RESEARCH

Advances in Difference Equations a SpringerOpen Journal

Open Access

On the existence of solutions for a fractional finite difference inclusion via three points boundary conditions

Dumitru Baleanu^{1,2*}, Shahram Rezapour³ and Saeid Salehi³

*Correspondence: dumitru@cankaya.edu.tr 1Department of Mathematics, Cankaya University, Ogretmenler Cad. 14, Balgat, Ankara, 06530, Turkey 2 Institute of Space Sciences, Magurele, Bucharest, Romania Full list of author information is available at the end of the article

Abstract

In this paper, we discussed the existence of solutions for the fractional finite difference inclusion $\Delta^{\nu}x(t) \in F(t, x(t), \Delta x(t), \Delta^2 x(t))$ via the boundary value conditions $\xi x(\nu - 3) + \beta \Delta x(\nu - 3) = 0, x(\eta) = 0$, and $\gamma x(b + \nu) + \delta \Delta x(b + \nu) = 0$, where $\eta \in \mathbb{N}_{\nu-2}^{b+\nu-1}$, $2 < \nu < 3$, and $F : \mathbb{N}_{\nu-3}^{b+\nu+1} \times \mathbb{R} \times \mathbb{R} \to 2^{\mathbb{R}}$ is a compact valued multifunction.

Keywords: fixed point; fractional finite difference inclusion; three points boundary conditions

1 Introduction

There are many works concerned with the existence of solutions for some fractional finite difference equations from different views by using the fixed point theory techniques (see for example, [1-7]). The readers can find more details as regards elementary notions and definitions of fractional finite difference equations in [8–15]. Also, much attention was devoted to the fractional differential inclusions (see for example, [9, 10, 16–24]). To the best of our knowledge, there is no published research work about fractional finite difference inclusions.

In 2011, Goodrich [25] investigated the general discrete fractional boundary problem, namely

 $\begin{cases} -\Delta^{\nu} y(t) = f(t+\nu-1, y(t+\nu-1)), \\ \alpha y(\nu-2) - \beta \Delta y(\nu-2) = 0, \\ \gamma y(\nu+b) - \delta \Delta y(\nu+b) = 0, \end{cases}$

where $t \in [0, b]_{\mathbb{N}_0}$, $\nu \in (1, 2]$, and $\alpha \gamma + \alpha \delta + \beta \gamma \neq 0$ with $\alpha, \beta, \gamma, \delta \geq 0$. In this paper, with this thought and motivation in our minds, we investigate the existence of solution for the fractional finite difference inclusion

$$\begin{cases} \Delta^{\nu} x(t) \in F(t, x(t), \Delta x(t), \Delta^{2} x(t)),\\ \xi x(\nu - 3) + \beta \Delta x(\nu - 3) = 0,\\ x(\eta) = 0,\\ \gamma x(b + \nu) + \delta \Delta x(b + \nu) = 0, \end{cases}$$

© 2015 Baleanu et al. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

where $\eta \in \mathbb{N}_{\nu-2}^{b+\nu-1}$, $2 < \nu < 3$ and $F : \mathbb{N}_{\nu-3}^{b+\nu+1} \times \mathbb{R} \times \mathbb{R} \times \mathbb{R} \to 2^{\mathbb{R}}$ is a compact valued multi-function.

2 Preliminaries

As is well known, the Gamma function has some properties as $\Gamma(z + 1) = z\Gamma(z)$ and $\Gamma(n) = (n - 1)!$ for all $n \in \mathbb{N}$. Define

$$t^{\underline{\nu}} = \frac{\Gamma(t+1)}{\Gamma(t+1-\nu)}$$

for all $t, v \in \mathbb{R}$ whenever the right-hand side is defined. If t + 1 - v is a pole of the gamma function and t + 1 is not a pole, then we define $t^{\underline{\nu}} = 0$. One can verify that $v^{\underline{\nu}} = v^{\underline{\nu-1}} = \Gamma(v+1)$ and $t^{\underline{\nu+1}} = (t-v)t^{\underline{\nu}}$. We use the notations $\mathbb{N}_a = \{a, a+1, a+2, \ldots\}$ for all $a \in \mathbb{R}$ and $\mathbb{N}_a^b = \{a, a+1, a+2, \ldots, b\}$ for all real numbers a and b whenever b - a is a natural number.

Let v > 0 be such that $m - 1 < v \le m$ for some natural number m. Then the vth fractional sum of f based at a is defined by

$$\Delta_a^{-\nu}f(t) = \frac{1}{\Gamma(\nu)} \sum_{k=a}^{t-\nu} \left(t - \sigma(k)\right)^{\nu-1} f(k)$$

for all $t \in \mathbb{N}_{a+\nu}$. Similarly, we define

$$\Delta_a^{\nu} f(t) = \frac{1}{\Gamma(-\nu)} \sum_{k=a}^{t+\nu} (t - \sigma(k))^{\frac{-\nu-1}{2}} f(k)$$

for all $t \in \mathbb{N}_{a+m-\nu}$.

Lemma 2.1 [1] Let $h: \mathbb{N}_{\nu-3}^{b+\nu+1} \to \mathbb{R}$ be a mapping and $2 < \nu \leq 3$. The general solution of the equation $\Delta_{\nu-3}^{\nu} x(t) = h(t)$ is given by

$$x(t) = \sum_{i=1}^{3} c_i t^{\frac{\nu-i}{\nu}} + \frac{1}{\Gamma(\nu)} \sum_{s=0}^{t-\nu} (t - \sigma(s))^{\frac{\nu-1}{\nu}} h(s),$$
(1)

where c_1 , c_2 , c_3 are arbitrary constants.

