
κI – FV –) = max

|κ|
det

⎡
⎢⎢⎢⎢⎣

κ   α�
ηd

 (κ – β�

d(d+δI ) ) λ
λ+d+δI


  κ 
 η

d+δI
 κ

⎤
⎥⎥⎥⎥⎦ ,

where I is a  ×  identity matrix.
The characteristic equation of FV – is

κ
(

κ –
�β

d(d + δI)

)
= . ()

Thus,

R =
�β

d(d + δI)
. ()

The disease-free equilibrium point E always exists, and it is locally asymptotically stable
when R <  and unstable when R >  []. We use the threshold R to answer the question
of whether the infection can be established. When R > , HIV infection can take hold.
Otherwise the infection will be eliminated.

3.2 Endemic equilibrium point
The endemic equilibrium for system () should be in the form E∗(N∗, S∗

+, I∗
–, I∗

+, M∗), in
which

S∗
+ =

αη(d + δI)
ηβ(λ + d)

I∗
– +

αη
α(d + δI)

η
β(λ + d)(λ + d + δI)

I∗
–

,

I∗
+ =

αη

η(λ + d + δI)
I∗

–
,

M∗ =
η

η
I∗

–.

I∗
– is a positive, real root of the quadratic equation

AI∗
–

 + AI∗
– + A = , ()

where

A =
ηα(d + δI)

η(λ + d + δI)

[

d

+
αη

ηβ(λ + d)

]
,

A = (d + δI)
[


d

+
αη

ηβ(λ + d)

(
 +

α(λ + d)
α(λ + d + δI)

)]
,

A =
[

(d + δI)
β

–
�

d

]
.

It is clear that if A < , then one of the roots of equation () will be positive. Also, it is
interesting to note that if A <  then R becomes greater than unity, i.e., R > .

Thus, we can conclude the following theorem.
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Theorem . The disease-free equilibrium (DFE) E exists and is locally asymptotically
stable when R = �β

d(d+δI ) < . Whenever R = �β

d(d+δI ) > , E becomes unstable and the en-
demic equilibrium point E∗ exists.

4 Optimal control strategy
Optimal control is useful for controlling an epidemiological system. Generally, we solve
these types of problems by finding the time-dependent profiles of the control variable to
optimize a particular performance. Our target is to maximize the aware susceptible (or
aware infected) population by controlling the interaction between unaware susceptible
(or unaware infected) through media. Thus, the optimal control problem, where the state
system is given by

dS–

dt
= � – βS–I– – α

(
 – u(t)

)
S–M + λS+ – dS–,

dS+

dt
= α

(
 – u(t)

)
S–M – λS+ – dS+,

dI–

dt
= βS–I– – αu(t)I–M + λI+ – (d + δI)I–, ()

dI+

dt
= αu(t)I–M – λI+ – (d + δI)I+,

dM
dt

= ηI– – ηM.

Here, u(t) and u(t) represent the control parameters for the interactions between S– with
M and I– with M, respectively, by invoking awareness among people through media.

Also it is our objective to keep the cost function, measured in terms of time, as low as
possible. Thus, the objective function to be minimized is

J
[
u(t), u(t)

]
=

∫ tf

t

[
Pu

 (t) + Qu
(t) – S

+(t) – I
+(t)

]
dt. ()

The parameters P >  and Q >  are dimensionless weight functions on the benefit of the
cost. These are the costs of per media campaigning for unaware susceptible and unaware
infected populations, respectively, per unit time.

In this problem, we are seeking the optimal control pair (u∗
 , u∗

) such that

J
(
u∗

 , u∗

)

= min
{

J(u, u) : (u, u) ∈ U
}

,

where U = {(u, u) : ui measurable,  ≤ ui(t) ≤ , t ∈ [t, tf ] for i = , }.
To determine the optimal control u∗

 and u∗
, we use the Pontryagin minimum principle

[]. To solve the problem, we use the Hamiltonian [, ] given by

H = Pu
 (t) + Qu

(t) – S
+ – I

+

+ ξ
{
� – βS–I– – α

(
 – u(t)

)
S–M + λS+ – dS–

}
+ ξ

{
α

(
 – u(t)

)
S–M – λS+ – dS+

}
+ ξ

{
βS–I– – αu(t)I–M + λI+ – (d + δI)I–

}
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+ ξ
{
αu(t)I–M – λI+ – (d + δI)I+

}
+ ξ{ηI– – ηM}, ()

where ξi (i = , , , , ) are the adjoint variables.
By using the Pontryagin minimum principle and for the existence condition of the op-

timal control theory [], we obtain the following theorem.

