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Abstract
In this paper, we discussed the existence of solutions for the fractional finite
difference inclusion �νx(t) ∈ F(t, x(t),�x(t),�2x(t)) via the boundary value conditions
ξx(ν – 3) +β�x(ν – 3) = 0, x(η) = 0, and γ x(b+ ν) + δ�x(b+ ν) = 0, where η ∈N

b+ν–1
ν–2 ,

2 < ν < 3, and F :Nb+ν+1
ν–3 ×R×R×R → 2R is a compact valued multifunction.

Keywords: fixed point; fractional finite difference inclusion; three points boundary
conditions

1 Introduction
There are many works concerned with the existence of solutions for some fractional finite
difference equations from different views by using the fixed point theory techniques (see
for example, [–]). The readers can find more details as regards elementary notions and
definitions of fractional finite difference equations in [–]. Also, much attention was de-
voted to the fractional differential inclusions (see for example, [, , –]). To the best
of our knowledge, there is no published research work about fractional finite difference
inclusions.

In , Goodrich [] investigated the general discrete fractional boundary problem,
namely

⎧
⎪⎨

⎪⎩

–�νy(t) = f (t + ν – , y(t + ν – )),
αy(ν – ) – β�y(ν – ) = ,
γ y(ν + b) – δ�y(ν + b) = ,

where t ∈ [, b]N , ν ∈ (, ], and αγ + αδ + βγ �=  with α,β ,γ , δ ≥ . In this paper, with
this thought and motivation in our minds, we investigate the existence of solution for the
fractional finite difference inclusion

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

�νx(t) ∈ F(t, x(t),�x(t),�x(t)),
ξx(ν – ) + β�x(ν – ) = ,
x(η) = ,
γ x(b + ν) + δ�x(b + ν) = ,
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where η ∈ N
b+ν–
ν– ,  < ν <  and F : Nb+ν+

ν– × R × R × R → R is a compact valued multi-
function.

2 Preliminaries
As is well known, the Gamma function has some properties as 
(z + ) = z
(z) and 
(n) =
(n – )! for all n ∈N. Define

tν =

(t + )


(t +  – ν)

for all t,ν ∈ R whenever the right-hand side is defined. If t +  – ν is a pole of the gamma
function and t +  is not a pole, then we define tν = . One can verify that νν = νν– =

(ν + ) and tν+ = (t – ν)tν . We use the notations Na = {a, a + , a + , . . .} for all a ∈R and
N

b
a = {a, a + , a + , . . . , b} for all real numbers a and b whenever b – a is a natural number.
Let ν >  be such that m –  < ν ≤ m for some natural number m. Then the νth fractional

sum of f based at a is defined by

�–ν
a f (t) =



(ν)

t–ν∑

k=a

(
t – σ (k)

)ν–f (k)

for all t ∈ Na+ν . Similarly, we define

�ν
af (t) =



(–ν)

t+ν∑

k=a

(
t – σ (k)

)–ν–f (k)

for all t ∈ Na+m–ν .

Lemma . [] Let h : Nb+ν+
ν– →R be a mapping and  < ν ≤ . The general solution of the

equation �ν
ν–x(t) = h(t) is given by

x(t) =
∑

i=

citν–i +



(ν)

t–ν∑

s=

(
t – σ (s)

)ν–h(s), ()

where c, c, c are arbitrary constants.

Since �tμ = μtμ–, we have

�x(t) =
∑

i=

ci(ν – i)tν–i– +



(ν – )

t–ν+∑

s=

(
t – σ (s)

)ν–h(s) ()

for more information see [].
Let (X, d) be a metric space. Denote by X , CB(X), and Pcp(X) the class of all nonempty

subsets, the class of all closed and bounded subsets, and the class of all compact subsets of
X, respectively. A mapping Q : X → X is called a multifunction on X and u ∈ X is called
a fixed point of Q whenever u ∈ Qu.

Consider the Hausdorff metric Hd : X × X → [,∞) by

Hd(A, B) = max
{

sup
a∈A

d(a, B), sup
b∈B

d(A, b)
}

,
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where d(A, b) = infa∈A d(a, b). Let (X, d) be a metric space, α : X × X → [,∞) a map, and
T : X → X a multifunction.

We say that X obeys the condition (Cα) whenever for each sequence {xn} in X with
α(xn, xn+) ≥  for all n and xn → x, there exists a subsequence {xnk } of {xn} such that
α(xnk , x) ≥  for all k. The map T is said to be α-admissible whenever for each x ∈ X and
y ∈ Tx with α(x, y) ≥ , we have α(y, z) ≥  for all z ∈ Ty []. Suppose that � is the family
of nondecreasing functions ψ : [,∞) → [,∞) such that

∑∞
n= ψn(t) < ∞ for all t >  (for

more on this please see []).
By using the following fixed point result, we review the existence of solutions for the

fractional finite difference inclusion

�ν
ν–x(t) ∈ F

(
t, x(t),�x(t),�x(t)

)

via the boundary conditions ξx(ν – ) + β�x(ν – ) = , γ x(b + ν) + δ�x(b + ν) = , and
x(η) = , where η ∈ N

b+ν–
ν– ,  < ν < , and F : Nb+ν

ν– ×R×R×R → R is a compact valued
multifunction.