Since $\Delta t^{\underline{\mu}} = \mu t^{\underline{\mu}-1}$, we have

$$\Delta x(t) = \sum_{i=1}^{3} c_i(\nu - i)t^{\frac{\nu - i - 1}{1}} + \frac{1}{\Gamma(\nu - 1)} \sum_{s=0}^{t - \nu + 1} (t - \sigma(s))^{\frac{\nu - 2}{2}} h(s)$$
(2)

for more information see [12].

Let (X, d) be a metric space. Denote by 2^X , CB(X), and $P_{cp}(X)$ the class of all nonempty subsets, the class of all closed and bounded subsets, and the class of all compact subsets of X, respectively. A mapping $Q: X \to 2^X$ is called a multifunction on X and $u \in X$ is called a fixed point of Q whenever $u \in Qu$.

Consider the Hausdorff metric $H_d: 2^X \times 2^X \to [0, \infty)$ by

$$H_d(A,B) = \max\left\{\sup_{a\in A} d(a,B), \sup_{b\in B} d(A,b)\right\},\$$

where $d(A, b) = \inf_{a \in A} d(a, b)$. Let (X, d) be a metric space, $\alpha : X \times X \to [0, \infty)$ a map, and $T : X \to 2^X$ a multifunction.

We say that *X* obeys the condition (C_{α}) whenever for each sequence $\{x_n\}$ in *X* with $\alpha(x_n, x_{n+1}) \ge 1$ for all *n* and $x_n \to x$, there exists a subsequence $\{x_{n_k}\}$ of $\{x_n\}$ such that $\alpha(x_{n_k}, x) \ge 1$ for all *k*. The map *T* is said to be α -admissible whenever for each $x \in X$ and $y \in Tx$ with $\alpha(x, y) \ge 1$, we have $\alpha(y, z) \ge 1$ for all $z \in Ty$ [26]. Suppose that Ψ is the family of nondecreasing functions $\psi : [0, \infty) \to [0, \infty)$ such that $\sum_{n=1}^{\infty} \psi^n(t) < \infty$ for all t > 0 (for more on this please see [26]).

By using the following fixed point result, we review the existence of solutions for the fractional finite difference inclusion

$$\Delta_{\nu-3}^{\nu}x(t) \in F(t, x(t), \Delta x(t), \Delta^2 x(t))$$

via the boundary conditions $\xi x(\nu - 3) + \beta \Delta x(\nu - 3) = 0$, $\gamma x(b + \nu) + \delta \Delta x(b + \nu) = 0$, and $x(\eta) = 0$, where $\eta \in \mathbb{N}_{\nu-2}^{b+\nu-1}$, $2 < \nu < 3$, and $F : \mathbb{N}_{\nu-3}^{b+\nu} \times \mathbb{R} \times \mathbb{R} \times \mathbb{R} \to 2^{\mathbb{R}}$ is a compact valued multifunction.

Lemma 2.2 [26] Let (X,d) be a complete metric space, $\psi \in \Psi$ a strictly increasing map, $\alpha : X \times X \rightarrow [0,\infty)$ a map and $T : X \rightarrow CB(X)$ an α -admissible multifunction such that $\alpha(x,y)H(Tx,Ty) \leq \psi(d(x,y))$ for all $x, y \in X$ and there exist $x_0 \in X$ and $x_1 \in Tx_0$ with $\alpha(x_0,x_1) \geq 1$. If X obeys the condition (C_{α}) , then T has a fixed point.

3 Main result

In this section, we consider the fractional finite difference inclusion

$$\Delta_{\nu-3}^{\nu} x(t) \in F(t, x(t), \Delta x(t), \Delta^2 x(t))$$
(3)

via the boundary value conditions $\xi x(\nu - 3) + \beta \Delta x(\nu - 3) = 0$, $\gamma x(b + \nu) + \delta \Delta x(b + \nu) = 0$, and $x(\eta) = 0$, where ξ , β , γ , δ are non-zero numbers, $\eta \in \mathbb{N}_{\nu-2}^{b+\nu-1}$, $2 < \nu < 3$, $x : \mathbb{N}_{\nu-3}^{b+\nu+1} \to \mathbb{R}$ and $F : \mathbb{N}_{\nu-3}^{b+\nu+1} \times \mathbb{R} \times \mathbb{R} \to 2^{\mathbb{R}}$ is a compact valued multifunction.

Lemma 3.1 Let $y: \mathbb{N}_0^{b+1} \to \mathbb{R}$ and 2 < v < 3. Then x_0 is a solution for the fractional finite difference equation $\Delta_{\nu=3}^{v} x(t) = y(t)$ via the boundary conditions $\xi x(v-3) + \beta \Delta x(v-3) = 0$, $x(\eta) = 0$, and $\gamma x(b+v) + \delta \Delta x(b+v) = 0$ if and only if x_0 is a solution of the fractional sum equation $x(t) = \sum_{s=0}^{b+1} G(t,s,\eta)y(s)$, where

