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Abstract
This paper is concerned with the very weak solutions to A-Dirac equations
DA(x,Du) = 0 with Dirichlet boundary data. By means of the decomposition in a
Clifford-valued function space, convergence of the very weak solutions to A-Dirac
equations is obtained in Clifford analysis.
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1 Introduction
In this paper, we shall consider a nonlinear mapping A : � × C�n → C�n such that

(N) x → A(x, ξ ) is measurable for all ξ ∈ C�n,
(N) ξ → A(x, ξ ) is continuous for a.e. x ∈ �,
(N) |A(x, ξ ) – A(x, ζ )| ≤ b|ξ – ζ |p–,
(N) (A(x, ξ ) – A(x, ζ ), ξ – ζ ) ≥ a|ξ – ζ |(|ξ | + |ζ |)p–,

where  < a ≤ b < ∞.
The exponent p >  will determine the natural Sobolev class, denoted by W ,p(�, C�n),

in which to consider the A-Dirac equations

DA(x, Du) = . ()

We call u ∈ W ,p
loc (�, C�n) a weak solution to () if

∫
�

A(x, Du)Dϕ dx =  ()

for each ϕ ∈ W ,p
loc (�, C�n) with compact support.

Definition . For s > max{, p – }, a Clifford-valued function u ∈ W ,s
loc(�, C�n) is called a

very weak solution of equation () if it satisfies () for all ϕ ∈ W , s
s–p+ (�, C�n) with compact

support.

Remark . It is clear that if s = p, the very weak solution is identity to the weak solution
to equation ().
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It is well known that the A-harmonic equations

– div A(x,∇u) =  ()

arise in the study of nonlinear elastic mechanics. More exactly, by means of qualitative the-
ory of solutions to (), we can study the above physics problems at equilibrium. Moreover,
basic theories of () of degenerate condition have been studied by Iwaniec, Heinonen et
al. systematically in [–]. While the regularity is not good enough, the existence of weak
solutions to elliptic equations maybe not obtained in the corresponding function space,
then the concept of ‘very weak solution’ is produced in order to study the solutions to
elliptic equations in a wider space. Also, there are many researchers’ works on the prop-
erties of the very weak solutions to various versions of A-harmonic equations, see [–].
In , Gürlebeck and Sprößig studied the quaternionic analysis and elliptic boundary
value problems in []; for more about Clifford analysis and its applications, see [–].
In , Nolder introduced the A-Dirac equations () and explained how the quasi-linear
elliptic equations () arise as components of Dirac equations (). After that, Fu, Zhang,
Bisci et al. studied this problem on the weighted variable exponent spaces, see [–].
Wang and Chen studied the relation between A-harmonic operator and A-Dirac system
in []. In [], Lian et al. studied the weak solutions to A-Dirac equations in whole. For
other works in this new field, we refer readers to [–].

This paper is concerned with the very weak solutions to a nonlinear A-Dirac equation
with Dirichlet bound data

⎧⎨
⎩

DA(x, Du) = ,

u – u ∈ W ,s
 (�, C�n).

()

We study the convergence of the very weak solutions to equation () without the homo-
geneity A(x,λξ ) = |λ|p–λA(x, ξ ).

2 Preliminary results
Let e, e, . . . , en be the standard basis of Rn with the relation eiej + ejei = –δij. For l =
, , . . . , n, we denote by C�k

n = C�k
n(Rn) the linear space of all k-vectors, spanned by the

reduced products eI = ei ei · · · eik , corresponding to all ordered k-tuples I = (i, i, . . . , ik),
 ≤ i < i < · · · < ik ≤ n. Thus, Clifford algebra C�n = ⊕C�k

n is a graded algebra and C�
n = R

and C�
n = R

n.R ⊂C ⊂H ⊂ C�
n ⊂ · · · is an increasing chain. For u ∈ C�n, u can be written

as

u =
∑

I

uIeI =
∑

≤i<···<ik≤n

ui,...,ik ei · · · eik ,

where  ≤ k ≤ n.
The norm of u ∈ C�n is given by |u| = (

∑
I u

I )/. Clifford conjugation eα · · · eαk =
(–)keαk · · · eα . For each I = (i, i, . . . , ik), we have

eIeI = eIeI = . ()
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For u =
∑

