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Abstract

In this study, we have simplified the Kirschner-Panetta model on the interaction of
tumor cells and effector cells by considering linear growth term as opposed to
logistic growth term used by Kirschner and Panetta. We have done a comprehensive
mathematical analysis and established the existence of positive equilibrium. In
addition, a fixed point bifurcation is investigated using the rate of spread of tumor as
a varying parameter, suggesting that backward bifurcation can occur under
reasonable choice of parameters. However, bistable dynamics is unlikely to happen in
this case, which implies that the strategies that could reduce the rate of spread of
tumor are the most influential to cancer treatment. Through mathematical deduction
and numerical simulation, an elaborate uncertainty and sensitivity analysis of the rate
of spread of tumor Rs is performed. The distribution of R; is derived, and the sensitivity
of the magnitude of R; to the uncertainty in estimating values of input parameters is
assessed. The results indicate that the external source of effector cells and its death
rate are influential in the rate of spread of tumor.

Keywords: tumor-immune system; backward bifurcation; uncertainty and sensitivity
analysis

1 Introduction

Cancer is a term used to describe a disease in which abnormal cells divide without control
and are able to invade other tissues. Cancer cells can spread to other parts of the body
through blood and lymph systems. The main categories of cancer include carcinoma, sar-
coma, leukemia, lymphoma, and myeloma [1-3]. Cancer is known as the leading cause
of deaths in the world, and research has shown that new cases of cancer are on the rise.
For instance, in 2008, there were estimated 12,667,500 new cases of cancer worldwide,
with Eastern Asia having most of the cases (3,720,000). It has also been observed that one
eighth of deaths in the world is due to cancer. In fact, it causes more deaths than AIDS,
tuberculosis, and malaria combined [4-7].

Every person has cancer cells in his body, but these may not show up in the standard
clinical tests until they multiply to a few billions [4, 8]. Clinically, cancer treatment has
been a major challenge to medical practitioners, and no known cure has so far been found.
Hence, when a doctor tells a patient that there are no more cancer cells in his body after
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treatment, it basically means that the tests are unable to detect the cancer cells because
they have gone below detectable levels [4, 9, 10]. All cancers begin in the cells, the body
unit of life. To understand cancer, it is helpful to know what happens when a normal cell
becomes a cancer cell. The body is made up of many types of cells, for example, blood cells
(white and red), nerve cells, epithelial, and muscle cell amongst others. These cells grow
and divide in a controlled way to produce more cells as they are needed to keep the body
healthy. When cells become old and damaged, they die and are replaced with new ones.
However, sometimes this orderly process goes wrong. The genetic material (DNA) of a
cell can become damaged or changed, producing mutations that affect normal cell growth
and division. When this happens, cells do not die when they should, and new cells form
when the body does not need them. The extra cells form a mass of tissue called tumor
as shown in Figure 1. Note, however, that not all tumors are cancerous, only a malignant

tumor is cancerous [4].

2 Motivation

Kirschner and Panetta (KP) developed a cancer immunotherapy of tumor - immune sys-
tems model with logistic growth rate, and supported some of their findings through math-
ematical analysis and numerical simulations [11]. However, their formulations disregarded
the rate of spread of tumor and the existence of a positive endemic equilibrium. Also, they
did not identify the most influential parameters in their model. However, there is a need
to address these two issues especially if the model is to be applied in a clinical setup.
Rihan et al. tried to analyze the KP model (see [12]). They made certain assumptions,
which reduced the KP model from a three-dimensional system of nonlinear ODEs to a
two-dimensional one. However, explanation for the disappearance of the third variable
is not provided. In addition, we observed that the type of non-dimensionalization pur-
sued, which led to the elimination of the denominator variables and even transformation
of some of the variables to parameters, fundamentally alters the KP model [12]. Moore
studied the KP model and raised a concern that it inadequately represents the real situa-
tions [13].