$$\begin{split} G(t,s,\eta) &= \Bigg[\frac{[\gamma+\delta(\nu-1)][(\eta+2-\nu)(\eta+3-\nu)]t^{\nu-3} - \theta[\gamma+\delta(\nu-1)]t^{\nu-1}}{\theta\beta_0\mu\Gamma(\nu)(b+\nu)^{\nu-4}} \\ &- \frac{[\xi-\beta(\nu-3)][\gamma+\delta(\nu-1)][(\eta+2-\nu)(\eta+3-\nu)]t^{\nu-2}}{\beta(\nu-2)\theta\beta_0\mu\Gamma(\nu)(b+\nu)^{\nu-4}} \Bigg] \\ &\times (b-s+2)\Big(b+\nu-\sigma(s)\Big)^{\nu-2} + \Bigg[\frac{[(\eta+2-\nu)(\eta+3-\nu)-\theta\beta_0]t^{\nu-3} - \theta t^{\nu-1}}{\beta_0\theta^2\eta^{\nu-3}\Gamma(\nu)} \\ &+ \frac{[-\xi+\beta(\nu-3)][(\eta+2-\nu)(\eta+3-\nu)-\theta\beta_0]t^{\nu-2}}{\beta(\nu-2)\theta^2\beta_0\eta^{\nu-3}\Gamma(\nu)} \Bigg] \Big(\eta-\sigma(s)\Big)^{\nu-1} \\ &+ \frac{(t-\sigma(s))^{\nu-1}}{\Gamma(\nu)}, \end{split}$$

whenever $0 \le s \le t - \nu \le b + 1$ and $0 \le s \le \eta - \nu \le b + 1$,

$$\begin{split} G(t,s,\eta) &= \Bigg[\frac{[\gamma + \delta(\nu - 1)][(\eta + 2 - \nu)(\eta + 3 - \nu)]t^{\nu - 3} - \theta[\gamma + \delta(\nu - 1)]t^{\nu - 1}}{\theta\beta_0\mu\Gamma(\nu)(b + \nu)^{\nu - 4}} \\ &- \frac{[\xi - \beta(\nu - 3)][\gamma + \delta(\nu - 1)][(\eta + 2 - \nu)(\eta + 3 - \nu)]t^{\nu - 2}}{\beta(\nu - 2)\theta\beta_0\mu\Gamma(\nu)(b + \nu)^{\nu - 4}} \Bigg] \\ &\times (b - s + 2)(b + \nu - \sigma(s))^{\nu - 2} + \Bigg[\frac{[(\eta + 2 - \nu)(\eta + 3 - \nu) - \theta\beta_0]t^{\nu - 3} - \theta t^{\nu - 1}}{\beta_0\theta^2\eta^{\nu - 3}}\Gamma(\nu) \\ &+ \frac{[-\xi + \beta(\nu - 3)][(\eta + 2 - \nu)(\eta + 3 - \nu) - \theta\beta_0]t^{\nu - 2}}{\beta(\nu - 2)\theta^2\beta_0\eta^{\nu - 3}} \Gamma(\nu) \Bigg] (\eta - \sigma(s))^{\nu - 1}, \end{split}$$

whenever $0 \le t - v < s \le \eta - v \le b + 1$ *,*

$$\begin{aligned} G(t,s,\eta) &= \left[\frac{[\gamma + \delta(\nu - 1)][(\eta + 2 - \nu)(\eta + 3 - \nu)]t^{\nu - 3} - \theta[\gamma + \delta(\nu - 1)]t^{\nu - 1}}{\theta \beta_0 \mu \Gamma(\nu)(b + \nu)^{\nu - 4}} \right. \\ &- \frac{[\xi - \beta(\nu - 3)][\gamma + \delta(\nu - 1)][(\eta + 2 - \nu)(\eta + 3 - \nu)]t^{\nu - 2}}{\beta(\nu - 2)\theta \beta_0 \mu \Gamma(\nu)(b + \nu)^{\nu - 4}} \right] \\ &\times (b - s + 2)(b + \nu - \sigma(s))^{\nu - 2} + \frac{(t - \sigma(s))^{\nu - 1}}{\Gamma(\nu)}, \end{aligned}$$

whenever $0 \le \eta - \nu < s \le t - \nu \le b + 1$ and

$$\begin{split} G(t,s,\eta) &= \left[\frac{[\gamma + \delta(\nu - 1)][(\eta + 2 - \nu)(\eta + 3 - \nu)]t^{\nu - 3} - \theta[\gamma + \delta(\nu - 1)]t^{\nu - 1}}{\theta \beta_0 \mu \Gamma(\nu)(b + \nu)^{\nu - 4}} \right. \\ &- \frac{[\xi - \beta(\nu - 3)][\gamma + \delta(\nu - 1)][(\eta + 2 - \nu)(\eta + 3 - \nu)]t^{\nu - 2}}{\beta(\nu - 2)\theta \beta_0 \mu \Gamma(\nu)(b + \nu)^{\nu - 4}} \right] \\ &\times (b - s + 2)(b + \nu - \sigma(s))^{\nu - 2}, \end{split}$$

whenever $0 \le t - v < s \le b + 1$ *and* $0 \le \eta - v < s \le b + 1$ *. Here,*

$$\begin{split} \theta &= \frac{\eta\beta\nu - \eta\xi - 3\eta\beta - 2\xi + \xi\nu - \beta\nu^2 + 6\beta\nu - 8\beta}{\beta(\nu - 2)}, \\ \mu &= \frac{b\xi\delta\nu - 2b\delta\xi + \gamma\xi b^2 + 3b\gamma\xi + \beta b\nu^2\delta + \delta b^2\beta\nu + \beta b\delta\nu - 6\beta\delta b + 3\beta\delta b^2 + 4\xi\delta\nu}{\beta(\nu - 2)} \\ &+ \frac{-8\delta\xi + 4\gamma\xi b + 12\gamma\xi + 4\beta\nu^2\delta + 7\gamma\beta\nu b + 12\gamma\beta\nu + 4\beta\delta\nu - 24\beta\delta + 21\beta\gamma b + 36\beta\gamma}{\beta(\nu - 2)} \end{split}$$

and

$$\beta_0 = \frac{\theta[\delta(\nu-1) + \gamma(b+2)](b+3)(b+4) + \mu(\eta+2-\nu)(\eta+3-\nu)}{\theta\mu}.$$