I uIeI ∈ C�n, v =
∑

J vJ eJ ∈ C�n,

〈u, v〉 =
〈∑

I

uIeI ,
∑

J

vJ eJ

〉
=

∑
I

uIvI

defines the corresponding inner product on C�n. For u ∈ C�n, Sc(u) denotes the scalar
part of u, that is, the coefficient of the element u. Also we have 〈u, v〉 = Sc(uv).

The Dirac operator is given by

D =
n∑

j=

ej
∂

∂xj
.

u is called a monogenic function if Du = . Also D = –�, where � is the Laplace operator
which operates only on coefficients.

Throughout the paper, � is a bounded domain. C∞
 (�, C�n) is the space of Clifford-

valued functions in � whose coefficients belong to C∞
 (�). For s > , denote by Ls(�, C�n)

the space of Clifford-valued functions in � whose coefficients belong to the usual Ls(�)
space. Denoted by ∇u = ( ∂u

∂x
, ∂u

∂x
, . . . , ∂u

∂xn
), then W ,s(�, C�n) is the space of Clifford-valued

functions in � whose coefficients as well as their first distributional derivatives are in
Ls(�). We similarly write W ,s

loc(�, C�) and W ,s
 (�, C�n).

Let G(x) = 
ωn

x
|x|n , the Teodorescu operator here is given by

Tf =
∫

�

G(x – y)f (y) dy.

Next, we introduce the Borel-Prompieu result for a Clifford-valued function.

Theorem . ([]) If � is a domain in R
n, then for each f ∈ C∞

 (�, C�n), we have

f (z) =
∫

∂�

G(x – z) dσ (x)f (x) –
∫

�

G(x – z)Df (x) dx, ()

where z ∈ �.

According to Theorem ., Lian proved the following theorem.

Theorem . ([]) (Poincaré inequality) For every u ∈ W ,s
 (�, C�n),  < s < ∞, there ex-

ists a constant c such that
∫

�

|u|s dx ≤ c|�| 
n

∫
�

|Du|s dx. ()

For s > , we can find that f = TDf when f ∈ W ,s
 (�, C�n). Also, we have f = DTf when

f ∈ Ls(�, C�n), see [].

Lemma . ([]) Suppose Clifford-valued function u ∈ C∞
 (�, C�n),  < p < ∞, then there

exists a constant c such that
∫

�

∣∣∇(Tu)
∣∣p dx ≤ c(n, p,�)

∫
�

|u|p dx.
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Then we can easily get the following lemma.

Lemma . Let u be a Clifford-valued function in W ,s
 (�, C�n),  < s < ∞. Then there

exists a constant c such that
∫

�

|∇u|s dx =
∫

�

|∇TDu|s dx ≤ c
∫

�

|Du|s dx. ()

Remark . From Theorem . and Lemma ., we know that, for Clifford-valued func-
tion u ∈ W ,p

 (�, C�n), we have
∫

�

(|u|p + |∇u|p)dx ≤ c(n, p,�)
∫

�

|Du|p dx.

3 Decomposition in Clifford-valued function space
In this section, we mainly discuss the properties of decomposition of Clifford-valued func-
tions, these properties play an important role in studying the solutions of A-Dirac equa-
tions.

In [], Kähler gave the following decomposition for Clifford-valued function space
Ls(�, C�n):

Ls(�, C�n) =
[
ker D ∩ Ls(�, C�n)

] ⊕ DW ,s
 (�, C�n). ()

This means that for ω ∈ Ls(�, C�n), there exist the uniqueness α ∈ Ls(�, C�n) ∩ ker D, β ∈
W ,s

 (�, C�n) such that ω = α + Dβ .
Let (X,μ) be a measure space and let E be a separable complex Hilbert space. Consider

a bounded linear operator F : Ls(X, E) → Ls(X, E) for all r ∈ [s, s], where  ≤ s < s ≤ ∞.
Denote its norm by ‖F‖s.

