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Abstract
This paper is concerned with a nonautonomous single-species model, in which the
population dynamics is affected by impulsive perturbations and environmental noise.
Sufficient conditions for the extinction, stochastic permanence, and global attractivity
of system are obtained, respectively. The above results reveal that the white noise
plays a very important role in the dynamic behaviors. However, it is found that the
bounded impulse does not affect the above properties. Some numerical simulation
results are presented to support the analytical findings.
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1 Introduction
The analysis of mathematical models of dynamic process has been of importance in im-
proving our understanding of biological systems in a fluctuating environment. On the one
hand, species living in such a fluctuating medium might experience abrupt changes of
relatively short duration due to certain external effects. The duration of these changes is
often negligible in comparison with that of the entire evolution process and hence the
abrupt changes can be well approximated as impulses (see [, ]). On the other hand, pop-
ulation systems are often subject to environmental noise (see [–]). In recent research
results, Mao et al. [] revealed that different structures of environmental noise can have
different influences on the population systems, while Mao et al. [, ] indicated that en-
vironmental noise may suppress a potential population explosion. Since impulsive effect
and environmental noise are two essential ingredients of ecological processes, one is led
to consider ISDE (impulsive stochastic differential equations) which would make for a
suitable model. In recent years, many ISDE models have been extensively investigated in
applied sciences and many good results have been obtained (see [–]). In this paper,
we formulate a novel nonautonomous impulsive single-species system in a random en-
vironment. Motivated by the works of [–], we explore and analyze the asymptotic
behaviors of the target system, and a good understanding of extinction, stochastic perma-
nence, and global attractivity of the system is obtained. The rest of this paper is organized
as follows. In the next section, a novel nonautonomous impulsive single-species model in
a random environment is proposed, and some preliminaries are given. Sufficient condi-
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tions for the extinction, stochastic permanence, and global attractivity are established in
Sections  and , respectively. In Section , some specific numerical examples and corre-
sponding simulations are provided to verify our theoretical results.

2 Model and preliminaries
In [], Ludwig et al. introduced the budworm population dynamics to be modeled by the
equation

y′(t) = y(t)
(
r – ay(t)

)
– h(y). (.)

Here y(t) stands for the density of species y, the positive constants r and a are the in-
trinsic growth rate and self-inhibition rate, respectively. The h(y)-term is predation. To
be specific Murray [] chose the form for h(y) suggested by Ludwig et al. [], that is,
cy(t)/(b + y(t)), and discussed the stability of the following system:

y′(t) = y(t)
(
r – ay(t)

)
–

cy(t)
b + y(t)

, (.)

where cy(t)/(b + y(t)) is an S-shaped function and the pair of positive constants c and d
are measures of saturation. Furthermore, in recent investigations Liu et al. [, ] con-
sidered the following nonautonomous version with impulsive perturbations:

{
ẏ(t) = y(t)(r(t) – a(t)y(t)) – c(t)y(t)

b(t)+y(t) , t �= τk ,
y(τ+

k ) = ( + λk)y(τk), t = τk , k ∈N,
(.)

where N is the set of positive integers. The impulsive points satisfy  < τ < τ < · · · ,
limk→+∞ τk = +∞, and the impulsive effects satisfy λk > –, in particular, λk >  represent
stocking, while λk <  denote harvesting.

In this contribution, we consider that environmental noise mainly affects the intrinsic
growth rate r(t). If we still use r(t) to denote the average growth rate at time t, then we
usually estimate it by an average value plus an error term, and we obtain

r(t) → r(t) + σ (t)Ḃ(t), (.)

where Ḃ(t) is a white noise and σ (t) represents the intensity of the noise. Thus, a revised
version can be described by ISDE

{
dy(t) = y(t)(r(t) – a(t)y(t) – c(t)y(t)

b(t)+y(t) ) dt + σ (t)y(t) dB(t), t �= τk ,
y(τ+

k ) = ( + λk)y(τk), t = τk , k ∈N,
(.)

where the initial value y() > . B(t) is a standard Brownian motion defined on a complete
probability space (�,F , {Ft}t≥, P) with a filtration {Ft}t≥ satisfying the usual conditions
(i.e., it is right continuous and increasing while F contains all P-null sets), and the co-
efficients r(t), a(t), c(t), b(t) and σ (t) are all positive continuous bounded functions on
R+ = [, +∞).