Proof Let x_0 be a solution for the equation $\Delta_{\nu-3}^{\nu}x(t) = y(t)$ via the boundary conditions $\xi x(\nu - 3) + \beta \Delta x(\nu - 3) = 0$, $x(\eta) = 0$, and $\gamma x(b + \nu) + \delta \Delta x(b + \nu) = 0$. Then by using (2) and Lemma 2.1, we get

$$x_0(t) = c_1 t^{\frac{\nu-1}{2}} + c_2 t^{\frac{\nu-2}{2}} + c_3 t^{\frac{\nu-3}{2}} + \frac{1}{\Gamma(\nu)} \sum_{s=0}^{t-\nu} (t - \sigma(s))^{\frac{\nu-1}{2}} y(s)$$

and

$$\begin{split} \Delta x_0(t) &= c_1(\nu-1)t^{\underline{\nu-2}} + c_2(\nu-2)t^{\underline{\nu-3}} + c_3(\nu-3)t^{\underline{\nu-4}} \\ &+ \frac{1}{\Gamma(\nu-1)}\sum_{s=0}^{t-\nu+1} \left(t-\sigma(s)\right)^{\underline{\nu-2}} y(s), \end{split}$$

where $c_1, c_2, c_3 \in \mathbb{R}$ are arbitrary constants. Now, by using the boundary condition

$$\xi x(\nu - 3) + \beta \Delta x(\nu - 3) = 0,$$

we get $\xi c_3 + \beta [c_2(\nu - 2) + c_3(\nu - 3)] = 0$. Also, by using the condition $x(\eta) = 0$ we obtain

$$c_{3} = -(\eta + 2 - \nu)(\eta + 3 - \nu)c_{1} - (\eta + 2 - \nu)c_{2}$$
$$- \frac{1}{\eta^{\nu - 3}\Gamma(\nu)} \sum_{s=0}^{\eta - \nu} (\eta - \sigma(s))^{\nu - 1} y(s).$$

Moreover, by using the boundary condition $\gamma x(b + v) + \delta \Delta x(b + v) = 0$, we get

$$c_{1}[\delta(\nu-1)+\gamma(b+2)](b+\nu)^{\nu-2}+c_{2}[\delta(\nu-2)+\gamma(b+3)](b+\nu)^{\nu-3}$$
$$+c_{3}[\delta(\nu-3)+\gamma(b+4)](b+\nu)^{\nu-4}$$
$$=-\frac{\delta}{\Gamma(\nu-1)}\sum_{s=0}^{b+1}(b+\nu-\sigma(s))^{\nu-2}y(s)-\frac{\gamma}{\Gamma(\nu)}\sum_{s=0}^{b}(b+\nu-\sigma(s))^{\nu-1}y(s).$$

Thus, by using a simple calculation, we get

$$\begin{split} c_{1} &= -\frac{1}{\beta_{0}\theta \eta^{\nu-3}\Gamma(\nu)} \sum_{s=0}^{\eta-\nu} (\eta - \sigma(s))^{\nu-1} y(s) \\ &- \frac{\gamma + \delta(\nu - 1)}{\beta_{0}\mu\Gamma(\nu)(b + \nu)^{\nu-4}} \sum_{s=0}^{b+1} (b - s + 2) (b + \nu - \sigma(s))^{\nu-2} y(s), \\ c_{2} &= \frac{[-\xi + \beta(\nu - 3)][(\eta + 2 - \nu)(\eta + 3 - \nu) - \theta\beta_{0}]}{\beta(\nu - 2)\theta^{2}\beta_{0}\eta^{\nu-3}\Gamma(\nu)} \sum_{s=0}^{\eta-\nu} (\eta - \sigma(s))^{\nu-1} y(s) \\ &- \frac{[\xi - \beta(\nu - 3)][\gamma + \delta(\nu - 1)][(\eta + 2 - \nu)(\eta + 3 - \nu)]}{\beta(\nu - 2)\theta\beta_{0}\mu\Gamma(\nu)(b + \nu)^{\nu-4}} \\ &\times \sum_{s=0}^{b+1} (b - s + 2) (b + \nu - \sigma(s))^{\nu-2} y(s) \end{split}$$

and

$$\begin{split} c_{3} &= \frac{(\eta+2-\nu)(\eta+3-\nu)-\theta\beta_{0}}{\theta^{2}\beta_{0}\eta^{\frac{\nu-3}{2}}\Gamma(\nu)} \sum_{s=0}^{\eta-\nu} (\eta-\sigma(s))^{\frac{\nu-1}{2}}y(s) \\ &+ \frac{[\gamma+\delta(\nu-1)][(\eta+2-\nu)(\eta+3-\nu)]}{\theta\beta_{0}\mu\Gamma(\nu)(b+\nu)^{\frac{\nu-4}{2}}} \sum_{s=0}^{b+1} (b-s+2)(b+\nu-\sigma(s))^{\frac{\nu-2}{2}}y(s). \end{split}$$