Lemma . [] Let (X, d) be a complete metric space, ψ ∈ � a strictly increasing map,
α : X × X → [,∞) a map and T : X → CB(X) an α-admissible multifunction such that
α(x, y)H(Tx, Ty) ≤ ψ(d(x, y)) for all x, y ∈ X and there exist x ∈ X and x ∈ Tx with
α(x, x) ≥ . If X obeys the condition (Cα), then T has a fixed point.

3 Main result
In this section, we consider the fractional finite difference inclusion

�ν
ν–x(t) ∈ F

(
t, x(t),�x(t),�x(t)

)
()

via the boundary value conditions ξx(ν – ) + β�x(ν – ) = , γ x(b + ν) + δ�x(b + ν) = ,
and x(η) = , where ξ , β , γ , δ are non-zero numbers, η ∈ N

b+ν–
ν– ,  < ν < , x : Nb+ν+

ν– → R

and F : Nb+ν+
ν– ×R×R×R → R is a compact valued multifunction.

Lemma . Let y : Nb+
 → R and  < ν < . Then x is a solution for the fractional finite

difference equation �ν
ν–x(t) = y(t) via the boundary conditions ξx(ν – ) + β�x(ν – ) = ,

x(η) = , and γ x(b + ν) + δ�x(b + ν) =  if and only if x is a solution of the fractional sum
equation x(t) =

∑b+
s= G(t, s,η)y(s), where

G(t, s,η) =
[

[γ + δ(ν – )][(η +  – ν)(η +  – ν)]tν– – θ [γ + δ(ν – )]tν–

θβμ
(ν)(b + ν)ν–

–
[ξ – β(ν – )][γ + δ(ν – )][(η +  – ν)(η +  – ν)]tν–

β(ν – )θβμ
(ν)(b + ν)ν–

]

× (b – s + )
(
b + ν – σ (s)

)ν– +
[

[(η +  – ν)(η +  – ν) – θβ]tν– – θ tν–

βθην–
(ν)

+
[–ξ + β(ν – )][(η +  – ν)(η +  – ν) – θβ]tν–

β(ν – )θβην–
(ν)

]
(
η – σ (s)

)ν–

+
(t – σ (s))ν–


(ν)
,
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whenever  ≤ s ≤ t – ν ≤ b +  and  ≤ s ≤ η – ν ≤ b + ,

G(t, s,η) =
[

[γ + δ(ν – )][(η +  – ν)(η +  – ν)]tν– – θ [γ + δ(ν – )]tν–

θβμ
(ν)(b + ν)ν–

–
[ξ – β(ν – )][γ + δ(ν – )][(η +  – ν)(η +  – ν)]tν–

β(ν – )θβμ
(ν)(b + ν)ν–

]

× (b – s + )
(
b + ν – σ (s)

)ν– +
[

[(η +  – ν)(η +  – ν) – θβ]tν– – θ tν–

βθην–
(ν)

+
[–ξ + β(ν – )][(η +  – ν)(η +  – ν) – θβ]tν–

β(ν – )θβην–
(ν)

]
(
η – σ (s)

)ν–,

whenever  ≤ t – ν < s ≤ η – ν ≤ b + ,

G(t, s,η) =
[

[γ + δ(ν – )][(η +  – ν)(η +  – ν)]tν– – θ [γ + δ(ν – )]tν–

θβμ
(ν)(b + ν)ν–

–
[ξ – β(ν – )][γ + δ(ν – )][(η +  – ν)(η +  – ν)]tν–

β(ν – )θβμ
(ν)(b + ν)ν–

]

× (b – s + )
(
b + ν – σ (s)

)ν– +
(t – σ (s))ν–


(ν)
,

whenever  ≤ η – ν < s ≤ t – ν ≤ b +  and

G(t, s,η) =
[

[γ + δ(ν – )][(η +  – ν)(η +  – ν)]tν– – θ [γ + δ(ν – )]tν–

θβμ
(ν)(b + ν)ν–

–
[ξ – β(ν – )][γ + δ(ν – )][(η +  – ν)(η +  – ν)]tν–

β(ν – )θβμ
(ν)(b + ν)ν–

]

× (b – s + )
(
b + ν – σ (s)

)ν–,

whenever  ≤ t – ν < s ≤ b +  and  ≤ η – ν < s ≤ b + . Here,

θ =
ηβν – ηξ – ηβ – ξ + ξν – βν + βν – β

β(ν – )
,

μ =
bξδν – bδξ + γ ξb + bγ ξ + βbνδ + δbβν + βbδν – βδb + βδb + ξδν

β(ν – )

+
–δξ + γ ξb + γ ξ + βνδ + γβνb + γβν + βδν – βδ + βγ b + βγ

β(ν – )

and

β =
θ [δ(ν – ) + γ (b + )](b + )(b + ) + μ(η +  – ν)(η +  – ν)

θμ
.

