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1 Introduction
The subject of fractional calculus has gained significant interest and been a valuable tool
for both science and engineering (see [–]). In recent years, the fractional boundary value
problems (FBVPs for short) have been considered by many authors (see [–] and the
references therein). For example, Bai studied a FBVP at non-resonance with  < α ≤  (see
[]). FBVPs at resonance were studied by Kosmatov (see []) and Jiang (see []). But the
positive solutions for FBVPs at resonance were studied very few. In [], Yang and Wang
considered the positive solutions of the following FBVP:{

–Dα
+ x(t) = f (t, x(t)), t ∈ [, ],

x() = , x′() = x′().

In [], Chen and Tang studied the positive solution of FBVP as follows:{
Dα

+ x(t) = f (t, x(t)), t ∈ [, +∞),
x() = x′() = x′′() = , Dα–

+ x() = limt→+∞ Dα–
+ x(t).

However, to the best of our knowledge, the fractional differential equations with m-point
boundary conditions at resonance have not been considered. Motivated by the papers
above, we consider the existence of positive solutions for a m-point FBVP of the form{

–Dα
+ x(t) = f (t, x(t)), t ∈ [, ],

x′() = , x() =
∑m–

i= βix(ηi),
(.)

where Dα
+ denotes the standard Caputo fractional differential operator of order α,

 < α ≤ , βi ∈R
+,

∑m–
i= βi = ,  < η < η < · · · < ηm– < , and f : [, ]×R →R is contin-

uous. Obviously, FBVP (.) happens to be at resonance under the condition
∑m–

i= βi = .
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The rest of this paper is organized as follows. Section  contains some necessary no-
tations, definitions and lemmas. In Section , we establish a theorem on the existence of
positive solutions for FBVP (.) under some restrictions of f , basing on the coincidence
degree theory due to []. Finally, in Section , an example is given to illustrate the main
result.

2 Preliminaries
For convenience of the reader, we present some definitions, notations, and preliminary
statements, which can be found in [, , ].

Let X and Y be real Banach spaces, L : dom L ⊂ X → Y be a Fredholm operator with
index zero, where the index of a Fredholm operator L is defined by

Index L := dim Ker L – dim Coker L.

Suppose P : X → X, Q : Y → Y be continuous linear projectors such that

Im P = Ker L, Ker Q = Im L,

X = Ker L ⊕ Ker P, Y = Im L ⊕ Im Q.

Thus, we see that

L|dom L∩Ker P : dom L ∩ Ker P → Im L

is invertible. We denote the inverse by KP . Moreover, by virtue of dim Im Q = codim Im L,
there exists an isomorphism J : Im Q → Ker L. Then we know that the operator equation
Lx = Nx is equivalent to

x = (P + JQN)x + KP(I – Q)Nx,

where N : X → Y be a nonlinear operator.
If � is an open bounded subset of X such that dom L ∩ � 
= ∅, then the map N : X → Y

will be called L-compact on � if QN : � → Y is bounded and KP(I – Q)N : � → X is
compact.

Let C be a cone in X. Then C induces a partial order in X by

x ≤ y if and only if y – x ∈ C.

Lemma . (see []) Let C be a cone in X. Then for every u ∈ C \ {} there exists a positive
number σ (u) such that

‖x + u‖ ≥ σ (u)‖x‖

for all x ∈ C.

Let γ : X → C be a retraction, that is, a continuous mapping such that γ (x) = x for all
x ∈ C. Set

� := P + JQN + KP(I – Q)N
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and

�γ := � ◦ γ .

Lemma . (see []) Let C be a cone in X and �, � be open bounded subsets of X with
� ⊂ � and C ∩ (� \ �) 
= ∅. Assume that the following conditions are satisfied:

() L : dom L ⊂ X → Y be a Fredholm operator of index zero and N : X → Y be
L-compact on every bounded subset of X ,

() Lx 
= λNx for every (x,λ) ∈ [C ∩ ∂� ∩ dom L] × (, ),
() γ maps subsets of � into bounded subsets of C,
() deg([I – (P + JQN)γ ]|Ker L, Ker L ∩ �, ) 
= ,
() there exists u ∈ C \ {} such that ‖x‖ ≤ σ (u)‖�x‖ for x ∈ C(u) ∩ ∂�, where

C(u) = {x ∈ C : μu ≤ x for some μ > } and σ (u) is such that ‖x + u‖ ≥ σ (u)‖x‖
for every x ∈ C,

() (P + JQN)γ (∂�) ⊂ C,
() �γ (� \ �) ⊂ C.