Hence,

$$\begin{split} x_{0}(t) &= \left[\frac{[\gamma + \delta(\nu - 1)][(\eta + 2 - \nu)(\eta + 3 - \nu)]t^{\nu - 3} - \theta[\gamma + \delta(\nu - 1)]t^{\nu - 1}}{\theta\beta_{0}\mu\Gamma(\nu)(b + \nu)^{\nu - 4}} \right. \\ &- \frac{[\xi - \beta(\nu - 3)][\gamma + \delta(\nu - 1)][(\eta + 2 - \nu)(\eta + 3 - \nu)]t^{\nu - 2}}{\beta(\nu - 2)\theta\beta_{0}\mu\Gamma(\nu)(b + \nu)^{\nu - 4}} \right] \\ &\times \sum_{s=0}^{b+1} (b - s + 2)(b + \nu - \sigma(s))^{\frac{\nu - 2}{2}}y(s) \\ &+ \left[\frac{[(\eta + 2 - \nu)(\eta + 3 - \nu) - \theta\beta_{0}]t^{\nu - 3} - \theta t^{\nu - 1}}{\beta_{0}\theta^{2}\eta^{\nu - 3}\Gamma(\nu)} \right] \\ &+ \frac{[-\xi + \beta(\nu - 3)][(\eta + 2 - \nu)(\eta + 3 - \nu) - \theta\beta_{0}]t^{\nu - 2}}{\beta(\nu - 2)\theta^{2}\beta_{0}\eta^{\frac{\nu - 3}{2}}\Gamma(\nu)} \right] \sum_{s=0}^{\eta - \nu} (\eta - \sigma(s))^{\frac{\nu - 1}{2}}y(s) \\ &+ \sum_{s=0}^{t-\nu} \frac{(t - \sigma(s))^{\nu - 1}}{\Gamma(\nu)}y(s) = \sum_{s=0}^{b+1} G(s, t, \eta)y(s). \end{split}$$

Now, let x_0 be a solution for the equation $x(t) = \sum_{s=0}^{b+1} G(s, t, \eta) y(s)$. Then we have

$$\begin{split} x_{0}(t) &= \left[\frac{[\gamma + \delta(\nu - 1)][(\eta + 2 - \nu)(\eta + 3 - \nu)]t^{\nu - 3} - \theta[\gamma + \delta(\nu - 1)]t^{\nu - 1}}{\theta\beta_{0}\mu\Gamma(\nu)(b + \nu)^{\nu - 4}} \right. \\ &- \frac{[\xi - \beta(\nu - 3)][\gamma + \delta(\nu - 1)][(\eta + 2 - \nu)(\eta + 3 - \nu)]t^{\nu - 2}}{\beta(\nu - 2)\theta\beta_{0}\mu\Gamma(\nu)(b + \nu)^{\nu - 4}} \right] \\ &\times \sum_{s=0}^{b+1} (b - s + 2)(b + \nu - \sigma(s))^{\frac{\nu - 2}{2}}y(s) \\ &+ \left[\frac{[(\eta + 2 - \nu)(\eta + 3 - \nu) - \theta\beta_{0}]t^{\nu - 3} - \theta t^{\nu - 1}}{\beta_{0}\theta^{2}\eta^{\frac{\nu - 3}{2}}\Gamma(\nu)} \right. \\ &+ \frac{[-\xi + \beta(\nu - 3)][(\eta + 2 - \nu)(\eta + 3 - \nu) - \theta\beta_{0}]t^{\nu - 2}}{\beta(\nu - 2)\theta^{2}\beta_{0}\eta^{\frac{\nu - 3}{2}}\Gamma(\nu)} \right] \\ &\times \sum_{s=0}^{\eta - \nu} (\eta - \sigma(s))^{\frac{\nu - 1}{2}}y(s) + \sum_{s=0}^{t-\nu} \frac{(t - \sigma(s))^{\nu - 1}}{\Gamma(\nu)}y(s). \end{split}$$

Since $(\nu - 3)^{\nu - 1} = (\nu - 3)^{\nu - 2} = 0$, $(\nu - 3)^{\nu - 3} = (\nu - 3)^{\nu - 4} = \Gamma(\nu - 2)$, and

$$\sum_{s=0}^{-3} (\nu - 3 - \sigma(s))^{\frac{\nu - 1}{2}} y(s) = \sum_{s=0}^{-2} (\nu - 3 - \sigma(s))^{\frac{\nu - 2}{2}} y(s) = 0,$$

we get $\xi x_0(\nu - 3) + \beta \Delta x_0(\nu - 3) = 0$. A simple calculation shows us $\gamma x_0(b + \nu) + \delta \Delta x_0(b + \nu) = 0$ and $x_0(\eta) = 0$. On the other hand,

$$x_0(t) = c_1 t^{\nu-1} + c_2 t^{\nu-2} + c_3 t^{\nu-3} + \frac{1}{\Gamma(\nu)} \sum_{s=0}^{t-\nu} (t - \sigma(s))^{\nu-1} y(s)$$

is a solution for the equation $\Delta_{\nu-3}^{\nu}x(t) = y(t)$ and so $\Delta_{\nu-3}^{\nu}x_0(t) = y(t)$.