Lemma . ([]) Suppose that s
s

≤  + ε ≤ s
s

. Then

∥∥F
(|f |ε)f

∥∥ s
+ε

≤ K |ε|‖f ‖+ε
r ()

for each f ∈ Ls(X, E) ∩ G, where

K =
s(s – s)

(s – s)(s – s)
(‖F‖s + ‖F‖s

)
.

Remark . For Clifford-valued function ω = α + Dβ ∈ W ,s(�, C�n), let Fω = α, then we
have F(Dω) = .

Proof From (), for Dω ∈ Ls(�, C�n), there exist

α ∈ ker D ∩ Ls(�, C�n), β ∈ DW ,s
 (�, C�n)

such that Dω = α + Dβ, then F(Dω) = α. So we have DDω = Dα + DDβ, this means that
⎧⎨
⎩

�(ω – β) = ,

ω – β ∈ W ,s
 (�, C�n).

()

Hence we get ω = β, then Dω = Dβ. Then we get the final result directly. �
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Lemma . For each ω ∈ W ,s(�, C�n), max{, p – } ≤ s < p, there exist μ ∈ W , s
+ε

 (�,
C�n), π ∈ L s

+ε (�, C�n) such that

|Dω|εDω = Dμ + π , ()

and also

‖π‖ s
+ε

=
∥∥F

(|Dω|εDω
)∥∥ s

+ε
≤ k|ε|‖Dω‖+ε

s ,

‖Dμ‖ s
+ε

=
∥∥|Dω|εDω – π

∥∥ s
+ε

≤ C‖Dω‖+ε
s .

()

Proof We can get () from () immediately, so it is only needed to prove (). It follows
by the definition of the operator F that F(Dω) =  and

F : W ,s(�, C�n) → W ,s(�, C�n)

is a bounded linear mapping. And according to Lemma ., we have

‖π‖ s
+ε

=
∥∥F

(|Dω|εDω
)∥∥ s

+ε
≤ k|ε|‖Dω‖+ε

s .

Then by Minkowski’s inequality, we get

‖Dμ‖ s
+ε

=
∥∥|Dω|εDω – π

∥∥ s
+ε

≤ ∥∥|Dω|εDω
∥∥ s

+ε
+ ‖π‖ s

+ε

≤ c‖Dω‖+ε
s ,

this completes the proof. �

4 Main results
In this section, we will show the convergence of very weak solutions of (). Suppose
that {u,j}, j = , , . . . , is the sequence converging to u in W ,s(�, C�n), and let uj ∈
W ,s

loc(�, C�n), j = , , . . . , be the very weak solutions of the boundary value problem

⎧⎨
⎩

DA(x, Duj) = ,

uj – u,j ∈ W ,s
 (�, C�n),

()

where max{, p – } ≤ s < p.
The main result of this section is the following theorem.

Theorem . Under the hypotheses above, for max{, p – } ≤ s ≤ p, there exists u ∈
W ,s(�, C�n) such that uj converges to u in W ,s

loc(�, C�n) and u is a very weak solution to
equation () satisfying u – u ∈ W ,s(�, C�n).

We first discuss the non-homogeneous A-Dirac equations

DA(x, g + Dω) = , ()

where g ∈ Ls(�, C�n).
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Definition . The Clifford-valued function ω ∈ W ,s(�, C�n) is called a very weak solu-
tion to (), max{, p – } ≤ s < p, if

∫
�

A(x, g + Dω)Dϕ dx =  ()

holds for all ϕ ∈ W , s
s–p+ (�, C�n) with compact support.