Theorem . If the objective cost function J(u, u) over U attains its minimum for the
optimal control u∗ = (u∗

 , u∗
) corresponding to the endemic equilibrium (S∗

–, S∗
+, I∗

–, I∗
+, M∗),

then there exist adjoint functions ξ, ξ, ξ, ξ, ξ satisfying the equations

dξ

dt
= ξ

{
βI– + α

(
 – u(t)

)
M + d

}
– ξα

(
 – u(t)

)
M – ξβI–,

dξ

dt
= S+ – ξλ + ξ(λ + d),

dξ

dt
= ξβS– – ξ

{
βS– – αu(t)M – (d + δI)

}
– ξαu(t)M – ξη, ()

dξ

dt
= I+ – ξλ + ξ(λ + d + δI),

dξ

dt
= ξα

(
 – u(t)

)
S– – ξα

(
 – u(t)

)
S– + ξαu(t)I– – ξαu(t)I– + ξη,

along with the transversality condition ξi(tf ) =  (i = , . . . , ).

Proof According to the Pontryagin minimum principle, the unconstrained optimal con-
trol variables u∗

 and u∗
 satisfy

∂H
∂u∗


=

∂H
∂u∗


= . ()

Equation () can be rewritten as

H =
[
Pu

 (t) – ξα
(
 – u(t)

)
S–M + ξα

(
 – u(t)

)
S–M

]
+

[
Qu

(t)

– ξαu(t)I–M + ξαu(t)I–M
]

+ other terms without u and u.

We can obtain from ()

∂H
∂u∗


= Pu∗

 (t) + ξαS–M – ξαS–M = , ()

∂H
∂u∗


= Qu∗

(t) – ξαI–M + ξαI–M = . ()

We have also obtained u∗
 and u∗

 in the following form:

u∗
 (t) =

α(ξ – ξ)S–M
P

, ()

u∗
(t) = –

α(ξ – ξ)I–M
Q

. ()
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Since the standard control is bounded, we conclude for the control u that

u∗
 (t) =

⎧⎪⎨
⎪⎩

 if α(ξ–ξ)S–M
P ≤ ;

α(ξ–ξ)S–M
P if  < α(ξ–ξ)S–M

P < ;
 if α(ξ–ξ)S–M

P ≥ .
()

Hence the compact form of u∗
 is

u∗
 = max

[
min

[
,

α(ξ – ξ)S–M
P

]
, 

]
. ()

In a similar manner we can get the compact form of u∗


u∗
 = max

[
min

[
, –

α(ξ – ξ)I–M
Q

]
, 

]
. ()

According to the Pontryagin minimum principle, it can be written as follows:

dξi

dt
= –

∂H
∂xi

for i = , , , , , ()

where xi ≡ (S–, S+, I–, I+, M).
The necessary conditions satisfying the optimal control u∗(t) are

H
(
xi(t), u∗(t), ξi(t), t

)
= min

u∈U
H

(
xi(t), u(t), ξi(t), t

)
. ()

Using (), we can get the adjoint system () corresponding to systems () and ().
The optimal system consists of the state system (), satisfying the initial condition S–() =
S–, S+() = S+, I–() = I–, I+() = I+, M() = M, and the adjoint system (), satisfying
transversality condition ξi(tf ) =  for i = , , , , . �

4.1 Uniqueness of the optimal control
To prove the uniqueness of the optimality system, we use a simple lemma for the small
time interval.

Lemma  [] The function u∗(s) = min(max(s, a), b) is Lipschitz continuous in s, where
a < b are some fixed positive constants.

