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Abstract
The objective of this paper is to study oscillation of a forced second-order neutral
differential equation. By using the generalized Riccati substitution and integral
technique, a new sufficient condition is obtained which insures that all solutions to
the studied equation are oscillatory. An illustrative example is included.
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1 Introduction
In this paper, we are concerned with the oscillation of a forced second-order nonlinear
neutral differential equation

(
r(t)

[
x(t) + P(t)x

(
τ (t)

)]′)′ +
m∑

i=

Qi(t)fi
(
x(t)

)
+

l∑

j=

Rj(t)gj
(
x
(
τ (t)

))
= F(t), (.)

where t ≥ t > , m ≥ , and l ≥  are integers. We suppose that the following assumptions
are satisfied:

(A) r ∈ C([t,∞), (,∞)), P, Qi, Rj ∈ C([t,∞), [,∞)), fi, gj ∈ C(R,R), yfi(y) > , and
ygj(y) >  for y �= , i = , , . . . , m, and j = , , . . . , l;

(A) τ ∈ C([t,∞),R), τ (t) ≤ t, and limt→∞ τ (t) = ∞;
(A) there exist constants αi >  and βj >  such that fi(y)/y ≥ αi and gj(y)/y ≥ βj for y �= ,

i = , , . . . , m, and j = , , . . . , l;
(A) for any T ≥ t, there exist T ≤ s < t ≤ s < t such that

F(t)

{
≤ , t ∈ [s, t],
≥ , t ∈ [s, t],

and

l∑

j=

βjRj(t) ≥
m∑

i=

αiQi(t)P(t), t ∈ [s, t] ∪ [s, t]. (.)
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Throughout the paper, we define

z(t) := x(t) + P(t)x
(
τ (t)

)
. (.)

By a solution of (.) we mean a function x ∈ C([Tx,∞),R), Tx ≥ t, which has the property
rz′ ∈ C([Tx,∞),R) and satisfies (.) on [Tx,∞). We consider only those solutions x of
(.) which satisfy condition sup{|x(t)| : t ≥ T} >  for all T ≥ Tx. We assume that (.)
possesses such solutions. A solution of (.) is called oscillatory if it has arbitrarily large
zeros on the interval [Tx,∞); otherwise, it is termed nonoscillatory.

As is well known, the study of qualitative theory of differential equations is of impor-
tance both in theory and applications. For instance, the problems of oscillatory behav-
ior of neutral differential equations have a number of practical applications in the study
of distributed networks containing lossless transmission lines which arise in high-speed
computers where the lossless transmission lines are used to interconnect switching cir-
cuits. For some related contributions on oscillation of various classes of neutral differential
equations, we refer the reader to [–] and the references cited therein.

In what follows, we provide some background details that motivated our study. El-Sayed
[] and Wong [] investigated the second-order forced linear differential equation

(
p(t)x′)′ + q(t)x = f (t).

Zhang et al. [] studied a second-order neutral differential equation

(
r(t)

[
x(t) + p(t)x(t – τ )

]′)′ + Q(t)f
(
x(t)

)
+ Q(t)g

(
x(t – τ )

)
= H(t), (.)

where Q and Q are nonnegative functions. Equation (.) is a special case of (.). In
the sequel, using a generalized Riccati substitution which differs from those exploited in
[, , ], a new oscillation criterion for (.) is presented. Furthermore, an illustrative
example is provided.

2 Main results
Theorem . Assume that conditions (A)-(A) are satisfied and let Bk = {u ∈ C[sk , tk] :
u(t) �≡ , u(sk) = u(tk) = }, k = , . If there exist functions u ∈ Bk , ρ ∈ C([t,∞), (,∞)),
and σ ∈ C([t,∞),R) such that, for k = , ,

Jk(u,ρ,σ )

=
∫ tk

sk

{

ρ

[

u

( m∑

i=

αiQi + rσ  – (rσ )′
)

– r
(

u′ +
uρ ′

ρ
+ uσ

)
]}

(t) dt > , (.)

then every solution of (.) is oscillatory.