Theorem . Let ω ∈ W ,s(�, C�n) be a very weak solution to (), then there exists a
constant c such that

∫
�

|Dω|s dx ≤ c
∫

�

|g|s dx. ()

Proof From Lemma ., we have the following decomposition:

|Dω|sDω = Dϕ + f , ()

where ϕ ∈ W
, p

s–p+
 (�, C�n), so ϕ can be as a test function in (). Then we have

∫
�

Sc
(
A(x, g + Dω)Dϕ

)
dx =

∫
�

〈
A(x, g + Dω), Dϕ

〉
dx = .

Combining with (), it follows

∫
�

〈
A(x, Dω), |Dω|s–pDω – f

〉
dx = ,

i.e.,

∫
�

〈
A

(
x, |Dω|s–pDω

)〉
dx

=
∫

�

〈
A(x, Dω) – A(x, g + Dω), |Dω|s–pDω

〉
dx

+
∫

�

〈
A(x, g + Dω, f )

〉
dx.

Using the structure condition (N), (N), we get

a
∫

�

|Dω|s dx ≤ b
∫

�

|g|p–|Dω|s–p+ dx +
∫

�

|g + Dω|p–|f |dx.

Then, by Hölder, it yields

a
∫

�

|Dω|s dx ≤ b
(∫

�

|g|s dx
) p–

s
(∫

�

|Dω|s dx
) s–p+

s

+
(∫

�

|g + Dω|s dx
) p–

s
(∫

�

|f | s
s–p+ dx

) s–p+
s

.
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According to Lemma ., there is

(∫
�

|f | s
s–p+ dx

) s–p+
s

≤ k|s – p|
(∫

�

|Dω|s dx
) s–p+

s
.

And then, combining with Young’s inequality, we get

a
∫

�

|Dω|s dx ≤ cτ

∫
�

|Dω|s dx + c(τ)
∫

�

|g|s dx + cτ

∫
�

|Dω|s dx

+ c(τ)
∫

�

|Dω|s dx + c(τ)|s – p|
∫

�

|Dω|s dx

≤ (
cτ + cτ + c(τ)|s – p|)

∫
�

|Dω|s dx

+
(
c(τ) + c(τ)

)∫
�

|g|s dx.

We now determine τ, τ, ε to ensure that

∫
�

cτ + cτ + c(τ)|s – p| ≤ a


.

Thus
∫

�

|Dω|s dx ≤ c
∫

�

|g|s dx.

This proof is completed. �

Corollary . Suppose that u ∈ W ,s(�, C�n), max{, p – } ≤ s < p, u ∈ W ,s(�, C�n) is a
very weak solution to () with u – u ∈ W ,s(�, C�n). Then

∫
�

|Du|s dx ≤ c
∫

�

|Du|s dx. ()

Proof Let ω = u – u, we have Du = Dω + Du. Since u is a very weak solution to (), ω is
a very weak solution to DA(x, Dω + Du) = . From Theorem ., we get

∫
�

|Dω|s dx ≤ c
∫

�

|Du|s dx.

By means of Minkowski’s inequality, we obtain

∫
�

|Du|s dx ≤ c
∫

�

|Dω|s dx + c
∫

�

|Du|s dx ≤ c
∫

�

|Du|s dx.

This completes the proof. �

Proof of Theorem . By (), we have the uniform bounds for |Duj|s,
∫

�

|Duj|s dx ≤ c
∫

�

|Du,j|s dx ≤ c
∫

�

|Du|s dx,
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when j is sufficiently large. Using Lemma ., we have

∫
�

|∇uj|s dx ≤ c
∫

�

(∣∣∇(uj – u,j)
∣∣s + |∇u,j|s

)
dx

≤ c
∫

�

(∣∣D(uj – u,j)
∣∣s + |∇u,j|s

)
dx

≤ c′
(∫

�

|Du|s dx +
∫

�

|∇u|s dx
)

.