Proof Let x be a solution for the equation �ν
ν–x(t) = y(t) via the boundary conditions

ξx(ν – ) + β�x(ν – ) = , x(η) = , and γ x(b + ν) + δ�x(b + ν) = . Then by using () and
Lemma ., we get

x(t) = ctν– + ctν– + ctν– +



(ν)

t–ν∑

s=

(
t – σ (s)

)ν–y(s)
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and

�x(t) = c(ν – )tν– + c(ν – )tν– + c(ν – )tν–

+



(ν – )

t–ν+∑

s=

(
t – σ (s)

)ν–y(s),

where c, c, c ∈R are arbitrary constants. Now, by using the boundary condition

ξx(ν – ) + β�x(ν – ) = ,

we get ξc + β[c(ν – ) + c(ν – )] = . Also, by using the condition x(η) =  we obtain

c = –(η +  – ν)(η +  – ν)c – (η +  – ν)c

–


ην–
(ν)

η–ν∑

s=

(
η – σ (s)

)ν–y(s).

Moreover, by using the boundary condition γ x(b + ν) + δ�x(b + ν) = , we get

c
[
δ(ν – ) + γ (b + )

]
(b + ν)ν– + c

[
δ(ν – ) + γ (b + )

]
(b + ν)ν–

+ c
[
δ(ν – ) + γ (b + )

]
(b + ν)ν–

= –
δ


(ν – )

b+∑

s=

(
b + ν – σ (s)

)ν–y(s) –
γ


(ν)

b∑

s=

(
b + ν – σ (s)

)ν–y(s).

Thus, by using a simple calculation, we get

c = –


βθην–
(ν)

η–ν∑

s=

(
η – σ (s)

)ν–y(s)

–
γ + δ(ν – )

βμ
(ν)(b + ν)ν–

b+∑

s=

(b – s + )
(
b + ν – σ (s)

)ν–y(s),

c =
[–ξ + β(ν – )][(η +  – ν)(η +  – ν) – θβ]

β(ν – )θβην–
(ν)

η–ν∑

s=

(
η – σ (s)

)ν–y(s)

–
[ξ – β(ν – )][γ + δ(ν – )][(η +  – ν)(η +  – ν)]

β(ν – )θβμ
(ν)(b + ν)ν–

×
b+∑

s=

(b – s + )
(
b + ν – σ (s)

)ν–y(s)

and

c =
(η +  – ν)(η +  – ν) – θβ

θβην–
(ν)

η–ν∑

s=

(
η – σ (s)

)ν–y(s)

+
[γ + δ(ν – )][(η +  – ν)(η +  – ν)]

θβμ
(ν)(b + ν)ν–

b+∑

s=

(b – s + )
(
b + ν – σ (s)

)ν–y(s).
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Hence,

x(t) =
[

[γ + δ(ν – )][(η +  – ν)(η +  – ν)]tν– – θ [γ + δ(ν – )]tν–

θβμ
(ν)(b + ν)ν–

–
[ξ – β(ν – )][γ + δ(ν – )][(η +  – ν)(η +  – ν)]tν–

β(ν – )θβμ
(ν)(b + ν)ν–

]

×
b+∑

s=

(b – s + )
(
b + ν – σ (s)

)ν–y(s)

+
[

[(η +  – ν)(η +  – ν) – θβ]tν– – θ tν–

βθην–
(ν)

+
[–ξ + β(ν – )][(η +  – ν)(η +  – ν) – θβ]tν–

β(ν – )θβην–
(ν)

] η–ν∑

s=

(
η – σ (s)

)ν–y(s)

+
t–ν∑

s=

(t – σ (s))ν–


(ν)
y(s) =

b+∑

s=

G(s, t,η)y(s).

Now, let x be a solution for the equation x(t) =
∑b+

s= G(s, t,η)y(s). Then we have

x(t) =
[

[γ + δ(ν – )][(η +  – ν)(η +  – ν)]tν– – θ [γ + δ(ν – )]tν–

θβμ
(ν)(b + ν)ν–

–
[ξ – β(ν – )][γ + δ(ν – )][(η +  – ν)(η +  – ν)]tν–

β(ν – )θβμ
(ν)(b + ν)ν–

]

×
b+∑

s=

(b – s + )
(
b + ν – σ (s)

)ν–y(s)

+
[

[(η +  – ν)(η +  – ν) – θβ]tν– – θ tν–

βθην–
(ν)

+
[–ξ + β(ν – )][(η +  – ν)(η +  – ν) – θβ]tν–

β(ν – )θβην–
(ν)

]

×
η–ν∑

s=

(
η – σ (s)

)ν–y(s) +
t–ν∑

s=

(t – σ (s))ν–


(ν)
y(s).

