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Abstract
In this work, we study the fractional order Lane-Emden differential equations by using
the reproducing kernel method. The exact solution is shown in the form of a series in
the reproducing kernel Hilbert space. Some numerical examples are given in order to
demonstrate the accuracy of the present method. The results obtained from the
method are compared with the exact solutions and another method. The obtained
numerical results are better than the ones provided by the collocation method.
Results of numerical examples show that the presented method is simple, effective,
and easy to use.
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1 Introduction
The fractional differential equations of various types plays important roles and tools not
only in mathematics but also in physics, control systems, dynamical systems and engi-
neering to create the mathematical modeling of many physical phenomena. As is well
known, the Lane-Emden differential equations are important for mathematical modeling
[]. Therefore, the goal of our manuscript is to research the effectiveness of reproducing
kernel method (RKM) to solve fractional differential equations of Lane-Emden type. To
demonstrate this, we solve several examples in the succeeding sections. We consider the
following equation:

Dαy(t) +
k

tα–β
Dβy(t) + f (t, y) = g(t), ()

with the initial conditions

y() = A, y′() = B, ()

where  < t ≤ , k ≥ ,  < α ≤ ,  < β ≤ , A, B are constants, f (t, y) is a continuous real
valued function and g(t) ∈ C[, ] [].

Lane-Emden differential equations are singular initial value problems relating to second
order differential equations (ODEs) utilized to model successfully several real world phe-
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nomena in mathematical physics and astrophysics. The Lane-Emden equation describes
plenty of phenomena including aspects of stellar structure, the thermal history of a spher-
ical cloud of gas, isothermal gas spheres, and thermionic currents. We recall that the ordi-
nary Lane-Emden equation does not always give a correct description of the dynamics of
systems in complex media. Thus, in order to bypass this obstacle and to better describe the
dynamical processes in a fractal medium, numerous generalizations of Lane-Emden equa-
tion were suggested. Thus, taking into account the memory effects are better described
within the fractional derivatives, the fractional Lane-Emden equations are extracting hid-
den aspects for the complex phenomena they described in various field of the applied
mathematics, mathematical physics, and astrophysics [, ].

Fractional order Lane-Emden differential equations involve multi-term fractional ODEs.
The multi-term fractional differential equations have been considered by many authors
and some numerical methods have been proposed [–].

Fractional calculus has a large variety of implementations in lots of several scientific and
engineering disciplines. The main notions of fractional calculus and implementations are
given in [, ].

We recall that a general solution technique for fractional differential equations has not
yet been constituted. Some methods have been enhanced for particular sorts of prob-
lems. Consequently, a single standard method for problems regarding fractional calculus
has not appeared. Thus, finding credible and affirmative solution methods along with fast
application techniques is beneficial and enables examination of the field. The power se-
ries method [], the differential transform [] and [], the homotopy analysis method
[], the variational iteration method [], the homotopy perturbation method [] and
the sinc-Galerkin method [] are some well known methods for solving fractional differ-
ential equations. For more details see [–].

The theory of reproducing kernels [], was utilized for the first time at the beginning of
the th century by Zaremba in his work on boundary value problems. Recently, much at-
tention was devoted to the further investigations of RKM in order to be applied to various
scientific models. Since RKM accurately computes the series solution it is of great interest
for applied sciences. The method provides the solution in a rapidly convergent series with
components that can easily be calculated. In [] an overview of RKM is shown. For more
details of this method the reader can see [–].

The organization of the manuscript is as follows.
Section  gives the basic theorems of fractional calculus. Section  introduces several

reproducing kernel spaces. The representation in o� 
 [, ] and a related linear operator

are presented in Section . Section  exhibits the main results. The exact and approxi-
mate solutions of ()-() are given in this section. We verify that the approximate solution
converges uniformly to the exact solution. Two examples are shown in Section . Some
conclusions are given in the final section.

2 Preliminaries
Definition  [] The left and right Riemann-Liouville fractional derivatives of order α

of h(t) are given as

aDα
t h(t) =


�(n – α)

dn

dtn

∫ t

a
(t – v)n–α–h(v) dv ()
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and

tDα
b h(t) =

(–)n

�(n – α)
dn

dtn

∫ b

t
(v – t)n–α–h(v) dv. ()

The left and right Caputo fractional derivatives of order α of h(t) are

C
a Dα

t h(t) =


�(n – α)

∫ t

a
(t – v)n–α–h(n)(v) dv ()

and

C
t Dα

b h(t) =


�(n – α)

∫ b

t
(–)n(v – t)n–α–h(n)(v) dv, ()

such that h : [a, b] →R is a function, α is a positive real number, n is the integer satisfying
n –  ≤ α ≤ n, and � is the Euler gamma function.