For convenience, we define

f l = inf f (t), f u = sup f (t), t ∈ R+,
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where f (t) is a continuous bounded function. Throughout this paper, it is assumed
that

(S) there exist two positive constants m and M such that m ≤ ∏
<τk <t( + hk) ≤ M, and

a product equals unity if the number of factors is zero.

Definition . (see []) Consider the following ISDE:

{
dX(t) = F(t, X(t)) dt + G(t, X(t)) dW (t), t �= τk ,
X(τ+

k ) – X(τk) = BkX(τk), t = τk , k ∈N,
(.)

with initial condition X(). A stochastic process X(t) = (X(t), . . . , Xn(t)), t ∈ [, +∞), is
said to be a solution of (.) if

() X(t) is Ft-adapted and is continuous on (, τ) and each interval (τk , τk+), k ∈N;
F(t, X(t)) ∈ L([, +∞); Rn), G(t, X(t)) ∈ L([, +∞); Rn), where Lk([, +∞); Rn) is all
Rn valued measurable Ft-adapted processes ψ(t) satisfying

∫ T
 |ψ(t)|k dt < ∞ a.s. for

every T > ;
() for each τk , k ∈ N, X(τ+

k ) = limt→τ+
k

X(t) and X(τ–
k ) = limt→τ–

k
X(t) exist and

X(τk) = X(τ–
k ) with probability ;

() X(t) obeys the equivalent integral equation of (.) for almost every t ∈ [, +∞)\{τk}
and satisfies the impulsive conditions at each t = τk , k ∈N with probability .

Definition . For a positive solution y(t) of system (.), then
() system (.) is said to be extinctive if limt→+∞ y(t) = ;
() system (.) is said to be stochastically permanent if every ε ∈ (, ), there exist

constants β >  and δ >  such that for any initial value y() ∈ R+, y(t),

lim inf
t→+∞ P

{
y(t) ≥ β

} ≥  – ε, lim inf
t→+∞ P

{
y(t) ≤ δ

} ≥  – ε.

Definition . Let y(t), y(t) be, respectively, any two solutions of system (.) with pos-
itive initial values y() and y(). If limt→+∞ |y(t) – y(t)| =  a.s., then system (.) is
globally attractive.

Lemma . (see []) Assume that an n-dimensional stochastic process X(t) on t ≥  sat-
isfies the condition

E
∣
∣X(t) – X(s)

∣
∣α ≤ c|t – s|+β ,  ≤ s, t < +∞,

for positive constants α, β , c. Then there exists a continuous version X̃(t) of X(t) which has
the property that for every ϑ ∈ (,β/α), there is a positive random variable ϕ(ω) such that

P
{
ω : sup

<|t–s|<ϕ(ω),≤s,t<+∞
|X̃(t,ω) – X(t,ω)|

|t – s|ϑ ≤ 
 – –ϑ

}
= .

In other words, almost every sample path of X̃(t) is locally but uniformly Hölder continuous
with exponent ϑ .
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Lemma . ([]) Suppose that a, a, . . . , an are real numbers; the inequality

|a + a + · · · + an|p ≤ Cp
(|a|p + |a|p + · · · + |an|p

)

holds, where p >  and

Cp =

{
,  < p ≤ ,
np–, p > .

Lemma . ([]) Let f be a non-negative function on t ≥  such that f is integrable on
t ≥  and is uniformly continuous on t ≥ . Then limt→+∞ f (t) = .

Lemma . For any given initial value y() > , there is a unique solution y(t) to system
(.) for all t ≥  and y(t) will remain in R

+ = {y|y ∈ R : y > } with probability .

Proof Let us consider the following SDE without impulsive perturbations:

dx(t) = x(t)
(

r(t) – a(t)
∏

<τk <t

( + λk)x(t) –
c(t)

∏
<τk <t( + λk)x(t)

b(t) + [
∏

<τk <t( + λk)x(t)]

)
dt

+ σ (t)x(t) dB(t) (.)

with initial value x() = y().
It follows from the theory of SDE [] that (.) has a unique local solution x(t) on [, te),

where te is the explosion time. To show this solution is global, we only need to prove that
te = +∞ a.s. Let n be sufficiently large such that x() remains in the interval [ 

n
, n]. For

each integer n ≥ n, define the stopping time

tn = inf

{
t ∈ [, te) : x(t) /∈

(

n

, n
)}

. (.)

Clearly, tn is increasing as n → +∞. Set t+∞ = limn→+∞ tn, whence t+∞ ≤ te a.s. To com-
plete the proof, we only need to show that t+∞ = +∞ a.s. If this statement is false, then
there exist a pair of constants T >  and ε ∈ (, ) such that P{t+∞ ≤ T} > ε. As a result,
there is an integer n ≥ n such that

P{tn ≤ T} ≥ ε, for all n ≥ n.