The authors in [11] analyzed the KP model for tumors with logistic growth rate. How-
ever, testicular carcinomas, pediatric tumors, and some mesenchymal tumors are exam-
ples of rapidly proliferating cell populations, for which the tumor volume doubling time
(TVDT) can be counted in days, and they exhibit a linear growth rate [14]. In this work,
therefore, we have considered a later case by setting constant growth rate term, r»(T), in
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the KP model. We have mathematically analyzed the KP model more comprehensively and
proved that, indeed, a positive endemic equilibrium exists. Conditions for the occurrence
of bifurcation are set out, and the type of anticipated bifurcation is specified. In addition,
we have performed numerical simulations to confirm and demonstrate the validity of var-
ious assumptions and conclusions made during the analysis. The paper is organized as
follows. In Section 1, we have provided some background information on cancer infec-
tion; in Section 2, we have given a brief discussion on the previous works about the KP
model and provided some explanations regarding the necessity to analyze the model with
a linear growth rate; in Section 3, we have presented the KP model and mathematically
analyzed it; Section 4 presents the numerical simulations and discussions of the results to
ground the assumptions and conclusions. The work is concluded in Section 5.

3 The model
The KP model [11] is given by the system
dE piEL

— =cT - wE
dt T +g1+L

dT T aET

T ,
dt —° o+ T
dL  prET

dr g+ T

+ 81,

@)

— ,LL3L + 8.

In the above system, and on the strength of the presentation by Kirschner and Panetta
[11], in which L(7) is the concentration of IL-2, which is the interleukin-2, the main cy-
tokine responsible for lymphocyte activation, growth and differentiation; E(t) represents
the activated immune cells commonly called effector cells such as cytotoxic T-cells, mi-
crophages, and natural killer cells that are cytotoxic to tumor cells; microphages and nat-
ural killer cells that are cytotoxic to tumor cells; 7(7) is the tumor cells; with initial con-
ditions E(0) = Ey, T(0) = Ty, L(0) = Ly. The parameter c represents the antigenicity of
tumor; s; is the treatment term that represents an external source of effector cells such as
LAK and TIL cells; s, is the treatment term that represents external input of IL-2 into the
system; ry is the linear growth rate; 1/, is the average natural lifespan (in days) of effector
cells; us is the loss rate of IL-2; a is the strength of immune response, while the rest of the
parameters, namely g1, g5, and g3, are substantive nonnegative thresholding parameters
which are given in volumes. Non-dimensionalizing system (1) according to the following
scaling regime (see [15])
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Applying the same procedure in the remaining two equations of system (1) and omitting

the hats for easy notations, we consequently obtain the following system:

dx _ pixz

G0 T Maxt+ T S

dy _ axy

a T2 T 1y 3)
dz _ p2xy

T gy — U3Z + 83.

It can be shown that (3) admits a tumor-free equilibrium

_ s1(s2 + us) 0 S_2> (4)

PO - <—) )
Ma(S2 + U3) —p1sa M3

if (o (s + 3) — p1sa > 0. The Jacobian matrix J of the linearization of (3) at this equilibrium

is given by
—pa(s2+13)+p1s2 c psiidsa+s)
(s2+13) ¢ ) (s2+143)% (2 (s2+13)-p152]
= _ __asi\satu3)
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From (5) we obtain the following three real eigenvalues:

D182 — (a(S2 + i3) asi(sy + [13)

- Az =—u3<0. (6)
S2 + U3 Ha(s2 + us) — pisa

At each time step, a tumor cell either produces an offspring or dies. If each cell produces on
average more than one new cell, then the basic reproduction number, R;, which measures
the rate of spread of tumor, is greater than one, R, > 1, and the tumor grows over time. If
R <1, then each cell produces on average less than one new cell, and therapy can eradicate
the tumor [16].

To calculate R;, we use the next generation operator approach [17-20] and obtain

R. = rapa(s2 + w3) — raprs
’ asi(sy + (t3)

(7)

To obtain the interior equilibrium, we equate each of the equations of system (3) to zero,
from which we find that

_pryd+y) s

aus(gs +y) M3‘ ®)

X = r—2(1+y),
a

Substituting (8) into the steady state system from (3), we obtain

A3y + Agy® + Aty + Ay =0, )
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where

Az = para(prra + ac — para),
Ay = para(prra + asy — para) + (para + aps + asy)(piry + ac — pars) — piraas,
Ay = (pary + aps + as)(piry + asi — para) — piraajs
+ags(s2 + 13)(pira + ac — pary) — piraajisgs,
Ao = agz(sa + u3)(pira + asy — Uary) — prraapsgs.