Definition  [] If  < α <  and h is a function such that h(a) = h(b) = , we can write

∫ b

a
g(t)C

a Dα
t h(t) dt =

∫ b

a
h(t)tDα

b g(t) dt ()

and

∫ b

a
g(t)C

t Dα
b h(t) dt =

∫ b

a
h(t)aDα

t g(t) dt. ()

3 Reproducing kernel functions
Definition  [] Let F �= ∅. A function R : F × F →C is called a reproducing kernel func-
tion of the Hilbert space H if and only if

(a) R(·, v) ∈ H for all v ∈ F ,
(b) 〈�, R(·, v)〉 = �(v) for all v ∈ F and all � ∈ H .

Definition  [] A Hilbert space H which is defined on a non-empty set F is called a re-
producing kernel Hilbert space if there exists a reproducing kernel function R : F × F →C.

Definition  [] We describe the space � 
 [, ] by

� 
 [, ] =

{
ζ ∈ AC[, ] : ζ ′ ∈ L[, ]

}
.

The inner product and the norm in � 
 [, ] are defined by

〈ζ ,ψ〉� 


=
∫ 


ζ (t)ψ(t) + ζ ′(t)ψ ′(t) dt, ζ ,ψ ∈ � 

 [, ] ()

and

‖ζ‖� 


=
√

〈ζ , ζ 〉� 

, ζ ∈ � 

 [, ]. ()
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The space � 
 [, ] is a reproducing kernel Hilbert space. The reproducing kernel function

Tt of this space is given as

Tt(y)=


 sinh()
[
cosh(t + y – ) + cosh

(|t – y| – 
)]

. ()

Definition  [] We denote the space o� 
 [, ] by

o� 
 [, ] =

{
ζ ∈ AC[, ] : ζ ′, ζ ′′ ∈ AC[, ], ζ () ∈ L[, ], ζ () =  = ζ ′()

}
.

The inner product and the norm in o� 
 [, ] are defined as

〈ζ , v〉o�


=
∑

i=

ζ (i)()v(i)() +
∫ 


ζ ()(t)v()(t) dt, ζ , v ∈ o� 

 [, ]

and

‖ζ‖o�


=
√

〈ζ , ζ 〉o�


, ζ ∈ o� 
 [, ].

Theorem . The reproducing kernel function Vy of the reproducing kernel Hilbert space
o� 

 [, ] is obtained as

Vy(t) =

{

 yt + 

 yt – 
 yt + 

 t,  ≤ t ≤ y ≤ ,

 yt + 

 ty – 
 ty + 

 y,  ≤ y < t ≤ .
()

Proof Let ζ ∈ o� 
 [, ] and  ≤ y ≤ . By using Definition  and integration by parts, we

get

〈ζ , Vy〉o�


=
∑

i=

ζ (i)()V (i)
y () +

∫ 


ζ ()(t)V ()

y (t) dt

= ζ ()Vy() + ζ ′()V ′
y()

+ ζ ′′()V ′′
y () + ζ ′′()V ()

y () – ζ ′′()V ()
y ()

– ζ ′()V ()
y () + ζ ′()V ()

y () +
∫ 


ζ ′(t)V ()

y (t) dt.

After substituting the values of Vy(), V ′
y(), V ′′

y (), V ()
y (), V ()

y (), V ()
y (), V ()

y () into
the above equation we conclude that

〈ζ , Vy〉�


=
∫ 


ζ ′(t)V ()

y (t) dt

=
∫ y


ζ ′(t)V ()

y (t) dt +
∫ 

y
ζ ′(t)V ()

y (t) dt

=
∫ y


ζ ′(t) dt +

∫ 

y
ζ ′(t) dt

= ζ (y) – ζ () = ζ (y).