Define a C-function V̄ : R+ → R+ by

V̄ (x) = x –  – ln x. (.)

The nonnegativity of V̄ (x) is obvious. One derives, by Itô’s formula, that

dV̄ =
(

 –

x

)
dx + .


x (dx)

=
{(

x(t) – 
)[

r(t) – a(t)
∏

<τk <t

( + λk)x(t) –
c(t)

∏
<τk <t( + λk)x(t)

b(t) + [
∏

<τk <t( + λk)x(t)]

]
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+ .σ (t)
}

dt +
(
x(t) – 

)
σ (t) dB(t)

=
[

r(t)
(
x(t) – 

)
+

(
 – x(t)

)
a(t)

∏

<τk <t

( + λk)x(t)

+
( – x(t))c(t)

∏
<τk <t( + λk)x(t)

b(t) + [
∏

<τk <t( + λk)x(t)] + .σ (t)
]

dt +
(
x(t) – 

)
σ (t) dB(t)

≤
[

r(t)x(t) + a(t)
∏

<τk <t

( + λk)x(t) +
c(t)

∏
<τk <t( + λk)x(t)

b(t)
+ .σ (t)

]
dt

+
(
x(t) – 

)
σ (t) dB(t)

≤
[(

ru + auM +
cuM

bl

)
x(t) + .

(
σ u)

]
dt +

(
x(t) – 

)
σ (t) dB(t). (.)

Let

L = ru + auM +
cuM

bl , L = .
(
σ u).

Notice that x ≤ (x –  – ln x) + , for x > , we know that

dV̄ ≤ [
Lx(t) + L

]
dt +

(
x(t) – 

)
σ (t) dB(t)

≤ {
L

(
V̄ (x) + 

)
+ L

}
dt +

(
x(t) – 

)
σ (t) dB(t)

=
{

LV̄ (x) + L + L
}

dt +
(
x(t) – 

)
σ (t) dB(t). (.)

So

∫ tk∧T


dV̄ (x) ≤

∫ tk∧T



{
LV̄ (x) + L + L

}
dt +

∫ tk∧T



(
x(t) – 

)
σ (t) dB(t). (.)

Taking expectations leads to

EV̄
(
x(tk ∧ T)

) ≤ V̄
(
x()

)
+ (L + L)E(tk ∧ T) + L

∫ tk∧T


EV̄

(
x(t)

)
dt

≤ V̄
(
x()

)
+ (L + L)T + L

∫ T


EV̄

(
y(tk ∧ T)

)
dt. (.)

It then follows from the Gronwall inequality that

EV̄
(
x(tk ∧ T)

) ≤ (
V̄

(
x()

)
+ (L + L)T

)
eLT . (.)

Let �n = {tn ≤ T}, n ≥ n, then P(�n) ≥ ε. Notice that for arbitrary ω ∈ �n, x(tn,ω) equals
either n or 

n , and thus V̄ (y(tn,ω)) is no less than n –  – ln n or 
n –  + ln n. Then

(
V̄

(
x()

)
+ (L + L)T

)
eLT ≥ E

[
�n (ω)V̄

(
x(tn,ω)

)]

≥ ε

[
(n –  – ln n) ∧

(

n

–  + ln n
)]

, (.)
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where �n is the indicator function of �n. Letting n → ∞ results in the contradiction

+∞ >
(
V̄

(
x()

)
+ (L + L)T

)
eLT = +∞.

Thus we obtain t+∞ = +∞ a.s.
In the following, we need to show that y(t) is the solution of (.). Denote

y(t) =
∏

<τk <t

( + λk)x(t). (.)

One can see that y(t) is continuous on each interval (τk , τk+) ⊂ R+ and for any t �= τk ,

dy(t) = d
( ∏

<τk <t

( + λk)x(t)
)

=
∏

<τk <t

( + λk) dx(t)

=
∏

<τk <t

( + λk)x(t)
(

r(t) – a(t)
∏

<τk <t

( + λk)x(t)

–
c(t)

∏
<τk <t( + λk)x(t)

b(t) + [
∏

<τk <t( + λk)x(t)]

)
dt +

∏

<τk <t

( + λk)σ (t)x(t) dB(t)

= y(t)
(

r(t) – a(t)y(t) –
c(t)y(t)

b(t) + y(t)

)
dt + σ (t)y(t) dB(t). (.)