Since (ν – )ν– = (ν – )ν– = , (ν – )ν– = (ν – )ν– = 
(ν – ), and

–∑

s=

(
ν –  – σ (s)

)ν–y(s) =
–∑

s=

(
ν –  – σ (s)

)ν–y(s) = ,

we get ξx(ν –)+β�x(ν –) = . A simple calculation shows us γ x(b+ν)+δ�x(b+ν) =
 and x(η) = . On the other hand,

x(t) = ctν– + ctν– + ctν– +



(ν)

t–ν∑

s=

(
t – σ (s)

)ν–y(s)

is a solution for the equation �ν
ν–x(t) = y(t) and so �ν

ν–x(t) = y(t). �
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A function x : Nb+ν+
ν– → R is a solution of the problem () whenever it satisfies the

boundary conditions and there exists a function y : Nb+
 → R such that

y(t) ∈ F
(
t, x(t),�x(t),�x(t)

)

for all t ∈ N
b+
 and

x(t) =
[

[γ + δ(ν – )][(η +  – ν)(η +  – ν)]tν– – θ [γ + δ(ν – )]tν–

θβμ
(ν)(b + ν)ν–

–
[ξ – β(ν – )][γ + δ(ν – )][(η +  – ν)(η +  – ν)]tν–

β(ν – )θβμ
(ν)(b + ν)ν–

]

×
b+∑

s=

(b – s + )
(
b + ν – σ (s)

)ν–y(s)

+
[

[(η +  – ν)(η +  – ν) – θβ]tν– – θ tν–

βθην–
(ν)

+
[–ξ + β(ν – )][(η +  – ν)(η +  – ν) – θβ]tν–

β(ν – )θβην–
(ν)

]

×
η–ν∑

s=

(
η – σ (s)

)ν–y(s) +
t–ν∑

s=

(t – σ (s))ν–


(ν)
y(s).

Let X be the set of all functions x : Nb+ν+
ν– →R endowed with the norm

‖x‖ = max
t∈Nb+ν+

ν–

∣
∣x(t)

∣
∣ + max

t∈Nb+ν+
ν–

∣
∣�x(t)

∣
∣ + max

t∈Nb+ν+
ν–

∣
∣�x(t)

∣
∣.

We show that (X ,‖ · ‖) is a Banach space. Let {xn} be a Cauchy sequence in X and ε > 
be given. Choose a natural number N such that ‖xn – xm‖ < ε for all m, n > N . This implies
that maxt∈Nb+ν+

ν–
|xn(t) – xm(t)| < ε, maxt∈Nb+ν+

ν–
|�xn(t) – �xm(t)| < ε and

max
t∈Nb+ν+

ν–

∣
∣�xn(t) – �xm(t)

∣
∣ < ε.

Choose x(t), z(t), w(t) ∈R such that xn(t) → x(t), �xn(t) → z(t), and �xn(t) → w(t) for all
t ∈N

b+ν+
ν– . Note that �xn(t) = xn(t + ) – xn(t) and so �x(t) = x(t + ) – x(t) = z(t). Similarly,

we get �x(t) = w(t). This implies that |xn(t)–x(t)| < ε
 , |�xn(t)–�x(t)| < ε

 , and |�xn(t)–
�x(t)| < ε

 for all t ∈N
b+ν+
ν– and n > M for some natural number M. Thus,

‖xn – x‖ = max
t∈Nb+ν+

ν–

∣
∣xn(t) – x(t)

∣
∣ + max

t∈Nb+ν+
ν–

∣
∣�xn(t) – �x(t)

∣
∣+ max

t∈Nb+ν+
ν–

∣
∣�x(t) – �x(t)

∣
∣ < ε.

Hence, (X ,‖ · ‖) is a Banach space.
Let x ∈X . Define the set of selections of F by

SF ,x =
{

y : Nb+
 →R | y(t) ∈ F

(
t, x(t),�x(t),�x(t)

)
for all t ∈N

b+


}
.

Since F(t, x(t),�x(t),�x(t)) �= ∅, the selection principle implies that SF ,x is nonempty.
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Theorem . Suppose that ψ ∈ � and F : Nb+ν+
ν– ×R×R×R → Pcp(R) is a multifunction

such that

Hd
(
F(t, x, x, x) – F(t, z, z, z)

) ≤ ψ
(|x – z| + |x – z| + |x – z|

)

for all t ∈ N
b+ν+
ν– and x, x, x, z, z, z ∈ R. Then the boundary value inclusion () has a

solution.

Proof Choose y ∈ SF ,x and put h(t) =
∑b+

s= G(t, s,η)y(s) for all t ∈ N
ν+b+
ν– . Then h ∈ X and

so the set

{

h ∈X : there exists y ∈ SF ,x such that h(t) =
b+∑

s=

G(t, s,η)y(s) for all t ∈N
b+ν+
ν–

}

is nonempty. Now define F : X → X by

F (x) =

{

h ∈X : there exists y ∈ SF ,x such that h(t) =
b+∑

s=

G(t, s,η)y(s)

for all t ∈ N
b+ν+
ν–

}

.

We show that the multifunction F has a fixed point. First, we show that F (x) is closed
subset of X for all x ∈ X . Let x ∈ X and {un}n≥ be a sequence in F (x) with un → u. For
each n, choose yn ∈ SF ,x such that

un(t) =
[

[γ + δ(ν – )][(η +  – ν)(η +  – ν)]tν– – θ [γ + δ(ν – )]tν–

θβμ
(ν)(b + ν)ν–

–
[ξ – β(ν – )][γ + δ(ν – )][(η +  – ν)(η +  – ν)]tν–

β(ν – )θβμ
(ν)(b + ν)ν–

]

×
b+∑

s=

(b – s + )
(
b + ν – σ (s)

)ν–yn(s)

+
[

[(η +  – ν)(η +  – ν) – θβ]tν– – θ tν–

βθην–
(ν)