This completes the proof. �
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4 Bounded linear operator in o� 3
2 [0, 1]

The solution of ()-() is presented in the reproducing kernel Hilbert space o� 
 [, ]. Let

us describe the linear operator A : o� 
 [, ] → � 

 [, ] by

Aζ = Dαζ (t) +
k

tα–β
Dβζ (t), ζ ∈ o� 

 [, ]. ()

Model problem ()-() alters to the problem

{
Aζ = z(t, ζ ),
ζ () = , ζ ′() = ,

()

after homogenizing the initial conditions.

Theorem . The linear operator A is a bounded linear operator.

Proof We should prove ‖Aζ‖
� 


≤ N‖ζ‖

o�


, where N >  is a positive constant. By making
use of () and (), we get

‖Aζ‖
� 


= 〈Aζ , Aζ 〉� 


=

∫ 



[
Aζ (t)

] +
[
Aζ ′(t)

] dt.

By the reproducing property, we conclude that

ζ (t) =
〈
ζ (·), Vt(·)

〉
o�



and

Aζ (t) =
〈
ζ (·), AVt(·)

〉
o�


.

Therefore, we get

∣∣Aζ (t)
∣∣ ≤ ‖ζ‖o�


‖AVt‖o�


= N‖ζ‖o�


,

where N >  is a positive constant. Thus, we obtain

∫ 



[
(Aζ )(t)

] dt ≤ N
 ‖ζ‖

o�


.

Taking into account that (Aζ )′(t) = 〈ζ (·), (AVt)′(·)〉o�


, then we get

∣∣(Aζ )′(t)
∣∣ ≤ ‖ζ‖�



∥∥(AVt)′
∥∥

o�


= N‖ζ‖o�


,

where N >  is a positive constant. Thus, we obtain

[
(Aζ )′(t)

] ≤ N
 ‖ζ‖

o�


and
∫ 



[
(Aζ )′(t)

] dt ≤ N
 ‖ζ‖

o�


.
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Therefore, we get

‖Aζ‖
� 


≤

∫ 



([
(Aζ )(t)

] +
[
(Aζ )′(t)

])dt ≤ (
N

 + N

)‖ζ‖

�


= N‖ζ‖
�


,

where N = N
 + N

 > . �

5 Exact and approximate solutions
Let us put �i(t) = Tti (t) and ηi(t) = A∗�i(t), where A∗ is conjugate operator of A. The or-
thonormal system {η̂i(t)}∞i= of o� 

 [, ] can be obtained from Gram-Schmidt orthogonal-
ization process of {ηi(t)}∞i= and

η̂i(t) =
i∑

k=

σikηk(t) (σii > , i = , , . . .). ()

Theorem . Let {ti}∞i= be dense in [, ] and ηi(t) = AyVt(y)|y=ti . Then the sequence
{ηi(t)}∞i= is a complete system in o� 

 [, ].

Proof We recall that

ηi(t) =
(
A∗�i

)
(t) =

〈(
A∗�i

)
(y), Vt(y)

〉
=

〈
(�i)(y), AyVt(y)

〉
= AyVt(y)|y=ti .

Thus, ηi(t) ∈ o� 
 [, ]. For each fixed ζ (t) ∈ o� 

 [, ], let 〈ζ (t),ηi(t)〉 =  (i = , , . . .),
i.e.,

〈
ζ (t),

(
A∗�i

)
(t)

〉
=

〈
Aζ (·),�i(·)

〉
= (Aζ )(ti) = ,

{ti}∞i= is dense in [, ]. Therefore, (Aζ )(t) =  and ζ ≡ . This completes the proof. �

Theorem . If ζ (t) is the exact solution of (), then we have

ζ (t) = A–z(t, ζ ) =
∞∑
i=

i∑
k=

σikz
(
tk , ζ (tk)

)
η̂i(t), ()

where {(ti)}∞i= is dense in [, ].

Proof We know

ζ (t) =
∞∑
i=

〈
ζ (t), η̂i(t)

〉
o�


η̂i(t)

=
∞∑
i=

i∑
k=

σik
〈
ζ (t),ηk(t)

〉
o�


η̂i(t)

=
∞∑
i=

i∑
k=

σik
〈
ζ (t), A∗�k(t)

〉
o�


η̂i(t)

=
∞∑
i=

i∑
k=

σik
〈
Aζ (t),�k(t)

〉
� 


η̂i(t),
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from (). By uniqueness of the solution of (), we obtain

ζ (t) =
∞∑
i=

i∑
k=

σik
〈
z(t, ζ ), Ttk

〉
� 


η̂i(t) =

∞∑
i=

i∑
k=

σikz
(
tk , ζ (tk)

)
η̂i(t).