Moreover, for every k ∈ N and τk ∈ [, +∞),

y
(
τ+

k
)

= lim
t→τ+

k

∏

<τj<t

( + λj)x(t) =
∏

<τj≤τk

( + λj)x
(
τ+

k
)

= ( + λk)
∏

<τj<τk

( + λj)x(τk) = ( + λk)y(τk). (.)

Meanwhile,

y
(
τ–

k
)

= lim
t→τ–

k

∏

<τj<t

( + λj)x(t) =
∏

<τj<τk

( + λj)x
(
τ–

k
)

=
∏

<τj<τk

( + λj)x(τk) = y(τk). (.)

The proof of Lemma . is complete. �

3 Extinction and stochastic permanence
We first consider the extinction of system (.). Denote

ϕ(t) = r(t) – .σ (t). (.)

Theorem . System (.) is extinct provided that

lim sup
t→+∞

t–
( ∑

<τk <t

ln( + λk) +
∫ t


ϕ(s) ds

)
< .
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Proof Applying Itô’s formula to (.), one derives that

d ln x(t) =
dx(t)
x(t)

–
(dx(t))

x(t)

=
(

r(t) – a(t)
∏

<τk <t

( + λk)x(t) –
c(t)

∏
<τk <t( + λk)x(t)

b(t) + [
∏

<τk <t( + λk)x(t)] – .σ (t)
)

dt

+ σ (t) dB(t)

=
(

ϕ(t) – a(t)y(t) –
c(t)y(t)

b(t) + y(t)

)
dt + σ (t) dB(t). (.)

Integrating both sides from  to t gives

ln x(t) – ln x() =
∫ t


ϕ(s) ds –

∫ t


a(s)y(s) ds –

∫ t



c(s)y(s)
b(s) + y(s)

ds + N (t), (.)

where N (t) =
∫ t

 σ (s) dB(s), and N (t) is a local martingale with quadratic variation

〈
N (t),N (t)

〉
=

∫ t


σ (s) ds ≤ (

σ u)t. (.)

We obtain from the strong law of large numbers for local martingales

lim
t→+∞

N (t)
t

=  a.s. (.)

On the other hand, it follows from (.) that

∑

<τk <t

ln( + λk) + ln x(t) – ln x() =
∑

<τk <t

ln( + λk) +
∫ t


ϕ(s) ds –

∫ t


a(s)y(s) ds

–
∫ t



c(s)y(s)
b(s) + y(s)

ds + N (t), (.)

that is,

ln y(t) – ln y() =
∑

<τk <t

ln( + λk) +
∫ t


ϕ(s) ds –

∫ t


a(s)y(s) ds

–
∫ t



c(s)y(s)
b(s) + y(s)

ds + N (t). (.)

Hence

ln y(t) – ln y() ≤
∑

<τk <t

ln( + λk) +
∫ t


ϕ(s) ds + N (t). (.)

Then the desired assertion follows from (.) immediately. �

Next, we turn to studying the stochastic permanence of system (.).
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Theorem . If ϕl > , then system (.) is stochastically permanent, where ϕ(t) is defined
in (.).

Proof We first prove, for given  < ε < , that there exists a positive constant β such that
lim inft→+∞ P{y(t) ≥ β} ≥  – ε. Define

V(x) =

x

, for x > . (.)

Then applying Itô’s formula to (.), one can see that

dV(x) = –

x dx +


x (dx)

= –V(x)
(

r(t) – a(t)
∏

<τk <t

( + λk)x(t) –
c(t)

∏
<τk <t( + λk)x(t)

b(t) + [
∏

<τk <t( + λk)x(t)]

)
dt

+ V(x)σ (t) dt – V(x)σ (t) dB(t). (.)

Since ϕl > , we can choose a suitable positive constant θ such that

ϕl > .θ
(
σ u). (.)

Define

V(x) =
(
 + V(x)

)θ , (.)

then it follows from Itô’s formula, the assumption (S), and (.) that

dV(x) = θ
(
 + V(x)

)θ–dV(x) + .θ (θ – )
(
 + V(x)

)θ–(dV(x)
)

= θ
(
 + V(x)

)θ–
{

–
(
 + V(x)

)
V(x)

(
r(t) – a(t)

∏

<τk <t

( + λk)x(t)

–
c(t)

∏
<τk <t( + λk)x(t)

b(t) + [
∏

<τk <t( + λk)x(t)]

)
+

(
 + V(x)

)
V(x)σ (t)

+ .(θ – )V 
 (x)σ (t)