Then the equation Lx = Nx has at least one solution in C ∩ (� \ �).

Definition . (see []) The Riemann-Liouville fractional integral operator of order α >
 of a function x is given by

Iα
+ x(t) =


�(α)

∫ t


(t – s)α–x(s) ds,

provided that the right side integral is pointwise defined on (, +∞).

Definition . (see []) The Caputo fractional derivative of order α >  of a continuous
function x is given by

Dα
+ x(t) =


�(n – α)

∫ t


(t – s)n–α–x(n)(s) ds,

where n is the smallest integer greater than or equal to α, provided that the right side
integral is pointwise defined on (, +∞).

Lemma . (see []) For α > , the general solution of the Caputo fractional differential
equation

Dα
+ x(t) = 

is

x(t) = c + ct + ct + · · · + cn–tn–,

where ci ∈R, i = , , . . . , n – , here n is the smallest integer greater than or equal to α.

Lemma . (see []) Suppose that Dα
+ x ∈ C[, ], α > . Then

Iα
+ Dα

+ x(t) = x(t) + c + ct + ct + · · · + cn–tn–,

where ci ∈R, i = , , . . . , n – , here n is the smallest integer greater than or equal to α.
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In this paper, we take X = Y = C[, ] with the norm ‖x‖∞ = maxt∈[,] |x(t)|.
Define the operator L : dom L ⊂ X → Y by

Lx = –Dα
+ x, (.)

where

dom L =

{
x ∈ X : Dα

+ x ∈ Y , x′() = , x() =
m–∑
i=

βix(ηi)

}
.

Let N : X → Y be the Nemytskii operator

Nx(t) = f
(
t, x(t)

)
, ∀t ∈ [, ].

Then FBVP (.) is equivalent to the operator equation

Lx = Nx, x ∈ dom L.

3 Main result
In this section, a theorem on the existence of positive solutions for FBVP (.) will be given.

For simplicity of notation, we set

li(s) =

⎧⎨
⎩( – s)α– – (ηi – s)α–,  ≤ s ≤ ηi ≤ ,

( – s)α–,  ≤ ηi ≤ s ≤ ,

and

G(t, s) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩


�(α+) ( – s)α

+ α(�(α+)–+(α+)tα )
�(α+)

∑m–
i= βi(–ηα

i )

∑m–
i= βili(s),  ≤ t ≤ s ≤ ,


�(α+) ( – s)α – 

�(α) (t – s)α–

+ α(�(α+)–+(α+)tα )
�(α+)

∑m–
i= βi(–ηα

i )

∑m–
i= βili(s),  ≤ s ≤ t ≤ .

Obviously, max≤s≤
∑m–

i= βili(s) ≤ . We denote

κ := min

{
,

∑m–
i= βi( – ηα

i )
α

,


maxt,s∈[,] G(t, s)

}
.

Thus, one has

 –
κα

∑m–
i= βili(s)∑m–

i= βi( – ηα
i )

≥ ,  – κG(t, s) ≥ . (.)

Theorem . Let f : [, ] ×R →R be continuous. Suppose that:

(H) there exist nonnegative functions a, b ∈ X with �(α+)
 b <  such that

∣∣f (t, u)
∣∣ ≤ a(t) + b(t)|u|, ∀t ∈ [, ], u ∈R,

where b = ‖b‖∞,
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(H) there exists a constant B >  such that

uf (t, u) < , ∀t ∈ [, ], |u| > B,

(H) f (t, u) > –κu, for all (t, u) ∈ [, ] × [,∞),
(H) there exist r ∈ (, +∞), t ∈ [, ], M ∈ (, ) and continuous function h : (, r] →

[,∞) such that f (t, u) ≥ h(u) for all t ∈ [, ], u ∈ (, r], and h(u)
u is non-increasing

on (, r] with

h(r)
r

∫ 


G(t, s) ds ≥  – M

M
.