Theorem . The solution of the optimal system is unique for sufficiently small [t, tf ].

Proof Suppose that (S–, S+, I–, I+, M, ξ, ξ, ξ, ξ, ξ) and (S̄–, S̄+, Ī–, Ī+, M̄, ξ̄, ξ̄, ξ̄, ξ̄, ξ̄) are
two solutions of systems () and () such that for θ > , S– = eθ tp, S+ = eθ tp, I– = eθ tp,
I+ = eθ tp, M = eθ tp, ξ = e–θ tq, ξ = e–θ tq, ξ = e–θ tq, ξ = e–θ tq, ξ = e–θ tq and S̄– =
eθ t p̄, S̄+ = eθ t p̄, Ī– = eθ t p̄, Ī+ = eθ t p̄, M̄ = eθ t p̄, ξ̄ = e–θ t q̄, ξ̄ = e–θ t q̄, ξ̄ = e–θ t q̄, ξ̄ =
e–θ t q̄, ξ̄ = e–θ t q̄.

Again, let

u∗
 = max

[
min

[
,

α(q – q)ppeθ t

P

]
, 

]
,
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u∗
 = max

[
min

[
, –

α(q – q)ppeθ t

Q

]
, 

]

and

ū∗
 = max

[
min

[
,

α(q̄ – q̄)p̄p̄eθ t

P

]
, 

]
,

ū∗
 = max

[
min

[
, –

α(q̄ – q̄)p̄p̄eθ t

Q

]
, 

]
.

Substituting the values of S–, S+, I–, I+, M, ξ, ξ, ξ, ξ, ξ, u∗
 and u∗

 in equations () and
(), we get

ṗ + θp = �e–θ t – βppeθ t – α

(
 –

(q – q)αppeθ t

P

)
ppeθ t + λp – dp,

ṗ + θp = α

(
 –

(q – q)αppeθ t

P

)
ppeθ t – (λ + d)p,

ṗ + θp = βppeθ t + α
(q – q)αppeθ t

Q
ppeθ t + λp – (d + δI)p,

ṗ + θp = –α
(q – q)αppeθ t

Q
ppeθ t – (λ + d + δI)p,

ṗ + θp = ηp – ηp,

q̇ – θq = q

{
βpeθ t + α

(
 –

α(q – q)ppeθ t

P

)
peθ t + d

}
()

– αq

(
 –

α(q – q)ppeθ t

P

)
peθ t – βpqeθ t ,

q̇ – θq = eθ tp – λq + (λ + d)q,

q̇ – θq = βpqeθ t – q

{
βpeθ t + α

(q – q)αpp

Q
peθ t – (d + δI)

}

+ α
(q – q)αpp

Q
pqeθ t – ηq,

q̇ – θq = peθ t – λq + (λ + d + δI)q,

q̇ – θq = α

(
 –

α(q – q)ppeθ t

P

)
pqeθ t – α

(
 –

α(q – q)ppeθ t

P

)
pqeθ t

– α
(q – q)αpp

Q
pqeθ t + α

(q – q)αpp

Q
pqeθ t + ηq.

The equations for S– and S̄–, S+ and S̄+, I– and Ī–, I+ and Ī+ and lastly M and M̄ are
subtracted. Each equation is multiplied by an appropriate function and then integrated
from t to tf .

∫ tf

t

(u – ū) dt ≤ Ceθ tf

∫ tf

t

[|p – p̄| + |p – p̄| + |q – q̄| + |q – q̄|
]

dt,

∫ tf

t

(u – ū) dt ≤ Ceθ tf

∫ tf

t

[|p – p̄| + |p – p̄| + |q – q̄| + |q – q̄|
]

dt.