}
dt – θ

(
 + V(x)

)θ–V(x)σ (t) dB(t)

= θ
(
 + V(x)

)θ–
{

–V 
 (x)

(
r(t) – .θσ (t) – .σ (t)

)

+ V(x)
(

–r(t) + σ (t) + a(t)
∏

<τk <t

( + λk) +
c(t)

∏
<τk <t( + λk)

b(t) + [
∏

<τk <t( + λk)x(t)]

)

+
c(t)

∏
<τk <t( + λk)

b(t) + [
∏

<τk <t( + λk)x(t)] + a(t)
∏

<τk <t

( + λk)
}

dt

– θ
(
 + V(x)

)θ–V(x)σ (t) dB(t)

≤ θ
(
 + V(x)

)θ–
{

–V 
 (x)

(
ϕl – .θ

(
σ u)) + V(x)

(
(
σ u) + auM +

cuM
bl

)

+ auM +
cuM

bl

}
dt – θ

(
 + V(x)

)θ–V(x)σ (t) dB(t). (.)
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Choose a sufficient small constant ρ >  such that

 <
ρ

θ
< ϕl – .θ

(
σ u). (.)

Define

V(x) = eρtV(x). (.)

Applying Itô’s formula leads to

dV(x) = ρeρtV(x) dt + eρtdV(x)

≤ θeρt( + V(x)
)θ–

{
ρ

θ

(
 + V(x)

) – V(x)(ϕl – .θ
(
σ u)) + V(x)

(
(
σ u)

+ auM +
cuM

bl

)
+ auM +

cuM
bl

}
dt – θeρt( + V(x)

)θ–V(x)σ (t) dB(t)

= θeρt( + V(x)
)θ–

{
–V(x)

(
ϕl – .θ

(
σ u) –

ρ

θ

)
+ V(x)

((
σ u) + auM

+
cuM

bl +
ρ

θ

)
+ auM +

cuM
bl +

ρ

θ

}
dt – θeρt( + V(x)

)θ–V(x)σ (t) dB(t)

= eρt�(x) dt – θeρt( + V(x)
)θ–V(x)σ (t) dB(t), (.)

where

�(x) = θ
(
 + V(x)

)θ–
{

–V(x)
(

ϕl – .θ
(
σ u) –

ρ

θ

)
+ V(x)

((
σ u) + auM

+
cuM

bl +
ρ

θ

)
+ auM +

cuM
bl +

ρ

θ

}
.

It is not difficult to prove that �(x) is upper bounded, namely, � = supx> �(x) < +∞. This,
together with (.), indicates that

dV(x) ≤ �eρt dt – θeρt( + V(x)
)θ–V(x)σ (t) dB(t). (.)

Integrating and taking expectations result in

E
[
V

(
x(t)

)]
= E

[
eρt( + V

(
x(t)

))θ ] ≤ (
 + V

(
x()

))θ +
�eρt

ρ
. (.)

As a consequence

lim sup
t→∞

E
[
V θ


(
x(t)

)] ≤ lim sup
t→∞

E
[
( + V

(
x(t)

)θ ] ≤ �

ρ
, (.)

which, together with (.), yields

lim sup
t→∞

E
[
/yθ (t)

]
= lim sup

t→∞

( ∏

<τk <t

( + λk)
)–θ

E
[
/xθ (t)

] ≤ m–θ �

ρ
= �. (.)
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Thus for any ε > , let β = ε

θ /�


θ
 , by Chebyshev’s inequality, we have

P
{

y(t) < β
}

= P
{

y–θ (t) > β–θ
} ≤ E[y–θ (t)]

β–θ
= βθ E

[
y–θ (t)

]
, (.)

which implies that

lim sup
t→+∞

P
{

y(t) < β
} ≤ βθ� = ε,

namely

lim inf
t→+∞ P

{
y(t) ≥ β

} ≥  – ε. (.)

Next, we will prove that for arbitrary fixed  < ε < , there exists a constant δ >  such that
lim inft→+∞ P{y(t) ≤ δ} ≥  – ε. Choose q >  arbitrarily, we define

V(x) = xq(t). (.)

Applying Itô’s formula to (.) and recalling the assumption (S) yield

dV(x) = qxq– dx + .q(q – )xq–(dx)

= qxq
(

r(t) – a(t)
∏

<τk <t

( + λk)x(t) + .(q – )σ (t)

–
c(t)

∏
<τk <t( + λk)x(t)

b(t) + [
∏

<τk <t( + λk)x(t)]

)
dt + qxqσ (t) dB(t)

≤qxq(r(t) – a(t)mx(t) + .(q – )σ (t)
)

dt + qxqσ (t) dB(t). (.)