Then FBVP (.) has at least one solution in X.

Now, we begin with some lemmas that are useful in what follows.

Lemma . Let L be defined by (.), then

Ker L =
{

x ∈ X : x(t) = c,∀t ∈ [, ], c ∈R
}

, (.)

Im L =

{
y ∈ Y :

m–∑
i=

βi

∫ 


li(s)y(s) ds = 

}
. (.)

Proof By Lemma ., Dα
+ x(t) =  has solution

x(t) = c + ct, c, c ∈R.

Combining with the boundary conditions of FBVP (.), one sees that (.) holds.
For y ∈ Im L, there exists x ∈ dom L such that y = Lx ∈ Y . By Lemma ., we have

x(t) = –


�(α)

∫ t


(t – s)α–y(s) ds + c + ct, c, c ∈ R.

Then we get

x′(t) = –


�(α – )

∫ t


(t – s)α–y(s) ds + c.

By the boundary conditions of FBVP (.), we see that y satisfies

∫ 


( – s)α–y(s) ds =

m–∑
i=

βi

∫ ηi


(ηi – s)α–y(s) ds.

That is,

m–∑
i=

βi

∫ 


li(s)y(s) ds = . (.)

On the other hand, suppose y ∈ Y and satisfies (.). Let x(t) = –Iα
+ y(t) + x(), then

x ∈ dom L and Dα
+ x(t) = –y(t). Thus, y ∈ Im L. Hence (.) holds. The proof is complete.

�
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Lemma . Let L be defined by (.), then L is a Fredholm operator of index zero, and the
linear continuous projector operators P : X → X and Q : Y → Y can be defined as

Px(t) =
∫ 


x(s) ds, ∀t ∈ [, ],

Qy(t) =
α∑m–

i= βi( – ηα
i )

m–∑
i=

βi

∫ 


li(s)y(s) ds, ∀t ∈ [, ].

Furthermore, the operator KP : Im L → dom L ∩ Ker P can be written by

KPy(t) =
∫ 


k(t, s)y(s) ds, ∀t ∈ [, ],

where

k(t, s) =

⎧⎨
⎩


�(α+) ( – s)α ,  ≤ t ≤ s ≤ ,


�(α+) ( – s)α – 

�(α) (t – s)α–,  ≤ s ≤ t ≤ .
(.)

Proof Obviously, Im P = Ker L and Px = Px. It follows from x = (x – Px) + Px that X =
Ker P + Ker L. By a simple calculation, one obtain Ker L ∩ Ker P = {}. Thus, we get

X = Ker L ⊕ Ker P.

For y ∈ Y , we have

Qy = Q(Qy) = Qy · α∑m–
i= βi( – ηα

i )

m–∑
i=

βi

∫ 


li(s) ds = Qy.

Let y = (y – Qy) + Qy, where y – Qy ∈ Ker Q, Qy ∈ Im Q. It follows from Ker Q = Im L and
Qy = Qy that Im Q ∩ Im L = {}. Then one has

Y = Im L ⊕ Im Q.

Thus, we obtain

dim Ker L = dim Im Q = dim Coker L = .

That is, L is a Fredholm operator of index zero.
Now, we will prove that KP is the inverse of L|dom L∩Ker P . In fact, for y ∈ Im L, we have

KPy(t) = –


�(α)

∫ t


(t – s)α–y(s) ds + c, (.)

where

c =


�(α + )

∫ 


( – s)αy(s) ds.
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It is easy to see that LKPy = y. Moreover, for x ∈ dom L ∩ Ker P, we get x′() =  and

KPLx(t) = Iα
+ Dα

+ x(t) – Iα+
+ Dα

+ x(t)|t=

= x(t) – x() –
∫ 



(
x(s) – x()

)
ds

= x – Px. (.)

Combining (.) with (.), we know that KP = (L|dom L∩Ker P)–. The proof is complete. �

Lemma . Assume � ⊂ X is an open bounded subset such that dom L ∩ � 
= ∅, then N is
L-compact on �.

Proof By the continuity of f , we see that QN(�) and KP(I – Q)N(�) are bounded. That
is, there exist constants A, B >  such that |(I – Q)Nx| ≤ A and |KP(I – Q)Nx| ≤ B, ∀x ∈ �,
t ∈ [, ]. Thus, one need only prove that KP(I – Q)N(�) ⊂ X is equicontinuous.