Roy et al. Advances in Difference Equations  (2015) 2015:217 Page 10 of 18

By using the above results, we get ten integral equations as follows:




(p – p̄)(tf ) + θ

∫ tf

t

|p – p̄| dt

≤ βeθ tf

∫ tf

t

[|p – p̄| + |p – p̄|
]

dt + αeθ tf

∫ tf

t

[|p – p̄| + |p – p̄|
]

dt

+ αCeθ tf

∫ tf

t

[|p – p̄| + |p – p̄| + |q – q̄| + |q – q̄|
]

dt

+ λ

∫ tf

t

[|p – p̄| + |p – p̄|
]

dt + d
∫ tf

t

|p – p̄| dt,




(p – p̄)(tf ) + θ

∫ tf

t

|p – p̄| dt

≤ αeθ tf

∫ tf

t

[|p – p̄| + |p – p̄| + |p – p̄|
]

dt

+ αCeθ tf

∫ tf

t

[|p – p̄| + |p – p̄| + |p – p̄| + |q – q̄| + |q – q̄|
]

dt

+ (λ + d)
∫ tf

t

|p – p̄| dt,




(p – p̄)(tf ) + θ

∫ tf

t

|p – p̄| dt

≤ βeθ tf

∫ tf

t

[|p – p̄| + |p – p̄|
]

dt

+ αCeθ tf

∫ tf

t

[|p – p̄| + |p – p̄| + |p – p̄| + |q – q̄| + |q – q̄|
]

dt

+ λ

∫ tf

t

[|p – p̄| + |p – p̄|
]

dt + (d + δI)
∫ tf

t

|p – p̄| dt,




(p – p̄)(tf ) + θ

∫ tf

t

|p – p̄| dt

≤ αCeθ tf

∫ tf

t

[|p – p̄| + |p – p̄| + |p – p̄| + |q – q̄| + |q – q̄|
]

dt

+ (λ + d + δI)
∫ tf

t

|p – p̄| dt,




(p – p̄)(tf ) + θ

∫ tf

t

|p – p̄| dt

≤ η

∫ tf

t

[|p – p̄| + |p – p̄|
]

dt + η

∫ tf

t

|p – p̄| dt,




(q – q̄)(t) + θ

∫ tf

t

|q – q̄| dt

≤ βeθ tf

∫ tf

t

[|p – p̄| + |q – q̄|
]

dt + αeθ tf

∫ tf

t

[|p – p̄| + |q – q̄|
]

dt

+ αCeθ tf

∫ tf

t

[|p – p̄| + |p – p̄| + |q – q̄| + |q – q̄|
]

dt
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+ d
∫ tf

t

|q – q̄| dt + Ceθ tf

∫ tf

t

[|p – p̄| + |q – q̄| + |q – q̄|
]

dt

+ βeθ tf

∫ tf

t

[|p – p̄| + |q – q̄| + |q – q̄|
]

dt,




(q – q̄)(t) + θ

∫ tf

t

|q – q̄| dt

≤ eθ tf

∫ tf

t

[|p – p̄| + |q – q̄|
]

dt + λ

∫ tf

t

[|q – q̄| + |q – q̄|
]

dt

+ (λ + d)
∫ tf

t

|q – q̄| dt,




(q – q̄)(t) + θ

∫ tf

t

|q – q̄| dt

≤ βCeθ tf

∫ tf

t

[|p – p̄| + |q – q̄| + |q – q̄|
]

dt

+ αCeθ tf

∫ tf

t

[|p – p̄| + |p – p̄| + |q – q̄| + |q – q̄|
]

dt

+ (d + δI)
∫ tf

t

|q – q̄| dt + η

∫ tf

t

[|q – q̄| + |q – q̄|
]

dt,




(q – q̄)(t) + θ

∫ tf

t

|q – q̄| dt

≤ eθ tf

∫ tf

t

[|p – p̄| + |q – q̄|
]

dt + λ

∫ tf

t

[|q – q̄| + |q – q̄|
]

dt

+ (λ + d + δI)
∫ tf

t

|q – q̄| dt,




(q – q̄)(t) + θ

∫ tf

t

|q – q̄| dt

≤ αeθ tf

∫ tf

t

[|p – p̄| + |q – q̄| + |q – q̄|
]

dt

+ Cαeθ tf

∫ tf

t

[|p – p̄| + |p – p̄| + |q – q̄| + |q – q̄| + |q – q̄|
]

dt

+ αeθ tf

∫ tf

t

[|p – p̄| + |q – q̄| + |q – q̄|
]

dt

+ Cαeθ tf

∫ tf

t

[|p – p̄| + |p – p̄| + |q – q̄| + |q – q̄| + |q – q̄|
]

dt

+ η

∫ tf

t

|q – q̄| dt.