This completes the proof. �

The approximate solution ζn(t) is obtained as

ζn(t) =
n∑

i=

i∑
k=

σikz
(
tk , ζ (tk)

)
η̂i(t). ()

Lemma . [] If ‖ζn –ζ‖o�


→ , tn → t (n → ∞) and z(t, ζ ) is continuous for t ∈ [, ],
then

z
(
tn, ζn–(tn)

) → z(t, ζ ) as n → ∞.

Theorem . For any fixed ζ(t) ∈ o� 
 [, ] assume ζn(t) =

∑n
i= Aiη̂i(t), Ai =

∑i
k= σikz(tk ,

ζk–(tk)), ‖ζn‖o�


is bounded, {ti}∞i= is dense in [, ], z(t, ζ ) ∈ � 
 [, ] for any ζ (t) ∈

o� 
 [, ]. Then ζn(t) converges to the exact solution of () in o� 

 [, ] and

ζ (t) =
∞∑
i=

Aiη̂i(t).

Proof Let us prove the convergence of ζn(t). We have

ζn+(t) = ζn(t) + An+η̂n+(t), ()

from the orthonormality of {η̂i}∞i=. Thus, we get

‖ζn+‖ = ‖ζn‖ + A
n+ = ‖ζn–‖ + A

n + A
n+ = · · · =

n+∑
i=

A
i , ()

from the boundedness of ‖ζn‖o�


. Then we obtain

∞∑
i=

A
i < ∞,

i.e.,

{Ai} ∈ l (i = , , . . .).

Let m > n, in view of (ζm – ζm–) ⊥ (ζm– – ζm–) ⊥ · · · ⊥ (ζn+ – ζn), we get

‖ζm – ζn‖
o�


= ‖ζm – ζm– + ζm– – ζm– + · · · + ζn+ – ζn‖

o�


≤ ‖ζm – ζm–‖
o�


+ · · · + ‖ζn+ – ζn‖

o�


=
m∑

i=n+

A
i → , m, n → ∞.
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There exists ζ (t) ∈ o� 
 [, ], such that

ζn(t)→ζ (t) as n → ∞,

by completeness of o� 
 [, ]. We have

ζ (t) =
∞∑
i=

Aiη̂i(t).

In virtue of

(Aζ )(tj) =
∞∑
i=

Ai
〈
Aη̂i(t),�j(t)

〉
� 


=

∞∑
i=

Ai
〈
η̂i(t), A∗�j(t)

〉
o�



=
∞∑
i=

Ai
〈
η̂i(t),ηj(t)

〉
o�


,

we get

n∑
j=

σnj(Aζ )(tj) =
∞∑
i=

Ai

〈
η̂i(t),

n∑
j=

σnjηj(t)

〉

o�


=
∞∑
i=

Ai
〈
η̂i(t), η̂n(t)

〉
o�


= An.

If n = , then we get

Aζ (t) = z
(
t, ζ(t)

)
. ()

If n = , then we have

σ(Aζ )(t) + σ(Aζ )(t) = σz
(
t, ζ(t)

)
+ σz

(
t, ζ(t)

)
. ()

It is obvious from () and () that

(Aζ )(t) = z
(
t, ζ(t)

)
.

By induction, we conclude that

(Aζ )(tj) = z
(
tj, ζj–(j)

)
. ()

Using the convergence of ζn(t) and Lemma . gives

(Aζ )(y) = z
(
y, ζ (y)

)
,

i.e., ζ (t) is the solution of () and

ζ (t) =
∞∑
i=

Aiη̂i.

This completes the proof. �
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Theorem . If ζ ∈ o� 
 [, ] then ‖ζn –ζ‖o�


→ , n → ∞, and the sequence ‖ζn –ζ‖o�


is monotonically decreasing in n.

Proof We obtain

‖ζn – ζ‖o�


=

∥∥∥∥∥
∞∑

i=n+

i∑
k=

σikz
(
tk , ζ (tk)

)
η̂i

∥∥∥∥∥
o�



,

by () and (). Therefore, we have

‖ζn – ζ‖o�


→ , n → ∞

and

‖ζn – ζ‖
o�


=

∥∥∥∥∥
∞∑

i=n+

i∑
k=

σikz
(
tk , ζ (tk)

)
η̂i

∥∥∥∥∥


o�


=
∞∑

i=n+

( i∑
k=

σikz
(
tk , ζ (xk)

)
η̂i

)

.