Let KP,Q = KP(I – Q)N , for  ≤ t < t ≤ , x ∈ �, we get

∣∣(KP,Qx)(t) – (KP,Qx)(t)
∣∣

≤ 
�(α)

∣∣∣∣
∫ t


(t – s)α–(I – Q)Nx(s) ds –

∫ t


(t – s)α–(I – Q)Nx(s) ds

∣∣∣∣
≤ A

�(α)

[∫ t


(t – s)α– – (t – s)α– ds +

∫ t

t

(t – s)α– ds
]

=
A

�(α + )
(
tα
 – tα


)
.

Since tα is uniformly continuous on [, ], we see that KP,QN(�) ⊂ X is equicontinuous.
Thus, we see that KP,QN : � → X is compact. The proof is completed. �

Lemma . Suppose (H) and (H) hold, then the set

� =
{

x ∈ dom L : Lx = λNx,λ ∈ (, )
}

is bounded.

Proof Take x ∈ �, then Nx ∈ Im L. By (.), we have

m–∑
i=

βi

∫ 


li(s)f

(
s, x(s)

)
ds = .

Then, by the integral mean value theorem, there exists a constant ξ ∈ (, ) such that
f (ξ , x(ξ )) = . So, from (H), we get |x(ξ )| ≤ B. By Lemma ., one has

x(t) = x() +


�(α)

∫ t


(t – s)α–Dα

+ x(s) ds,

x(ξ ) = x() +


�(α)

∫ ξ


(ξ – s)α–Dα

+ x(s) ds.
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Thus, we get

x(t) – x(ξ ) =


�(α)

∫ t


(t – s)α–Dα

+ x(s) ds

–


�(α)

∫ ξ


(ξ – s)α–Dα

+ x(s) ds,

which together with (H) implies that

∣∣x(t)
∣∣ ≤ ∣∣x(ξ )

∣∣ +


�(α)
∥∥Dα

+ x
∥∥∞ · 

α

(
tβ + ξβ

)

≤ B +


�(α + )
∥∥Dα

+ x
∥∥∞

≤ B +


�(α + )
· max

t∈[,]

∣∣f (t, x(t)
)∣∣

≤ B +


�(α + )
(‖a‖∞ + b‖x‖∞

)
, ∀t ∈ [, ].

That is,

‖x‖∞ ≤ B +


�(α + )
(‖a‖∞ + b‖x‖∞

)
.

In view of 
�(α+) b < , there exists a constant D >  such that

‖x‖∞ ≤ D.

Hence, � is bounded. The proof is complete. �

Proof of Theorem . Set C = {x ∈ X : x(t) ≥ , t ∈ [, ]}, � = {x ∈ X : r > |x(t)| >
M‖x‖∞, t ∈ [, ]}, and � = {x ∈ X : ‖x‖∞ < R}, where R = max{B, D}. Clearly, �, �

are open bounded subsets of X and

� =
{

x ∈ X : r ≥ ∣∣x(t)
∣∣ ≥ M‖x‖∞, t ∈ [, ]

} ⊂ �.

From Lemma ., Lemma ., and Lemma ., we see that the conditions () and () of
Lemma . are satisfied.

Let γ x(t) = |x(t)| for x ∈ X and J = I . One can see that γ is a retraction and maps subsets
of � into bounded subsets of C, which means that the condition () of Lemma . holds.

For x ∈ Ker L ∩ �, we have x(t) ≡ c. Let

H(c,λ) = c – λ|c| –
λα∑m–

i= βi( – ηα
i )

m–∑
i=

βi

∫ 


li(s)f

(
s, |c|)ds.

From H(c,λ) = , one has c ≥ . Moreover, if H(R,λ) = , we get

 ≤ R( – λ) =
λα∑m–

i= βi( – ηα
i )

m–∑
i=

βi

∫ 


li(s)f (s, R) ds,
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which contradicts (H). Thus H(c,λ) 
=  for x ∈ ∂�, λ ∈ [, ]. Hence

deg
([

I – (P + JQN)γ
]|Ker L, Ker L ∩ �, 

)
= deg

(
H(c, ), Ker L ∩ �, 

)
= deg

(
H(c, ), Ker L ∩ �, 

)
= deg(I, Ker L ∩ �, )

= .