+
[–ξ + β(ν – )][(η +  – ν)(η +  – ν) – θβ]tν–

β(ν – )θβην–
(ν)

]

×
η–ν∑

s=

(
η – σ (s)

)ν–yn(s) +
t–ν∑

s=

(t – σ (s))ν–


(ν)
yn(s)

for all t ∈N
b+ν+
ν– . Since F has compact values, {yn}n≥ has a subsequence which converges

to some y ∈ SF ,x. We denote this subsequence again by {yn}n≥. So

un(t) → u(t)

=
[

[γ + δ(ν – )][(η +  – ν)(η +  – ν)]tν– – θ [γ + δ(ν – )]tν–

θβμ
(ν)(b + ν)ν–
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–
[ξ – β(ν – )][γ + δ(ν – )][(η +  – ν)(η +  – ν)]tν–

β(ν – )θβμ
(ν)(b + ν)ν–

]

×
b+∑

s=

(b – s + )
(
b + ν – σ (s)

)ν–y(s)

+
[

[(η +  – ν)(η +  – ν) – θβ]tν– – θ tν–

βθην–
(ν)

+
[–ξ + β(ν – )][(η +  – ν)(η +  – ν) – θβ]tν–

β(ν – )θβην–
(ν)

]

×
η–ν∑

s=

(
η – σ (s)

)ν–y(s) +
t–ν∑

s=

(t – σ (s))ν–


(ν)
y(s)

for all t ∈N
b+ν+
ν– . This implies that u ∈F (x). Thus, the multifunction F has closed values.

Since F is a compact multifunction, it is easy to check that F (x) is bounded set in X for
all x ∈X . Let x, z ∈X , h ∈F (x), and h ∈F (z). Choose y ∈ SF ,x and y ∈ SF ,z such that

h(t) =
[

[γ + δ(ν – )][(η +  – ν)(η +  – ν)]tν– – θ [γ + δ(ν – )]tν–

θβμ
(ν)(b + ν)ν–

–
[ξ – β(ν – )][γ + δ(ν – )][(η +  – ν)(η +  – ν)]tν–

β(ν – )θβμ
(ν)(b + ν)ν–

]

×
b+∑

s=

(b – s + )
(
b + ν – σ (s)

)ν–y(s)

+
[

[(η +  – ν)(η +  – ν) – θβ]tν– – θ tν–

βθην–
(ν)

+
[–ξ + β(ν – )][(η +  – ν)(η +  – ν) – θβ]tν–

β(ν – )θβην–
(ν)

]

×
η–ν∑

s=

(
η – σ (s)

)ν–y(s) +
t–ν∑

s=

(t – σ (s))ν–


(ν)
y(s)

and

h(t) =
[

[γ + δ(ν – )][(η +  – ν)(η +  – ν)]tν– – θ [γ + δ(ν – )]tν–

θβμ
(ν)(b + ν)ν–

–
[ξ – β(ν – )][γ + δ(ν – )][(η +  – ν)(η +  – ν)]tν–

β(ν – )θβμ
(ν)(b + ν)ν–

]

×
b+∑

s=

(b – s + )
(
b + ν – σ (s)

)ν–y(s)

+
[

[(η +  – ν)(η +  – ν) – θβ]tν– – θ tν–

βθην–
(ν)

+
[–ξ + β(ν – )][(η +  – ν)(η +  – ν) – θβ]tν–

β(ν – )θβην–
(ν)

]

×
η–ν∑

s=

(
η – σ (s)

)ν–y(s) +
t–ν∑

s=

(t – σ (s))ν–


(ν)
y(s)
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for all t ∈ N
b+ν+
ν– . Since

Hd
(
F
(
t, x(t),�x(t),�x(t)

)
– F

(
t, z(t),�z(t),�z(t)

))

≤ ψ
(∣
∣x(t) – z(t)

∣
∣ +

∣
∣�x(t) – �z(t)

∣
∣ +

∣
∣�x(t) – �z(t)

∣
∣
)

for all x, z ∈X and t ∈N
b+ν+
ν– , we get

∣
∣y(t) – y(t)

∣
∣ ≤ ψ

(∣
∣x(t) – z(t)

∣
∣ +

∣
∣�x(t) – �z(t)

∣
∣ +

∣
∣�x(t) – �z(t)

∣
∣
)
.

Now, put

G = max
t∈Nb++ν

ν–

{∣
∣
∣
∣
[γ + δ(ν – )][(η +  – ν)(η +  – ν)]tν– – θ [γ + δ(ν – )]tν–

θβμ
(ν)(b + ν)ν–

–
[ξ – β(ν – )][γ + δ(ν – )][(η +  – ν)(η +  – ν)]tν–

β(ν – )θβμ
(ν)(b + ν)ν–

∣
∣
∣
∣

×
b+∑

s=

(b – s + )
(
b + ν – σ (s)

)ν– +
∣
∣
∣
∣
[(η +  – ν)(η +  – ν) – θβ]tν– – θ tν–

βθην–
(ν)

+
[–ξ + β(ν – )][(η +  – ν)(η +  – ν) – θβ]tν–

β(ν – )θβην–
(ν)

∣
∣
∣
∣

×
η–ν∑

s=

(
η – σ (s)