Proof Suppose that x is a nonoscillatory solution of (.) which is eventually positive. Then
z defined by (.) is also eventually positive. Using (A), for any T ≥ t, there exist t > s ≥
T such that F(t) ≤  for t ∈ [s, t]. From (A), (.), (.), and (.), we have
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(
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(
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≤ –
m∑
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l∑
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(
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≤ –
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(
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)
]

= –
m∑

i=

αiQi(t)z(t). (.)

For t ≥ T , we define a generalized Riccati substitution by

V (t) := –ρ(t)
[

r(t)z′(t)
z(t)

+ r(t)σ (t)
]

. (.)

Then we have

V ′ = –ρ ′
(

rz′

z
+ rσ

)
– ρ

(
rz′

z
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ρ ′

ρ
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(
rz′

z
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ρ
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(rz′)′

z
+ ρ

r(z′)
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By virtue of (.), we obtain

(
z′

z

)

=
(

V
–ρr

– σ

)

=
(

V
ρr

)

+ σ  + 
Vσ

ρr
. (.)

For t ∈ [s, t], substituting (.) and (.) into (.), we conclude that
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ρ ′

ρ
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V 
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V 
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]

+
(

ρ ′

ρ
+ σ

)
V +

V 

ρr
. (.)

Let u ∈ B be given as in the hypothesis. Multiplying (.) by u and integrating the result-
ing inequality from s to t, we have

∫ t

s

uV ′ dt ≥
∫ t

s

uρ

[ m∑

i=

αiQi + rσ  – (rσ )′
]

dt +
∫ t

s
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ρ ′

ρ
+ σ

)
Vu dt

+
∫ t

s

V 

ρr
u dt. (.)
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Integrating (.) by parts and using the fact that u(s) = u(t) = , we deduce that

–
∫ t

s

uu′V dt ≥
∫ t

s

uρ

[ m∑

i=

αiQi + rσ  – (rσ )′
]

dt

+
∫ t
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Vu dt +

∫ t
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That is,

∫ t
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Hence,

∫ t
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[
uV√
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+
√

ρr
(
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ρ
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+
∫ t

s

[
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which is equivalent to

∫ t

s

[
uV√
ρr

+
√

ρr
(

u′ +
uρ ′

ρ
+ uσ

)]

dt + J(u,ρ,σ ) ≤ , (.)

where J(u,ρ,σ ) is as in (.). Since J(u,ρ,σ ) > , inequality (.) yields

∫ t

s

[
uV√
ρr

+
√

ρr
(

u′ +
uρ ′

ρ
+ uσ

)]

dt ≤ –J(u,ρ,σ ) < ,

which is a contradiction. This contradiction proves that x is not eventually positive.
When x is eventually negative, we use u ∈ B and F(t) ≥  on [s, t] to arrive at a similar

contradiction. The proof is complete. �

Example . For t ≥ , consider the forced second-order neutral delay differential equa-
tion

(
x(t) +




x
(

t


))′′
+ x(t) + tx

(
t


)
= sin t. (.)

Let r(t) = , P(t) = /, τ (t) = t/, m = l = , Q(t) = , R(t) = t, f(y) = g(y) = y,
α = β = , u = sin t, ρ(t) = , and σ (t) = . Set s = (n + )π , t = (n + )π , s = (n + )π ,
and t = (n + )π . Then

J(u,ρ,σ ) =
∫ t

s

{

ρ

[

u

( m∑

i=

αiQi + rσ  – (rσ )′
)

– r
(

u′ +
uρ ′

ρ
+ uσ

)
]}

(t) dt

=
∫ (n+)π

(n+)π

(
 sin t – cos t

)
dt =



π .

Similarly, J(u,ρ,σ ) = π/. Hence, by Theorem ., every solution of (.) is oscillatory.
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