The rate of spread of tumor R, and the behavior of the coefficients Ay, A;, Ay, and A3 of
the cubic equation above lead us to the statement and proof of the following theorem.

Theorem 1 Assume that j15(sy + (43) — p152 > 0. System (3) has a unique tumor-free equi-
librium Py, which is stable for Ry <1 and unstable for R; > 1. Furthermore, if pora(p1ra +
ac — ary) > 0 (para(piray + ac — pors) < 0), then system (3) has a unique positive solution
when Rs > 1 (R; < 1) and the following condition is satisfied:

if A2 <0 (>0),then A; <0 (> 0). (10)

Proof 1t is easy to see that A; < 0, therefore, the existence of boundary equilibrium and
its stability is implied directly from (4) and (6), and the existence of interior equilibrium
can be shown by Descartes’s rule of signs [21, 22]. In fact, if R; > 1, then A < 0. Note that
we assume As > 0; therefore, there are four possible sign changes of the coefficients of
(9), that is, (+,+,+,-), (+,+,—,—), (+,—,—,—), and (+,—,+,—), and the last possibility can
be ruled out by (10). By Descartes’ theorem, the number of positive roots of (9) is either
equal to the sign changes between consecutive coefficients, or is less than them by an even
number, which completes the proof. d

Note that when R; < 1, the spread of tumor is very slow and this type of tumor is called
benign tumor. When R, > 1, the tumor spreads very fast. This type of tumor is called ma-
lignant tumor and it requires immediate treatment. As a special case, if ¢ = s; or g3 =1,
then (10) holds, which implies the existence and uniqueness of the positive equilibrium
when A3 > 0 (A3 < 0) and R, > 1 (R, < 1). Moreover, if g3 = 1, then (9) becomes a quadratic
equation

Bzy2 +B1y+By =0,
with
By = pors(pira + ac — par),
By = alsy + pu3)(piry + asy — jiary) — prraajis
= a’si(sy + p3)(1 - Ro),

By = para(piry + asy — para) + alsy + p3)(pira + ac — pars) — piraaps

=By + By + a(s; — ¢) (para — alsy + us)),

from which we can arrive at the following conclusion.
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Corollary 2 Assume that p,(sy + ps) — p1sy > 0 and g3 = 1. When B, > 0, system (3) has a
unique positive equilibrium if Ry > 1, and has two positive equilibria if R; <1, B; < 0, and
A := B? —4ByB, > 0. When B, < 0, system (3) has a unique positive equilibrium if R < 1
and has two positive equilibria if R; > 1, By > 0, and A > 0.

From Corollary 2, we expect that the backward bifurcation [23, 24] might occur, since
one can prove that B; > 0 when B, > 0 and 0 < R; < 1. In fact, for 0 < R; <« 1, we know that

By = By + By +al(sy — ¢)(pary — alsy + p13))
~ para(pirs + ac — para) + a’si(s2 + pus) + a(sy — c) (para — alsz + ps))

= para(pira + asy — para) + a*c(sy + p13) > 0.

Therefore, there is no positive equilibrium for system (3), which implies that the backward
bifurcation occurs for (3) if R; is regarded as a variable parameter. However, the backward
bifurcation does not exist for s; = ¢ since B; = By + B, in this case, and hence B; > 0 (B; <
0) if B, > 0 and R; <1 (B; < 0 and R; > 1). Therefore, when B; > 0 (B, < 0), system (3)
undergoes a supercritical (subcritical) fixed point bifurcation at R; = 1.

However, we observe from formulation (7) of the rate of spread of tumor R, that the
dynamics of model (3) without the treatments s; and s; leads to a blow-up since R; = +00.
This implies that the treatments are very critical in controlling the spread of malignant

cancer.