)ν– +
t–ν∑

s=

(t – σ (s))ν–


(ν)

}

,

G = max
t∈Nb++ν

ν–

{∣
∣
∣
∣
(ν – )[γ + δ(ν – )][(η +  – ν)(η +  – ν)]tν–

θβμ
(ν)(b + ν)ν–

–
(ν – )θ [γ + δ(ν – )]tν–

θβμ
(ν)(b + ν)ν–

–
[ξ – β(ν – )][γ + δ(ν – )][(η +  – ν)(η +  – ν)]tν–

βθβμ
(ν)(b + ν)ν–

∣
∣
∣
∣

×
b+∑

s=

(b – s + )
(
b + ν – σ (s)

)ν–

+
∣
∣
∣
∣
(ν – )[(η +  – ν)(η +  – ν) – θβ]tν– – θ (ν – )tν–

βθην–
(ν)

+
[–ξ + β(ν – )][(η +  – ν)(η +  – ν) – θβ]tν–

βθβην–
(ν)

∣
∣
∣
∣

×
η–ν∑

s=

(
η – σ (s)

)ν– +
t–ν+∑

s=

(t – σ (s))ν–


(ν – )

}

and

G = max
t∈Nb++ν

ν–

{∣
∣
∣
∣
(ν – )(ν – )[γ + δ(ν – )][(η +  – ν)(η +  – ν)]tν–

θβμ
(ν)(b + ν)ν–

–
(ν – )(ν – )θ [γ + δ(ν – )]tν–

θβμ
(ν)(b + ν)ν–
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–
(ν – )[ξ – β(ν – )][γ + δ(ν – )][(η +  – ν)(η +  – ν)]tν–

βθβμ
(ν)(b + ν)ν–

∣
∣
∣
∣

×
b+∑

s=

(b – s + )
(
b + ν – σ (s)

)ν–

+
∣
∣
∣
∣
(ν – )(ν – )[(η +  – ν)(η +  – ν) – θβ]tν– – θ (ν – )(ν – )tν–

βθην–
(ν)

+
(ν – )[–ξ + β(ν – )][(η +  – ν)(η +  – ν) – θβ]tν–

βθβην–
(ν)

∣
∣
∣
∣

×
η–ν∑

s=

(
η – σ (s)

)ν– +
t–ν+∑

s=

(t – σ (s))ν–


(ν – )

}

.

Then we have

∣
∣h(t) – h(t)

∣
∣

=

∣
∣
∣
∣
∣

[
[γ + δ(ν – )][(η +  – ν)(η +  – ν)]tν– – θ [γ + δ(ν – )]tν–

θβμ
(ν)(b + ν)ν–

–
[ξ – β(ν – )][γ + δ(ν – )][(η +  – ν)(η +  – ν)]tν–

β(ν – )θβμ
(ν)(b + ν)ν–

]

×
b+∑

s=

(b – s + )
(
b + ν – σ (s)

)ν–(y – y)(s)

+
[

[(η +  – ν)(η +  – ν) – θβ]tν– – θ tν–

βθην–
(ν)

+
[–ξ + β(ν – )][(η +  – ν)(η +  – ν) – θβ]tν–

β(ν – )θβην–
(ν)

]

×
η–ν∑

s=

(
η – σ (s)

)ν–(y – y)(s) +
t–ν∑

s=

(t – σ (s))ν–


(ν)
(y – y)(s)

∣
∣
∣
∣
∣

≤
∣
∣
∣
∣
[γ + δ(ν – )][(η +  – ν)(η +  – ν)]tν– – θ [γ + δ(ν – )]tν–

θβμ
(ν)(b + ν)ν–

–
[ξ – β(ν – )][γ + δ(ν – )][(η +  – ν)(η +  – ν)]tν–

β(ν – )θβμ
(ν)(b + ν)ν–

∣
∣
∣
∣

×
b+∑

s=

(b – s + )
(
b + ν – σ (s)

)ν–∣∣y(s) – y(s)
∣
∣

+
∣
∣
∣
∣
[(η +  – ν)(η +  – ν) – θβ]tν– – θ tν–

βθην–
(ν)

+
[–ξ + β(ν – )][(η +  – ν)(η +  – ν) – θβ]tν–

β(ν – )θβην–
(ν)

∣
∣
∣
∣

×
η–ν∑

s=

(
η – σ (s)

)ν–∣∣y(s) – y(s)
∣
∣ +

t–ν∑

s=

(t – σ (s))ν–


(ν)
∣
∣y(s) – y(s)

∣
∣

≤ max
t∈Nb+



∣
∣y(t) – y(t)

∣
∣
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× max
t∈Nb++ν

ν–

{∣
∣
∣
∣
[γ + δ(ν – )][(η +  – ν)(η +  – ν)]tν– – θ [γ + δ(ν – )]tν–

θβμ
(ν)(b + ν)ν–

–
[ξ – β(ν – )][γ + δ(ν – )][(η +  – ν)(η +  – ν)]tν–

β(ν – )θβμ
(ν)(b + ν)ν–

∣
∣
∣
∣

×
b+∑

s=

(b – s + )
(
b + ν – σ (s)

)ν– +
∣
∣
∣
∣
[(η +  – ν)(η +  – ν) – θβ]tν– – θ tν–

βθην–
(ν)

+
[–ξ + β(ν – )][(η +  – ν)(η +  – ν) – θβ]tν–

β(ν – )θβην–
(ν)

∣
∣
∣
∣

×
η–ν∑

s=

(
η – σ (s)

)ν– +
t–ν∑

s=

(t – σ (s))ν–


(ν)

}

≤ ψ
(∣
∣x(t) – z(t)

∣
∣ +

∣
∣�x(t) – �z(t)

∣
∣ +

∣
∣�x(t) – �z(t)

∣
∣
) × G.