Write uj =
∑

I uI
j eI , we have uI

j ∈ W ,s(�), and ‖uI
j ‖W ,s(�) ≤ C. Then there exists a subse-

quence, still denoted by {uI
j } and uI ∈ W ,s(�), such that

⎧⎪⎪⎨
⎪⎪⎩

uI
j ⇀ uI , in W ,s(�),

uI
j → uI , in Ls(�),

uI
j → uI , pointwise a.e. in �.

()

Let u =
∑

I uIeI , then uj → u in Ls(�, C�n), uj → u pointwise a.e. �. Since ∇uI
j ⇀ uI in

Ls(�) for each j = , , . . . , we have

∫
�

yα

∂uI
j

∂xj
dx →

∫
�

yα

∂uI

∂xj
dx,

whenever yα ∈ L s
s– (�). Then

∫
�

yDui dx →
∫

�

yDu dx

for each y ∈ L s
s– (�, C�n), which implies that Duj ⇀ Du in Ls(�).

The next stage is to extract a further subsequence, so that Duj → Du pointwise a.e. in �.
Through

∫
�

∣∣∣∣A(x, Duj) – A(x, Du)
∣∣|Duj – Du|s–p∣∣ s

s– dx ≤ b
∫

�

|Duj – Du|s dx

≤ c
∫

�

(|Du|s + |Duj|s
)

dx < ∞,

we know that |A(x, Duj) – A(x, Du)||Duj – Du|s–p ∈ L s
s– (�), together with Duj ⇀ Du in

Ls(�) yields

∫
�

〈
A(x, Duj) – A(x, Du), |Duj – Du|s–p(Duj – Du)

〉
dx →  (j → ∞).

Then it follows from the structure condition (N) that

a
∫

�

|Duj – Du|s dx

≤
∫

�

〈
A(x, Duj) – A(x, Du), |Duj – Du|s–p(Duj – Du)

〉
dx → ,
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that is to say Duj → Du a.e. in �. Since ξ → A(x, ξ ) is continuous, for each ϕ ∈
W , s

s–p+ (�, C�n), we get

∫
�

〈
A(x, Du), Dϕ

〉
dx = lim

j→∞

∫
�

〈
A(x, Duj), Dϕ

〉
dx = . ()

Next, we show that
∫

�

(
A(x, Du)

)
Dϕ dx = . ()

Write (A(x, Du))Dϕ =
∑

J vJ eJ , then 〈A(x, Du), Dϕ〉 = Sc (A(x, Du))Dϕ = v. So () yields∫
�

v dx = . Now, for each J , let ϕ′ = ϕeJ , we find that Dϕ′ = (Dϕ)eJ still in W , s
s–p+ (�, C�n).

Then ϕ′ can be as a test function, so we obtain

 =
∫

�

〈
A(x, Du), Dϕ′〉dx =

∫
�

vJ dx. ()

Thus, for each J ,
∫
�

vJ dx = , this implies

∫
�

(
A(x, Du)

)
Dϕ dx =

(∫
�

vJ dx
)

eJ = ,

i.e., () holds for each ϕ ∈ W , s
s–p+ (�, C�n) with compact support.

At last, we show that u – u ∈ W ,s
 (�, C�n). Let u,j =

∑
I uI

,jeI , u =
∑

I uI
eI . Since

u,j → u in W ,s(�, C�n), we have uI
,j → uI

 in W ,s(�). On the other hand, uI
j ⇀ uI in

W ,s(�), this yields uI
j – uI

,j ⇀ uI – uI
 in W ,s(�). Also,

∫
�

∣∣∇(uj – u,j)
∣∣s dx ≤ c

∫
�

|Duj – Du,j|s dx ≤ c
∫

�

|Du|s dx,

i.e., uI
j – uI

,j is bounded in W ,s
 (�), then uI – uI

 ∈ W ,s
 (�), which implies that u – u ∈

W ,s
 (�, C�n). So we obtain that u ∈ W ,s(�, C�n) is the very weak solution to equation (),

the theorem follows. �
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