From the above expressions, all these ten integrals are added and estimated to obtain
the result. After combination, we get



[
(p – p̄)(tf ) + (p – p̄)(tf ) + (p – p̄)(tf ) + (p – p̄)(tf ) + (p – p̄)(tf )

+ (q – q̄)(t) + (q – q̄)(t) + (q – q̄)(t) + (q – q̄)(t) + (q – q̄)(t)
]
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+ θ

∫ tf

t

[|p – p̄| + |p – p̄| + |p – p̄| + |p – p̄| + |p – p̄|

+ |q – q̄| + |q – q̄| + |q – q̄| + |q – q̄| + |q – q̄|
]

dt

≤ (
K̃ + K̃eθ tf

)∫ tf

t

[|p – p̄| + |p – p̄| + |p – p̄| + |p – p̄| + |p – p̄|

+ |q – q̄| + |q – q̄| + |q – q̄| + |q – q̄| + |q – q̄|
]

dt < . ()

Here K̃ and K̃ depend on the model parameters and constant terms.
We choose θ such that θ > K̃ + K̃ and tf < 

θ
ln( θ–K̃

K̃
), then

p = p̄, p = p̄, p = p̄, p = p̄, p = p̄,

q = q̄, q = q̄, q = q̄, q = q̄, q = q̄.
()

Thus, the system has a unique optimal solution for a small time interval. If the state
equation has the initial condition and the adjoint equation has the final time condition,
then the optimal controls u∗

 and u∗
 give a unique and optimal control strategy for the

density of awareness programs driven by the media in the region under consideration.
�

5 Numerical simulation
To study the dynamical behavior of model (), we perform numerical computations with
initial values S–() = , S+() = , I–() = , I+() =  and M() = . The set of pa-
rameter values is given in Table . These values are collected from different peer reviewed
international journals, and the rest are hypothetical parameters relevant to HIV/AIDS.
This set of parameter values is constant throughout the numerical experiments except
the values of λ and λ. Numerical simulations are done using MATLAB (version ..).

Trajectories for all populations and for cumulative awareness programs are drawn in Fig-
ure , which shows the changes in their behavior at any time t. From this figure, we can see
that aware populations start increasing in nature from their initial values and other pop-
ulations approach their equilibrium values. The non-linear stabilities of (S∗

–, I∗
–) in S∗

– – I∗
–

plane and (S∗
+, I∗

+) in S∗
+ – I∗

+ plane are shown in Figure  and Figure , respectively. We can

Table 1 List of parameters used for system (2)

Parameter Definition Reference Assigned
value (day–1)

� Constant recruitment rate [15, 18] 12
β Disease transmission rate [18] 0.0025
α1 Contact rate between unaware susceptible with media [16] 0.0002
λ1 Transfer rate of people from aware individuals

to unaware susceptible class
[15, 16, 18] 0.0052

d Natural death rate [6, 16] 0.005
δI Additional death rate due to infection [6] 0.007
α2 Contact rate between unaware infected with media - 0.1
λ2 Transfer rate of people from aware individuals

to unaware infected class
- 0.0015

η Rate of implementation of awareness programs [15] 0.005
η0 Depletion rate of awareness program due to ineffectiveness [15] 0.06
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Figure 1 Variations of populations with time.