Consequently, ‖ζn – ζ‖o�


is monotonically decreasing in n. �

6 Numerical experiments
Two examples are given in this section. A comparison of the absolute errors is shown in
Tables  and .

Table 1 Comparison of RKM (first line) and collocation method [2] (second line) of the
absolute errors for Example 6.1

m\t 0 0.25 0.5 0.75 1.0

5 0 8.7370× 10–4 9.9× 10–4 7.6702× 10–4 5.4736× 10–4

0 1.3345× 10–3 1.5× 10–3 5.0673× 10–3 3.6339× 10–3

10 0 8.4636× 10–6 2.9× 10–6 8.5754× 10–6 5.4345× 10–6

0 1.3232× 10–5 2.6× 10–5 1.5634× 10–6 4.1443× 10–5

50 0 9.4673× 10–8 1.1× 10–8 4.1627× 10–8 9.3989× 10–8

0 2.3416× 10–7 1.6× 10–7 5.1126× 10–7 2.1233× 10–7

100 0 4.5864× 10–9 7.0× 10–10 7.1591× 10–9 8.4693× 10–9

0 4.9383× 10–8 3.4× 10–8 5.0347× 10–8 6.4332× 10–7

Table 2 Comparison of RKM (first line) and collocation method [2] (second line) of absolute
errors for Example 6.2

m\t 0 0.25 0.5 0.75 1.0

5 0 1.1652× 10–4 1.66× 10–4 3.8729× 10–3 5.5282× 10–4

0 1.3323× 10–3 1.10× 10–3 5.0953× 10–3 4.4409× 10–3

10 0 7.5343× 10–6 4.61× 10–6 1.6356× 10–6 8.8855× 10–6

0 1.2731× 10–5 1.06× 10–5 2.5165× 10–5 4.4409× 10–5

50 0 9.0960× 10–8 1.50× 10–7 2.6000× 10–8 5.1786× 10–7

0 2.0256× 10–6 1.66× 10–7 5.0926× 10–7 2.4573× 10–6

100 0 1.6526× 10–8 1.19× 10–8 1.7952× 10–8 4.5451× 10–9

0 9.2963× 10–8 1.66× 10–8 5.0927× 10–8 6.4482× 10–7
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Table 3 Exact and approximate solutions for Example 6.1 when m = 5

t Exact solutions Approximate solutions CPU time (s)

0.13 –0.014703 –0.01458300000 2.480
0.24 –0.043776 –0.04365470000 2.293
1/

√
2 –0.1464466095 –0.1463252639 2.512

0.85 –0.108375 –0.1082536544 2.340
0.999 –0.000998001 –0.0008781340000 2.371

Example . Let us consider

Dαy(t) +
k

tα–β
Dαy(t) +


tα– y(t) = g(t), ()

with the initial conditions

y() =  = y′(), ()

where

g(t) = t–α

(
t

(
t


+

�( – β) + k�( – α)
�( – β)�( – α)

)
– 

(
t


+

�( – β) + k�( – α)
�( – β)�( – α)

))
,

and α = 
 , β = 

 . The exact solution of ()-() is given as []

y(t) = t – t.

Using the above method, we obtain Tables  and .

Example . We regard

Dαy(t) +
k

tα–β
Dαy(t) +


tα– y(t) = h(t), ()

with the initial conditions

y() =  = y′(), ()

where

h(t) = t–α

(
–t

(
t


+

�( – β) + k�( – α)
�( – β)�( – α)

)
+ 

(
t


+

�( – β) + k�( – α)
�( – β)�( – α)

))
,

and α = 
 , β = . The exact solution of ()-() is given as []

y(t) = t – t.

Using the above method, we draw Table .

Remark We found numerical results of Examples . and . by RKM and we show our
results in Tables - and Figure . We used Maple  to obtain these results. We mention
the time in Table . This proves that we can find good results in very short times.
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Figure 1 Absolute error of y(t) for Example 6.1.

7 Conclusion
Fractional differential equations of Lane-Emden type were investigated by RKM. We ex-
plained the technique and managed it in some illustrative examples. The results obtained
indicated that RKM can solve the problem with few computations. Numerical examples
demonstrate that our method supports the theoretical results.
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