Since

�h(t) =
[

(ν – )[γ + δ(ν – )][(η +  – ν)(η +  – ν)]tν– – (ν – )θ [γ + δ(ν – )]tν–

θβμ
(ν)(b + ν)ν–

–
[ξ – β(ν – )][γ + δ(ν – )][(η +  – ν)(η +  – ν)]tν–

βθβμ
(ν)(b + ν)ν–

]

×
b+∑

s=

(b – s + )
(
b + ν – σ (s)

)ν–y(s)

+
[

(ν – )[(η +  – ν)(η +  – ν) – θβ]tν– – θ (ν – )tν–

βθην–
(ν)

+
[–ξ + β(ν – )][(η +  – ν)(η +  – ν) – θβ]tν–

βθβην–
(ν)

]

×
η–ν∑

s=

(
η – σ (s)

)ν–y(s) +
t–ν+∑

s=

(t – σ (s))ν–


(ν – )
y(s),

we get
∣
∣�h(t) – �h(t)

∣
∣

≤
∣
∣
∣
∣
(ν – )[γ + δ(ν – )][(η +  – ν)(η +  – ν)]tν– – (ν – )θ [γ + δ(ν – )]tν–

θβμ
(ν)(b + ν)ν–

–
[ξ – β(ν – )][γ + δ(ν – )][(η +  – ν)(η +  – ν)]tν–

βθβμ
(ν)(b + ν)ν–

∣
∣
∣
∣

×
b+∑

s=

(b – s + )
(
b + ν – σ (s)

)ν–∣∣y(s) – y(s)
∣
∣

+
∣
∣
∣
∣
(ν – )[(η +  – ν)(η +  – ν) – θβ]tν– – θ (ν – )tν–

βθην–
(ν)

+
[–ξ + β(ν – )][(η +  – ν)(η +  – ν) – θβ]tν–

βθβην–
(ν)

∣
∣
∣
∣

×
η–ν∑

s=

(
η – σ (s)

)ν–∣∣y(s) – y(s)
∣
∣ +

t–ν+∑

s=

(t – σ (s))ν–


(ν – )
∣
∣y(s) – y(s)

∣
∣
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≤ max
t∈Nb+



∣
∣y(t) – y(t)

∣
∣

× max
t∈Nb++ν

ν–

{∣
∣
∣
∣
(ν – )[γ + δ(ν – )][(η +  – ν)(η +  – ν)]tν–

θβμ
(ν)(b + ν)ν–

–
(ν – )θ [γ + δ(ν – )]tν–

θβμ
(ν)(b + ν)ν–

–
[ξ – β(ν – )][γ + δ(ν – )][(η +  – ν)(η +  – ν)]tν–

βθβμ
(ν)(b + ν)ν–

∣
∣
∣
∣

×
b+∑

s=

(b – s + )
(
b + ν – σ (s)

)ν–

+
∣
∣
∣
∣
(ν – )[(η +  – ν)(η +  – ν) – θβ]tν– – θ (ν – )tν–

βθην–
(ν)

+
[–ξ + β(ν – )][(η +  – ν)(η +  – ν) – θβ]tν–

βθβην–
(ν)

∣
∣
∣
∣

×
η–ν∑

s=

(
η – σ (s)

)ν– +
t–ν+∑

s=

(t – σ (s))ν–


(ν – )

}

≤ ψ
(∣
∣x(t) – z(t)

∣
∣ +

∣
∣�x(t) – �z(t)

∣
∣ +

∣
∣�x(t) – �z(t)

∣
∣
) × G.

Also, we have
∣
∣�h(t) – �h(t)

∣
∣

≤
∣
∣
∣
∣
(ν – )(ν – )[γ + δ(ν – )][(η +  – ν)(η +  – ν)]tν–

θβμ
(ν)(b + ν)ν–

–
(ν – )(ν – )θ [γ + δ(ν – )]tν–

θβμ
(ν)(b + ν)ν–

–
(ν – )[ξ – β(ν – )][γ + δ(ν – )][(η +  – ν)(η +  – ν)]tν–

βθβμ
(ν)(b + ν)ν–

∣
∣
∣
∣

×
b+∑

s=

(b – s + )
(
b + ν – σ (s)

)ν–∣∣y(s) – y(s)
∣
∣

+
∣
∣
∣
∣
(ν – )(ν – )[(η +  – ν)(η +  – ν) – θβ]tν– – θ (ν – )(ν – )tν–

βθην–
(ν)

+
(ν – )[–ξ + β(ν – )][(η +  – ν)(η +  – ν) – θβ]tν–

βθβην–
(ν)