A function $x : \mathbb{N}_{\nu-3}^{b+\nu+1} \to \mathbb{R}$ is a solution of the problem (3) whenever it satisfies the boundary conditions and there exists a function $y : \mathbb{N}_0^{b+1} \to \mathbb{R}$ such that

$$y(t) \in F(t, x(t), \Delta x(t), \Delta^2 x(t))$$

for all $t \in \mathbb{N}_0^{b+1}$ and

$$\begin{split} x(t) &= \left[\frac{[\gamma + \delta(\nu - 1)][(\eta + 2 - \nu)(\eta + 3 - \nu)]t^{\nu - 3} - \theta[\gamma + \delta(\nu - 1)]t^{\nu - 1}}{\theta \beta_0 \mu \Gamma(\nu)(b + \nu)^{\nu - 4}} \right. \\ &- \frac{[\xi - \beta(\nu - 3)][\gamma + \delta(\nu - 1)][(\eta + 2 - \nu)(\eta + 3 - \nu)]t^{\nu - 2}}{\beta(\nu - 2)\theta \beta_0 \mu \Gamma(\nu)(b + \nu)^{\nu - 4}} \right] \\ &\times \sum_{s=0}^{b+1} (b - s + 2) (b + \nu - \sigma(s))^{\nu - 2} y(s) \\ &+ \left[\frac{[(\eta + 2 - \nu)(\eta + 3 - \nu) - \theta \beta_0]t^{\nu - 3} - \theta t^{\nu - 1}}{\beta_0 \theta^2 \eta^{\nu - 3} \Gamma(\nu)} \right. \\ &+ \frac{[-\xi + \beta(\nu - 3)][(\eta + 2 - \nu)(\eta + 3 - \nu) - \theta \beta_0]t^{\nu - 2}}{\beta(\nu - 2)\theta^2 \beta_0 \eta^{\nu - 3} \Gamma(\nu)} \\ &+ \frac{\sum_{s=0}^{\eta - \nu} (\eta - \sigma(s))^{\nu - 1} y(s) + \sum_{s=0}^{t - \nu} \frac{(t - \sigma(s))^{\nu - 1}}{\Gamma(\nu)} y(s). \end{split}$$

Let \mathcal{X} be the set of all functions $x : \mathbb{N}_{\nu-3}^{b+\nu+1} \to \mathbb{R}$ endowed with the norm

$$\|x\| = \max_{t \in \mathbb{N}_{\nu-3}^{b+\nu+1}} |x(t)| + \max_{t \in \mathbb{N}_{\nu-3}^{b+\nu+1}} |\Delta x(t)| + \max_{t \in \mathbb{N}_{\nu-3}^{b+\nu+1}} |\Delta^2 x(t)|.$$

We show that $(\mathcal{X}, \|\cdot\|)$ is a Banach space. Let $\{x_n\}$ be a Cauchy sequence in \mathcal{X} and $\epsilon > 0$ be given. Choose a natural number N such that $\|x_n - x_m\| < \epsilon$ for all m, n > N. This implies that $\max_{t \in \mathbb{N}_{+}^{b+u+1}} |x_n(t) - x_m(t)| < \epsilon$, $\max_{t \in \mathbb{N}_{+}^{b+u+1}} |\Delta x_n(t) - \Delta x_m(t)| < \epsilon$ and

$$\max_{t\in\mathbb{N}_{\nu-3}^{b+\nu+1}}\left|\Delta^2 x_n(t)-\Delta^2 x_m(t)\right|<\epsilon.$$

Choose $x(t), z(t), w(t) \in \mathbb{R}$ such that $x_n(t) \to x(t), \Delta x_n(t) \to z(t)$, and $\Delta^2 x_n(t) \to w(t)$ for all $t \in \mathbb{N}_{\nu-3}^{b+\nu+1}$. Note that $\Delta x_n(t) = x_n(t+1) - x_n(t)$ and so $\Delta x(t) = x(t+1) - x(t) = z(t)$. Similarly, we get $\Delta^2 x(t) = w(t)$. This implies that $|x_n(t) - x(t)| < \frac{\epsilon}{3}, |\Delta x_n(t) - \Delta x(t)| < \frac{\epsilon}{3}$, and $|\Delta^2 x_n(t) - \Delta^2 x(t)| < \frac{\epsilon}{3}$ for all $t \in \mathbb{N}_{\nu-3}^{b+\nu+1}$ and n > M for some natural number M. Thus,

$$\|x_n - x\| = \max_{t \in \mathbb{N}_{\nu-3}^{b+\nu+1}} |x_n(t) - x(t)| + \max_{t \in \mathbb{N}_{\nu-3}^{b+\nu+1}} |\Delta x_n(t) - \Delta x(t)| + \max_{t \in \mathbb{N}_{\nu-3}^{b+\nu+1}} |\Delta^2 x(t) - \Delta^2 x(t)| < \epsilon.$$

Hence, $(\mathcal{X}, \|\cdot\|)$ is a Banach space.

Let $x \in \mathcal{X}$. Define the set of selections of *F* by

$$S_{F,x} = \left\{ y : \mathbb{N}_0^{b+1} \to \mathbb{R} \mid y(t) \in F\left(t, x(t), \Delta x(t), \Delta^2 x(t)\right) \text{ for all } t \in \mathbb{N}_0^{b+1} \right\}.$$

Since $F(t, x(t), \Delta x(t), \Delta^2 x(t)) \neq \emptyset$, the selection principle implies that $S_{F,x}$ is nonempty.

Theorem 3.2 Suppose that $\psi \in \Psi$ and $F : \mathbb{N}_{\nu-3}^{b+\nu+1} \times \mathbb{R} \times \mathbb{R} \times \mathbb{R} \to P_{cp}(\mathbb{R})$ is a multifunction such that

$$H_d(F(t, x_1, x_2, x_3) - F(t, z_1, z_2, z_3)) \le \psi(|x_1 - z_1| + |x_2 - z_2| + |x_3 - z_3|)$$

for all $t \in \mathbb{N}_{\nu-3}^{b+\nu+1}$ and $x_1, x_2, x_3, z_1, z_2, z_3 \in \mathbb{R}$. Then the boundary value inclusion (3) has a solution.