Figure 2 Non-linear stability of (S∗
– , I∗– ) in S∗

– – I∗– plane.

see that all trajectories initiating inside the region of attraction approach towards the equi-
librium values (S∗

–, I∗
–) and (S∗

+, I∗
+). It is also worthy to mention that the rate of transfer from

aware class to unaware class, i.e., λ and λ, play an important role in the system. In Figure 
and Figure , trajectories are drawn for different values of λ and λ (λ = ., . and
λ = ., .), respectively, and it is found that value changes in λ and λ alter different
population behavioral changes. Despite constant awareness being transferred to masses
via media campaign, some fractions of the aware populations neglect the risks associated
with the unaware susceptible and the infective, but try to be bold by their own beliefs and
eventually cater to the infective class through awareness failures. This fraction is always
a threat to the success rate of any mass awareness program and the disease persists as
endemic. To test the effectiveness of the media awareness potential, we run our simula-
tion experimentation considering a real life scenario, where we deliberately consider the
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Figure 3 Non-linear stability of (S∗
+, I∗+) in S∗

+ – I∗+ plane.

Figure 4 Variation of infected population and other populations with different values of λ1.

infection rate at a higher prevalence (. < β < .) and compare increased ‘media
awareness campaign’ to become aware of the potential risks and hazards of STD (sexually
transmitted disease) like HIV and its countermeasures. Our simulation study reveals that
increasing the awareness campaign during high infection period has the potential to delay
the onset of infection among aware people for longer period compared to unaware class
of population (Figure ). It is also to be noted that the population which has already been
infected may show some revival prospect due to the acquired informational wealth, but
the response is very slow as they loose self-confidence to recover completely once they
become infected.

Numerical illustrations for optimal control induced problems () and () are done, and
we perform optimality test of the system by making the changes of the variable τ = t/tf

and transferring the interval [, ]. Here τ represents the step size, used for better strategy
with a line search method, which will maximize the reduction of performance measure.
We choose tf =  + tf and initially tf = . We also assume that tf = . and our desired
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Figure 5 Variation of infected population and other populations with different values of λ2.

Figure 6 Awareness performance for different values of media campaign, M0 under high infection
scenario (0.002 < β < 0.007).

value of tf = . The solution of the optimal system () and ‘control measures’ for differ-
ent populations are displayed in Figure . In this figure, we can see that the control pair,
(u, u) has a meaningful bearing on the system. Note that after inducing control approach,
unaware susceptible and infected population sizes are decreasing, while the sizes of aware
susceptible and infected populations are increasing as per our expectation. In Figure ,
control performances of media coverage u and u indicate that the frequency of aware-
ness programs should be increasing with the change of time. Moreover, execution of more
awareness campaigns and faster dissemination of awareness mobilize a large fraction of
the population. This in turn will widen the aware population and hence slow down the
prevalence of the disease HIV.
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Figure 7 The system behavior for optimal control when final time is tf = 1 (keeping all other
parameters same as before considered).

Figure 8 Optimal control parameters u∗
1 and u∗

2 are plotted as the functions of time, keeping all other
parameters same.

6 Discussion and conclusion
In this research article, we deal with a non-linear SI mathematical model reflecting the
effect of awareness programs on a certain population with constant recruitment rate. We
have studied the impact of awareness as a novel intervention for the control of epidemi-
ological diseases. In the modeling process, it is assumed that media campaigns create
awareness regarding personal protection as well as control AIDS. As a result, behavioral
changes (transfer from unaware to aware) occur within the human population, which re-
sults in the formation of a new class, i.e., aware class. Individuals of this class not only pro-
tect themselves from the infection, but being aware they also take part in reducing AIDS
by taking precautions. Our analytical study shows that the basic reproduction number
R, which determines the existence of the disease, does not contain any awareness related
terms. As a result, the persistence of the disease does not depend on awareness programs.
However, the awareness programs reduce the infection rate, shorten the rate of disease
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transmission and cut down the size of the disease. Numerical simulations, which are very
realistic, add an extra dimension to our analytic conclusions. On the basis of the existence
conditions and analytical results, we showed that the system has a unique optimal con-
trol pair (u∗

 , u∗
) for which the cost function will be minimum and outcomes will be time

worthy. This implies that the presence of awareness in the population makes the disease
expedition difficult and shorter. But in practical sense, disease remains endemic, because
factors like low education, ignorance in taking precautions, social problems, immigra-
tion etc. play negative roles in the system. We discuss a simple model that captures some
important features, and we believe these findings may help in controlling AIDS through
awareness.
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