Integrating and taking expectations give

E
(
xq(t)

)
– E

(
xq()

) ≤ q
∫ t


E
{

xq(s)
(
r(s) – a(s)mx(s) + .(q – )σ (s)

)}
ds. (.)

So

dE(xq(t))
dt

≤ qE
(
xq(t)

)[
r(t) + .(q – )σ (t)

]
– ma(t)qE

(
xq+(t)

)
. (.)

It follows from Hölder’s inequality that

E
(
xq+) ≥ (

E
(
xq)) q+

q .

As a consequence

dE(xq(t))
dt

≤ qE
(
xq(t)

)[
r(t) + .(q – )σ (t)

]
– qma(t)

(
E
(
xq)) q+

q . (.)

Denote

z(t) = E
(
xq(t)

)
,
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then (.) can be rewritten as

dz
dt

≤ qz(t)
[
r(t) + .(q – )σ (t) – ma(t)z


q (t)

]

≤ qz(t)
[
ru + .q

(
σ u) – malz


q (t)

]
. (.)

By the standard comparison theorem, we have

lim sup
t→+∞

E
(
xq(t)

) ≤
(

ru + .q(σ u)

mal

)q

= �(q). (.)

So

lim sup
t→+∞

E
(
yq(t)

)
= lim sup

t→+∞

( ∏

<τk <t

( + λk)
)q

E
(
xq(t)

)

≤
(

M
ru + .q(σ u)

mal

)q

= �(q). (.)

On the other hand, let δ = � 
q (q)/ε


q , then we have

P{y > δ} = P
{

yq > δq} ≤ E(yq(t))
δq . (.)

Thus it follows from (.) and (.) that

lim sup
t→+∞

P{y > δ} ≤ �(q)
δq = ε,

which implies that

lim inf
t→+∞ P{y ≤ δ} ≥  – ε, (.)

which, together with (.), completes the proof of Theorem .. �

4 Global attractivity
In this section, we first give Lemma . which is useful for the proof of global attractivity.

Lemma . For a solution x(t) of (.) with initial value x() > , almost every sample path
of x(t) is uniformly continuous for t ≥ .

Proof Denote

L(q) = max
{�(q), xq()

}
. (.)

It follows from (.)-(.), for all t ≥ , that

E
(
xq(t)

) ≤L(q). (.)
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Notice that (.) is equivalent to the following integral equation:

x(t) = x() +
∫ t


x(s)

[
r(s) – a(s)

∏

<τk<t

( + λk)x(s) –
c(s)

∏
<τk <t( + λk)x(s)

b(s) + [
∏

<τk <t( + λk)x(s)]

]
ds

+
∫ t


σ (s)x(s) dB(s). (.)

At the same time, by Lemma . one sees that

E
∣
∣∣
∣x(t)

[
r(t) – a(t)

∏

<τk <t

( + λk)x(t) –
c(t)

∏
<τk <t( + λk)x(t)

b(t) + [
∏

<τk <t( + λk)x(t)]

]∣
∣∣
∣

q

= E
(∣∣x(t)

∣∣q
∣
∣∣∣r(t) – a(t)

∏

<τk <t

( + λk)x(t) –
c(t)

∏
<τk <t( + λk)x(t)

b(t) + [
∏

<τk <t( + λk)x(t)]

∣
∣∣∣

q)

≤ .E
∣
∣x(t)

∣
∣q + .E

∣∣
∣∣r(t) – a(t)

∏

<τk <t

( + λk)x(t) –
c(t)

b(t) + [
∏

<τk <t( + λk)x(t)]

∣∣
∣∣

q

≤ .
{
L(q) + q–

(∣∣ru∣∣q +
∣∣∣
∣
cu

bl

∣∣∣
∣

q

+
∣∣auM

∣∣qL(q)
)}

= K(q). (.)

By the moment inequality for stochastic integrals, we obtain, for  ≤ t ≤ t and q > ,

E
∣
∣∣
∣

∫ t

t

σ (s)x(s) dB(s)
∣
∣∣
∣

q

≤ (
σ u)q

[
q(q – )



] q


(t – t)
q–



∫ t

t

E
∣∣x(s)

∣∣q ds

≤ (
σ u)q

[
q(q – )



] q


(t – t)
q
 L(q). (.)