Proof Choose $y \in S_{F,x}$ and put $h(t) = \sum_{s=0}^{b+1} G(t,s,\eta)y(s)$ for all $t \in \mathbb{N}_{\nu-3}^{\nu+b+1}$. Then $h \in \mathcal{X}$ and so the set

$$\left\{h \in \mathcal{X} : \text{there exists } y \in S_{F,x} \text{ such that } h(t) = \sum_{s=0}^{b+1} G(t,s,\eta) y(s) \text{ for all } t \in \mathbb{N}_{\nu-3}^{b+\nu+1}\right\}$$

is nonempty. Now define $\mathcal{F}:\mathcal{X}\to 2^{\mathcal{X}}$ by

$$\mathcal{F}(x) = \left\{ h \in \mathcal{X} : \text{there exists } y \in S_{F,x} \text{ such that } h(t) = \sum_{s=0}^{b+1} G(t,s,\eta) y(s) \right.$$
for all $t \in \mathbb{N}_{\nu-3}^{b+\nu+1} \left. \right\}.$

We show that the multifunction \mathcal{F} has a fixed point. First, we show that $\mathcal{F}(x)$ is closed subset of \mathcal{X} for all $x \in \mathcal{X}$. Let $x \in \mathcal{X}$ and $\{u_n\}_{n \ge 1}$ be a sequence in $\mathcal{F}(x)$ with $u_n \to u$. For each n, choose $y_n \in S_{F,x}$ such that

$$\begin{split} u_n(t) &= \left[\frac{[\gamma + \delta(\nu - 1)][(\eta + 2 - \nu)(\eta + 3 - \nu)]t^{\nu - 3} - \theta[\gamma + \delta(\nu - 1)]t^{\nu - 1}}{\theta\beta_0\mu\Gamma(\nu)(b + \nu)^{\nu - 4}} \right. \\ &- \frac{[\xi - \beta(\nu - 3)][\gamma + \delta(\nu - 1)][(\eta + 2 - \nu)(\eta + 3 - \nu)]t^{\nu - 2}}{\beta(\nu - 2)\theta\beta_0\mu\Gamma(\nu)(b + \nu)^{\nu - 4}} \right] \\ &\times \sum_{s=0}^{b+1} (b - s + 2)(b + \nu - \sigma(s))^{\frac{\nu - 2}{2}}y_n(s) \\ &+ \left[\frac{[(\eta + 2 - \nu)(\eta + 3 - \nu) - \theta\beta_0]t^{\nu - 3} - \theta t^{\nu - 1}}{\beta_0\theta^2\eta^{\frac{\nu - 3}{2}}\Gamma(\nu)} \right. \\ &+ \frac{[-\xi + \beta(\nu - 3)][(\eta + 2 - \nu)(\eta + 3 - \nu) - \theta\beta_0]t^{\frac{\nu - 2}{2}}}{\beta(\nu - 2)\theta^2\beta_0\eta^{\frac{\nu - 3}{2}}\Gamma(\nu)} \\ &+ \frac{\sum_{s=0}^{\eta - \nu}(\eta - \sigma(s))^{\frac{\nu - 1}{2}}y_n(s) + \sum_{s=0}^{t-\nu}\frac{(t - \sigma(s))^{\frac{\nu - 1}{2}}}{\Gamma(\nu)}y_n(s) \end{split}$$

for all $t \in \mathbb{N}_{\nu-3}^{b+\nu+1}$. Since F has compact values, $\{y_n\}_{n\geq 1}$ has a subsequence which converges to some $y \in S_{F,x}$. We denote this subsequence again by $\{y_n\}_{n\geq 1}$. So

$$u_{n}(t) \to u(t)$$

= $\left[\frac{[\gamma + \delta(\nu - 1)][(\eta + 2 - \nu)(\eta + 3 - \nu)]t^{\nu - 3} - \theta[\gamma + \delta(\nu - 1)]t^{\nu - 1}}{\theta \beta_{0} \mu \Gamma(\nu)(b + \nu)^{\nu - 4}} \right]$

$$-\frac{[\xi - \beta(\nu - 3)][\gamma + \delta(\nu - 1)][(\eta + 2 - \nu)(\eta + 3 - \nu)]t^{\nu - 2}}{\beta(\nu - 2)\theta\beta_{0}\mu\Gamma(\nu)(b + \nu)^{\nu - 4}}$$

$$\times \sum_{s=0}^{b+1} (b - s + 2)(b + \nu - \sigma(s))^{\frac{\nu - 2}{2}}y(s)$$

$$+ \left[\frac{[(\eta + 2 - \nu)(\eta + 3 - \nu) - \theta\beta_{0}]t^{\frac{\nu - 3}{2}} - \theta t^{\frac{\nu - 1}{2}}}{\beta_{0}\theta^{2}\eta^{\frac{\nu - 3}{2}}\Gamma(\nu)}\right]$$

$$+ \frac{[-\xi + \beta(\nu - 3)][(\eta + 2 - \nu)(\eta + 3 - \nu) - \theta\beta_{0}]t^{\frac{\nu - 2}{2}}}{\beta(\nu - 2)\theta^{2}\beta_{0}\eta^{\frac{\nu - 3}{2}}\Gamma(\nu)}$$

$$\times \sum_{s=0}^{\eta - \nu} (\eta - \sigma(s))^{\frac{\nu - 1}{2}}y(s) + \sum_{s=0}^{t-\nu} \frac{(t - \sigma(s))^{\frac{\nu - 1}{2}}}{\Gamma(\nu)}y(s)$$