∣
∣
∣
∣

×
η–ν∑

s=

(
η – σ (s)

)ν–∣∣y(s) – y(s)
∣
∣ +

t–ν+∑

s=

(t – σ (s))ν–


(ν – )
∣
∣y(s) – y(s)

∣
∣

≤ max
t∈Nb+



∣
∣y(t) – y(t)

∣
∣

× max
t∈Nb++ν

ν–

{∣
∣
∣
∣
(ν – )(ν – )[γ + δ(ν – )][(η +  – ν)(η +  – ν)]tν–

θβμ
(ν)(b + ν)ν–

–
(ν – )(ν – )θ [γ + δ(ν – )]tν–

θβμ
(ν)(b + ν)ν–
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–
(ν – )[ξ – β(ν – )][γ + δ(ν – )][(η +  – ν)(η +  – ν)]tν–

βθβμ
(ν)(b + ν)ν–

∣
∣
∣
∣

×
b+∑

s=

(b – s + )
(
b + ν – σ (s)

)ν–

+
∣
∣
∣
∣
(ν – )(ν – )[(η +  – ν)(η +  – ν) – θβ]tν– – θ (ν – )(ν – )tν–

βθην–
(ν)

+
(ν – )[–ξ + β(ν – )][(η +  – ν)(η +  – ν) – θβ]tν–

βθβην–
(ν)

∣
∣
∣
∣

×
η–ν∑

s=

(
η – σ (s)

)ν– +
t–ν+∑

s=

(t – σ (s))ν–


(ν – )

}

≤ ψ
(∣
∣x(t) – z(t)

∣
∣ +

∣
∣�x(t) – �z(t)

∣
∣ +

∣
∣�x(t) – �z(t)

∣
∣
) × G.

Hence, we obtain

‖h – h‖ = max
t∈Nb++ν

ν–

∣
∣h(t) – h(t)

∣
∣ + max

t∈Nb++ν
ν–

∣
∣�h(t) – �h(t)

∣
∣

+ max
t∈Nb++ν

ν–

∣
∣�h(t) – �h(t)

∣
∣

≤ ψ
(∣
∣x(t) – z(t)

∣
∣ +

∣
∣�x(t) – �z(t)

∣
∣ +

∣
∣�x(t) – �z(t)

∣
∣
)
(G + G + G)

≤ (G + G + G)ψ
(‖x – z‖)

for all x, z ∈X , h ∈F (x), and h ∈F (z). So Hd(F (x),F (z)) ≤ (G + G + G)ψ(‖x – z‖) for
all x, z ∈X .

Define the function α on X × X by α(x, z) =  whenever G + G + G <  and α(x, z) =


G+G+G
otherwise. Thus,

α(x, z)Hd
(
F (x),F (z)

) ≤ ψ
(‖x – z‖)

for all x, z ∈X . Let {xn} be a sequence in X with α(xn, xn+) ≥  for all n and xn → x. Then it
is easy to check that there exists a subsequence {xnk } of {xn} such that α(xnk , x) ≥  for all k.
This implies that X obeys the condition (Cα). If x ∈ X and y ∈ F (x) with α(x, y) ≥ , then
it is easy to see that α(y, z) ≥  for all z ∈F (y). Thus, F is an α-admissible α-ψ-contractive
multifunction. Hence by using Theorem ., there exists x∗ ∈X such that x∗ ∈F (x∗). One
can check that x∗ is a solution for the problem (). �

Example . Consider the fractional finite difference inclusion

�.
–.x(t) ∈

[

, et
+  +

sin x(t)
e|t| + sinh t +

|�x(t)|
|t| +


t – 

+
|�x(t)|
cosh |t|

]

()

via the boundary value conditions ξx(–.) + β�x(–.) = , γ x(.) + δ�x(.) = , and
x(.) = , where ξ , β , γ , δ are non-zero numbers. In fact, this problem is a special case of
the problem (), where ν = ., η = ., b = , and

F(t, x, x, x) =
[

, et
+  +

sin x

e|t| + sinh t +
|x|
|t| +


t – 

+
|x|

cosh |t|
]

.
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Note that et +  + sin x
e|t| + sinh t + |x|

|t| + 
t– + |x|

cosh |t| >  for all t ∈N
.
–. and x, x, x ∈R.

Also, e|t| ≥ , |t| ≥ , and cosh |t| ≥  for all t ∈N
.
–. and F is a compact valued multi-

function on N
.
–. ×R×R×R. Now, define ψ ∈ � by ψ(z) = z

 for all z ≥ . Since

Hd
(
F(t, x, x, x), F(t, z, z, z)

)

≤
∣
∣
∣
∣
sin x

e|t| –
x

|t| +
x

cosh |t| –
sin z

e|t| +
z

|t| –
z

cosh |t|
∣
∣
∣
∣

≤ |x – z| + |x – z| + |x – z|


= ψ
(|x – z| + |x – z| + |x – z|

)

for all t ∈ N
.
–. and x, x, x, z, z, z ∈ R, by using Theorem . the problem () has at

least one solution.

4 Conclusions
In this manuscript, based on a fixed point theorem, we provided the existence result for a
fractional finite difference inclusion in the presence of the general boundary conditions.
An example illustrates our result.
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