So, the condition () of Lemma . holds.
Let x ∈ � \ �, t ∈ [, ], we have

�γ x(t) =
∫ 



∣∣x(s)
∣∣ds +

α∑m–
i= βi( – ηα

i )

m–∑
i=

βi

∫ 


li(s)f

(
s,

∣∣x(s)
∣∣)ds

+
∫ 


k(t, s)

[
f
(
s,

∣∣x(s)
∣∣) –

α∑m–
i= βi( – ηα

i )

m–∑
i=

βi

∫ 


li(τ )f

(
τ ,

∣∣x(τ )
∣∣)dτ

]
ds

=
∫ 



∣∣x(s)
∣∣ds +

∫ 


G(t, s)f

(
s,

∣∣x(s)
∣∣)ds,

which together with (H) and (.) yields

�γ x(t) ≥
∫ 



∣∣x(s)
∣∣ds – κ

∫ 


G(t, s)

∣∣x(s)
∣∣ds =

∫ 



(
 – κG(t, s)

)∣∣x(s)
∣∣ds ≥ .

Thus, the condition () of Lemma . holds. In addition, we can prove the condition ()
of Lemma . holds too by a similar process.

Finally, we will show that the condition () of Lemma . is satisfied. Let u(t) ≡ , t ∈
[, ], then u ∈ C \ {}, C(u) = {x ∈ C : x(t) > , t ∈ [, ]} and we can take σ (u) = . For
x ∈ C(u) ∩ ∂�, we have x(t) > , t ∈ [, ],  < ‖x‖∞ ≤ r, and x(t) ≥ M‖x‖∞, t ∈ [, ]. So,
from (H), we obtain

�x(t) =
∫ 


x(s) ds +

∫ 


G(t, s)f

(
s, x(s)

)
ds

≥ M‖x‖ +
∫ 


G(t, s)h

(
x(s)

)
ds

= M‖x‖ +
∫ 


G(t, s)

h(x(s))
x(s)

x(s) ds

≥ M‖x‖ +
h(r)

r

∫ 


G(t, s)x(s) ds

≥ M‖x‖ +
h(r)

r

∫ 


G(t, s)M‖x‖ds

≥ M‖x‖ + ( – M)‖x‖
= ‖x‖.

Then the condition () of Lemma . holds.
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Consequently, by Lemma ., the equation Lx = Nx has at least one solution x∗ ∈
C ∩ (� \ �). Namely, FBVP (.) has at least one positive solution in X. The proof is
complete. �

4 Example
We consider the following FBVP:

{
–D



+ x(t) = sin t – 

 x(t) +  + sin x(t), t ∈ [, ],
x′() = , x() = x( 

 ).
(.)

Thus, we have

l(s) =

⎧⎨
⎩

√
 – s –

√

 – s,  ≤ s ≤ 

 ,
√

 – s, 
 ≤ s ≤ ,

G(t, s) =

⎧⎪⎪⎨
⎪⎪⎩


�( 

 )
( – s) 

 + (�( 
 )–+( 

 )t

 )

�( 
 )(–( 

 )

 )

l(s),  ≤ t ≤ s ≤ ,


�( 

 )
( – s) 

 – 
�( 

 )
(t – s) 

 + (�( 
 )–+( 

 )t

 )

�( 
 )(–( 

 )

 )

l(s),  ≤ s ≤ t ≤ .

Moreover, f (t, u) ≥  – 
 u ≥ – 

 u for all u ≥ , and l(s) ≤ , G(t, s) ≤ , κ = – 
 . So,

we can find that (H), (H), (H) hold. Next, we take t = , h(x) = x, and M = 
 , thus

G(, s) = 
�( 

 )
( – s) 

 + (�( 
 )–)

�( 
 )(–( 

 )

 )

l(s),  ≤ s ≤ , and
∫ 

 G(, s) ds = . Then (H) is satis-

fied. According to the above points, by Theorem ., we can conclude that FBVP (.) has
at least one positive solution.
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