4 Numerical simulations
A sample set of reasonable parameter values for (1) can be found in [11]. After scaling
those parameters according to (2), we get the set of parameter values for model (3) as in
Table 1. Recall that s; is the treatment term that represents an external source of effector
cell. We will use s; as a varying parameter to examine the effect of treatment on the num-
ber of tumor cells. It follows from (7) that R; is a decreasing function of s;. With the values
of parameters except s; given in Table 1, one can obtain that R; > 1 when s; < 0.0350,
0.6384 ~ R* < R; <1 when 0.0540 > s; > 0.0350, and R, < R* when s; > 0.0540. Hence,
freeing the parameter s; gives a bifurcation diagram (see Figure 2) with two positive equi-
librium points, denoted by (x1,1,21) and (%3, y2,22), for 0.0549 > s; > 0.0350 (or R* < R, <
1), unique equilibrium for s; < 0.0350 (or R, > 1), and no equilibrium for s; > 0.0549 (or
R, < R*). However, the positive equilibria, whenever they exist, are unstable since there ex-
ists at least one positive eigenvalue for a Jacobian matrix at each equilibrium, see Figure 3.
Therefore, (3) does not have the bistable dynamics even though a backward bifurcation
occurs. Set s; = 0.04. We use numerical simulations to examine the dynamics of (3), see
Figure 2. It is observed that the solution will tend to the boundary equilibrium for R, < 1
and a blow-up solution exists for R, > 1, see Figure 4.

Uncertainty and sensitivity analysis is conducted to explore the behavior of the model,
because the model is structurally complex and the values of many input parameters are

Table 1 Parameter values used for model in (3)

Parameter (4 n2 P r2 a p2 g3 n3 S2
Value 0025 016 069 1 45 02 1 7 0.05
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Figure 2 Bifurcation diagram of (3) with
parameters given in Table 1. Here, the horizontal
axis is the basic reproduction number, and the
vertical axis is the number of tumor cells.
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Figure 4 Numerical simulations of (3) with parameters given in Table 1 for various initial values. (Left)
The solution tends to boundary equilibrium as t goes to infinity for R < 1; (Right) A blow up solution of model
(3) for Ry > 1.

estimated with a high degree of uncertainty. Uncertainty analysis can be used to assess
the variability of the outcome variable (R; for this model) that is due to the uncertainty
of parameters in the model, and sensitivity analysis is an extension of uncertainty analysis
that can identify which parameters are important to outcome variable. For uncertainty
and sensitivity analysis, probability density functions (PDF) are assigned, in advance, to
some parameters in the expression in R, and each specified PDF describes the range of
possible values and the probability of occurrence of any specific value. Selection of trian-
gular distribution is recommended when the most likely value and range of parameters
are estimable. A uniform distribution is usually selected for the parameters when only
a range for the parameter is estimable. Latin hypercube sampling is then used to sam-
ple these parameters based on their probability density functions. For system (3), seven
parameters are selected and assigned to proper probability density functions (an asym-
metric triangular probability distribution is selected for five of these parameters, and a
uniform distribution is chosen for the other two parameters), and then 1,000 values for
each parameter are sampled according to its PDF, see Figure 5. After the sampling, they
are randomly permuted to form 1,000 input parameter vectors, which are used to explore
the effect of uncertainty in estimating the values of the input variables on the prediction of
the outcome variable, Ry, by (7). The distribution of all R estimates is shown in Figure 6.
The descriptive statistics for the distribution is given in Table 2. The minimum of Ry is
0.24.08, while its maximum is 3.9802, which means that R; can be reduced below 1 for
some specific choice of parameters. This implies that the tumor cells in the body can be
eliminated with proper treatment strategy. Moreover, it can observed from Figure 6 that
the percentage for R; less than 1 is higher than that for R, greater than 1, which indicates
that the factors s; and s, have positive effect on tumor treatment.

The partial rank correlation coefficient (PRCC), measuring the statistical influence
(specifically the monotonicity) of parameters on Ry, is calculated between each of input
parameters and the values of R;. These PRCCs are used to identify the key input parame-
ters that contributed to the prediction imprecision. The sign of PRCC identifies the spe-
cific qualitative relationship between the input and output variable, and the absolute value
of PRCC indicates the degree of monotonicity between a specific input variable and the



Omondi et al. Advances in Difference Equations (2015) 2015:213 Page 9 of 12

25 12 12
< c c
S 210 S 10
G 20 5] 3]
S g g
2 2 g 2 g
- > >
Z15 £ B
2 3 @
g S 6 S 6
210 s >
E E 4 £ 4
H 2 3
s S 2 g2
a a a
0 9 Q
-0.02 0 002 004 006 008 01 0.12 0.
¢ S My
12 0.14 35
S1o g S s
2 g g
2 g 2 225
2z 3 )
s @ B 2
2 5 2 2
@ () [}
o ° T15
> > >
£ 4 £ £
3 3 5 1
© © ©
8 8 E
° 2 ° S 05
= 5 g
952 0 002 0.04 006 008 01 0.12 0 X
s2 p1
5
545
5 4
2
335
2 3
7]
€25
22
3515
©
8 1
<)
505

8

.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
Py

Figure 5 Histogram of the values obtained from Latin hypercube sampling for the seven input
parameters.