Then for

 < t < t < +∞, t – t ≤ ,

p

+

q

= ,

we can derive that

E
∣
∣x(t) – x(t)

∣
∣q

= E
∣∣
∣∣

∫ t

t

x(s)
[

r(s) – a(s)
∏

<τk<t

( + λk)x(s)

–
c(s)

∏
<τk <t( + hk)x(s)

b(s) + [
∏

<τk <t( + hk)x(s)]

]
ds +

∫ t

t

σ (s)x(s) dB(s)
∣∣
∣∣

q

≤ q–E
∣∣
∣∣

∫ t

t

x(s)
[

r(s) – a(s)
∏

<τk <t

( + λk)x(s)

–
c(s)

∏
<τk <t( + λk)x(s)

b(s) + [
∏

<τk <t( + λk)x(s)]

]
ds

∣∣
∣∣

q

+ q–E
∣∣
∣∣

∫ t

t

σ (s)x(s) dB(s)
∣∣
∣∣

q

≤ q–(t – t)
q
p

∫ t

t

E
∣∣
∣∣x(s)

[
r(s) – a(s)

∏

<τk<t

( + hk)x(s)
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–
c(s)

∏
<τk <t( + hk)x(s)

b(s) + [
∏

<τk <t( + hk)x(s)]

]∣∣
∣∣

q

ds + q–(σ u)q
[

q(q – )


] q


(t – t)
q
 L(q)

≤ q–(t – t)
q
p +K(q) + q–(σ u)q

[
q(q – )



] q


(t – t)
q
 L(q)

≤ q–(t – t)
q


[
(t – t)

q
 +

[
q(q – )



] q

]
D(q)

≤ q–(t – t)
q


[
 +

[
q(q – )



] q

]
D(q), (.)

where D(q) = max{K(q), (σ u)qL(q)}. Thus, we obtain from Lemma . that almost every
sample path of x(t) is locally but uniformly Hölder-continuous with an exponent ϑ for
ϑ ∈ (, q–

q ), and hence almost every sample path of x(t) is uniformly continuous on t ≥ .
The proof of Lemma . is complete. �

Theorem . If al > cu/bl , then system (.) is globally attractive.

Proof Let y(t) and y(t) be, respectively, arbitrary two solutions of system (.) with initial
values y() >  and y() > . Suppose that x(t) is a solution of the system (.) with
x() = y(),

dx(t) = x(t)
(

r(t) – a(t)
∏

<τk <t

( + λk)x(t) –
c(t)

∏
<τk <t( + λk)x(t)

b(t) + [
∏

<τk <t( + λk)x(t)]

)
dt

+ σ (t)x(t) dB(t) (.)

and x(t) is a solution of the system (.) with x() = y(),

dx(t) = x(t)
(

r(t) – a(t)
∏

<τk <t

( + λk)x(t) –
c(t)

∏
<τk <t( + λk)x(t)

b(t) + [
∏

<τk <t( + λk)x(t)]

)
dt

+ σ (t)x(t) dB(t). (.)

Thus, we obtain

y(t) =
∏

<τk <t

( + λk)x(t), y(t) =
∏

<τk <t

( + λk)x(t). (.)

Define

V (t) =
∣
∣ln x(t) – ln x(t)

∣
∣. (.)

Applying Itô’s formula, and calculating the right differential D+V (t) of V (t), we have

D+V (t) = sgn
(
x(t) – x(t)

)
d
(
ln x(t) – ln x(t)

)

= sgn
(
x(t) – x(t)

)
{[

dx(t)
x(t)

–
(dx(t))

x
 (t)

]
–

[
dx(t)
x(t)

–
(dx(t))

x
(t)

]}
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= sgn
(
x(t) – x(t)

){
–

∏

<τk <t

( + λk)a(t)
(
x(t) – x(t)

)

+
c(t)

∏
<τk <t( + λk)(x(t) – x(t))([

∏
<τk <t( + λk)]x(t)x(t) – b(t))

(b(t) + [
∏

<τk <t( + λk)x(t)])(b(t) + [
∏

<τk <t( + λk)x(t)])

}
dt

=
{

–
∏

<τk <t

( + λk)a(t)
∣∣x(t) – x(t)

∣∣

+
c(t)

∏
<τk <t( + λk)|x(t) – x(t)|([∏<τk <t( + λk)]x(t)x(t) – b(t))

(b(t) + [
∏

<τk <t( + λk)x(t)])(b(t) + [
∏

<τk <t( + λk)x(t)])

}
dt.

(.)