Figure 6 Histogram of estimated R; values from 16 . . : : . . .
Latin hypercube sampling.

outcome variable. The PRCCs results are presented in Table 3, from which we can con-
clude that the first three parameters that contribute most to R are s1, (3, and sp. The
uncertainties in estimating the values of these three parameters (s;, it2, and s;) are most
influential in determining the prediction of R; (|[PRCC]| > 0.5) and are statistically signifi-
cant (p-value < 0.05). The positive value of the PRCC implies that when the value of the
input variable increases, the value of R, will also increase. Therefore, the increases in s;
and s, correspond to a decrease in Ry, while an increase in u; corresponds to an increase
in R,. Note that s is the external source of effector cells, 1, is the loss rate of effector cells
and s; is the treatment term that represents an external input of IL-2. This shows that the
treatment strategy of increasing the external source of effector cells and IL-2 is the most

effective way of tumor treatment. However, comparing with IL-2, the maintenance of a
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Table 2 Descriptive statistics from the uncertainty analysis

Minimum  Maximum  Mean Variance
Rs  0.2408 3.9802 0.8913 02150

Table 3 Partial rank correlation coefficients (PRCCs) for the basic reproduction number and
each input parameter variable

Parameter ¢ s L2 s> "3 pP1 P2
PRCCs 0.048 -0982 0872 -0.127 0.091 -0.038 -0.072
p-value 0.127 0 0 55x 107 0004 0.229 0.022

0
0.1 015 02 025 03 035 04 045 05
Py

Figure 7 Partial rank scatter plots of the ranks for the R estimates and each of seven sampled input
parameter values.

certain concentration of effector cells in the body is much more important since the ab-
solute values of PRCCs of s; and p, are greater than 0.5. Partial rank scatter-plots for R;
and each of the seven input variables are also generated, see Figure 7. The monotonicity
of R, with respect to s; and 5, that can be observed in Figure 7, is clearly satisfied. These
scatter-plots demonstrate how the rank transformation turns these monotonic relations
into linear relations.

5 Conclusion

In this study, a mathematical analysis of the tumor-immune interaction model proposed
in [11] has been simplified and analyzed. Proof of the existence of positive equilibrium has
been established. Additionally, the rate of spread of tumor R, was derived, and explana-
tions regarding the behavior of R; were provided. The fixed point bifurcation was inves-
tigated using R, as free parameters. The results reveal that backward bifurcation could
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occur for a reasonable set of parameter values. However, the numerical results indicate
that the equilibria at the bifurcated branch are all unstable, meaning that the bistable dy-
namics will never happen for the model. Unlike most epidemic models in the literature,
the numerical simulations in this work show that when R, > 1 the solution tends to in-
finity as time increases. Therefore, the control strategies (for instance, at least a certain
amount of external effector s;) that will reduce R, to within 1 are of great importance for
the possible tumor cell elimination.

Due to the difficulty of measure, or collection, of empirical data on some parameters in
the model, we also conducted uncertainty analysis and sensitivity analysis based on Latin
hypercube sampling in estimating R;. The distribution for R; gives a wide range of esti-
mates due to uncertainty in estimating values of seven selected parameters. Even though
the upper bound of R, could run up to 4, the 95% confidence interval of the distribution
of Ry is [0.2512,2.9341]. Hence, tumor cells are likely to be eliminated under proper treat-
ment strategies, based on the interpretation of the model, because this interval contains
the number 1. The results of sensitivity analysis imply that an increase in external effector
would have lead to less severe growth of tumor size, because a high concentrate effector
cells would have resulted in fewer number of tumor cells. A decrease in the per capita nat-
ural death rate of effector cells would also have led to fewer number of tumor cells. These
results are obvious from the expression of (7), and our sensitivity analysis extends these
conclusions quantitatively.
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