Let

� =
c(t)

∏
<τk <t( + λk)|x(t) – x(t)|([∏<τk <t( + λk)]x(t)x(t) – b(t))

(b(t) + [
∏

<τk <t( + λk)x(t)])(b(t) + [
∏

<τk <t( + λk)x(t)])
.

Next, we focus on the estimation of �. It follows from (.) that x >  and x > . Without
loss of generality, assume that x < x, then

� ≤ c(t)
∏

<τk <t( + λk)|x(t) – x(t)|[∏<τk <t( + λk)]x
(t)

b(t)[
∏

<τk <t( + λk)x(t)]

=
c(t)

∏
<τk <t( + λk)|x(t) – x(t)|

b(t)
,

which, together with (.) and the assumption (S), leads to

DV (t)+ ≤ –
∏

<τk <t

( +λk)
{

a(t) –
c(t)
b(t)

}∣∣x(t) – x(t)
∣∣dt ≤ –m

(
al –

cu

bl

)∣∣x(t) – x(t)
∣∣dt,

and, moreover, integrating on both sides yields

V (t) ≤ V () – m
(

al –
cu

bl

)∫ t



∣
∣x(s) – x(s)

∣
∣ds. (.)

Namely

V (t) + m
(

al –
cu

bl

)∫ t



∣∣x(s) – x(s)
∣∣ds ≤ V () < +∞. (.)

Notice that V (t) ≥ , then |x(t) – x(t)| ∈ L[, +∞). It follows from Lemmas . and .
that limt→+∞ |x(t) – x(t)| =  a.s. Thus one obtains from (.), (.), and the assumption
(S) that

lim
t→+∞

∣∣y(t) – y(t)
∣∣ = lim

t→+∞
∏

<τk <t

( + λk)
∣∣x(t) – x(t)

∣∣ ≤ M lim
t→+∞|x(t) – x(t)| =  a.s.

The proof of Theorem . is complete. �
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5 Numerical simulation
In the present paper, a nonautonomous single-species model with impulsive effects and
stochastic perturbations is proposed and sufficient conditions for the extinction, stochas-
tic permanence and global attractivity of system (.) are established, respectively. To il-
lustrate the above analytical results, we consider the following three specific numerical
examples.

Example  (Extinction) Consider the following system:

⎧
⎪⎨

⎪⎩

dy(t) = y(t)(. + . sin t – (. + . sin t)y(t) – (.+. sin t)y(t)
.+. sin t+y(t) ) dt

+ (
√

. + . sin t)y(t) dB(t), t �= τk ,
y(τ+

k ) = ( + λk)y(τk), t = τk , k ∈N.
(.)

Let y() = ., τk = k, λk = e
(–)k+

k – , then  <
∏+∞

k= ( + λk) < . Notice that ϕ(t) = . +
. sin t – .(

√
. + . sin t) and

lim sup
t→+∞

t–
( ∑

<τk <t

ln( + λk) +
∫ t


ϕ(s) ds

)
= –. < .

It follows from Theorem . that system (.) is extinct (see Figure ).

Example  (Stochastic permanence) Consider the following system:

⎧
⎪⎨

⎪⎩

dy(t) = y(t)(. + . sin t – (. + . sin t)y(t) – (.+. sin t)y(t)
.+. sin t+y(t) ) dt

+ (
√

. + . sin t)y(t) dB(t), t �= τk ,
y(τ+

k ) = ( + λk)y(τk), t = τk , k ∈N.
(.)

Let y() = ., τk = k, λk = e
(–)k+

k – , then  <
∏+∞

k= ( + λk) < e. Obviously, ϕ(t) = . +
. sin t – .(

√
. + . sin t), and ϕl = . > , so by Theorem . we know that

system (.) is stochastically permanent (see Figure ).

Figure 1 System (5.1) is extinct.
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Figure 2 System (5.2) is stochastically
permanent.

Figure 3 System (5.3) is global attractive.

Example  (Global attractivity) Consider the following system:

⎧
⎪⎨

⎪⎩

dy(t) = y(t)(. + . sin t – (. + . sin t)y(t) – (.+. sin t)y(t)
.+. sin t+y(t) ) dt

+ (
√

. + . sin t)y(t) dB(t), t �= τk ,
y(τ+

k ) = ( + λk)y(τk), t = τk , k ∈N.
(.)

Let y() = ., y() = ., τk = k, λk = e
(–)k+

k – , then  <
∏+∞

k= ( + λk) < e, al = . >
cu/bl = .. Thus, it follows from Theorem . that system (.) is globally attractive (see
Figure ).
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