for all $t \in \mathbb{N}_{\nu=3}^{b+\nu+1}$. This implies that $u \in \mathcal{F}(x)$. Thus, the multifunction \mathcal{F} has closed values. Since F is a compact multifunction, it is easy to check that $\mathcal{F}(x)$ is bounded set in \mathcal{X} for all $x \in \mathcal{X}$. Let $x, z \in \mathcal{X}$, $h_1 \in \mathcal{F}(x)$, and $h_2 \in \mathcal{F}(z)$. Choose $y_1 \in S_{F,x}$ and $y_2 \in S_{F,z}$ such that

$$\begin{split} h_1(t) &= \left[\frac{[\gamma + \delta(\nu - 1)][(\eta + 2 - \nu)(\eta + 3 - \nu)]t^{\nu - 3} - \theta[\gamma + \delta(\nu - 1)]t^{\nu - 1}}{\theta\beta_0\mu\Gamma(\nu)(b + \nu)^{\nu - 4}} \right. \\ &- \frac{[\xi - \beta(\nu - 3)][\gamma + \delta(\nu - 1)][(\eta + 2 - \nu)(\eta + 3 - \nu)]t^{\nu - 2}}{\beta(\nu - 2)\theta\beta_0\mu\Gamma(\nu)(b + \nu)^{\nu - 4}} \right] \\ &\times \sum_{s=0}^{b+1} (b - s + 2)(b + \nu - \sigma(s))^{\nu - 2}y_1(s) \\ &+ \left[\frac{[(\eta + 2 - \nu)(\eta + 3 - \nu) - \theta\beta_0]t^{\nu - 3} - \theta t^{\nu - 1}}{\beta_0\theta^2\eta^{\nu - 3}\Gamma(\nu)} \right. \\ &+ \frac{[-\xi + \beta(\nu - 3)][(\eta + 2 - \nu)(\eta + 3 - \nu) - \theta\beta_0]t^{\nu - 2}}{\beta(\nu - 2)\theta^2\beta_0\eta^{\nu - 3}\Gamma(\nu)} \right] \\ &\times \sum_{s=0}^{\eta - \nu} (\eta - \sigma(s))^{\nu - 1}y_1(s) + \sum_{s=0}^{t-\nu} \frac{(t - \sigma(s))^{\nu - 1}}{\Gamma(\nu)}y_1(s) \end{split}$$

and

$$\begin{split} h_2(t) &= \left[\frac{[\gamma + \delta(\nu - 1)][(\eta + 2 - \nu)(\eta + 3 - \nu)]t^{\nu - 3} - \theta[\gamma + \delta(\nu - 1)]t^{\nu - 1}}{\theta\beta_0\mu\Gamma(\nu)(b + \nu)^{\nu - 4}} \right. \\ &- \frac{[\xi - \beta(\nu - 3)][\gamma + \delta(\nu - 1)][(\eta + 2 - \nu)(\eta + 3 - \nu)]t^{\nu - 2}}{\beta(\nu - 2)\theta\beta_0\mu\Gamma(\nu)(b + \nu)^{\nu - 4}} \right] \\ &\times \sum_{s=0}^{b+1} (b - s + 2)(b + \nu - \sigma(s))^{\frac{\nu - 2}{2}}y_2(s) \\ &+ \left[\frac{[(\eta + 2 - \nu)(\eta + 3 - \nu) - \theta\beta_0]t^{\nu - 3} - \theta t^{\nu - 1}}{\beta_0\theta^2\eta^{\nu - 3}\Gamma(\nu)} \right. \\ &+ \frac{[-\xi + \beta(\nu - 3)][(\eta + 2 - \nu)(\eta + 3 - \nu) - \theta\beta_0]t^{\nu - 2}}{\beta(\nu - 2)\theta^2\beta_0\eta^{\frac{\nu - 3}{2}}\Gamma(\nu)} \\ &+ \frac{[-\xi - \beta(\nu - 3)][(\eta + 2 - \nu)(\eta + 3 - \nu) - \theta\beta_0]t^{\nu - 2}}{\beta(\nu - 2)\theta^2\beta_0\eta^{\frac{\nu - 3}{2}}\Gamma(\nu)} \\ &\times \sum_{s=0}^{\eta - \nu} (\eta - \sigma(s))^{\frac{\nu - 1}{2}}y_2(s) + \sum_{s=0}^{t-\nu} \frac{(t - \sigma(s))^{\nu - 1}}{\Gamma(\nu)}y_2(s) \end{split}$$

for all $t \in \mathbb{N}_{\nu-3}^{b+\nu+1}$. Since

$$H_d \left(F \left(t, x(t), \Delta x(t), \Delta^2 x(t) \right) - F \left(t, z(t), \Delta z(t), \Delta^2 z(t) \right) \right)$$

$$\leq \psi \left(\left| x(t) - z(t) \right| + \left| \Delta x(t) - \Delta z(t) \right| + \left| \Delta^2 x(t) - \Delta^2 z(t) \right| \right)$$

for all $x, z \in \mathcal{X}$ and $t \in \mathbb{N}_{\nu-3}^{b+\nu+1}$, we get

$$|y_1(t)-y_2(t)| \leq \psi(|x(t)-z(t)|+|\Delta x(t)-\Delta z(t)|+|\Delta^2 x(t)-\Delta^2 z(t)|).$$

Now, put

$$\begin{split} G_{1} &= \max_{t \in \mathbb{N}_{\nu=3}^{b+1}} \left\{ \left| \frac{[\gamma + \delta(\nu - 1)][(\eta + 2 - \nu)(\eta + 3 - \nu)]t^{\nu-3} - \theta[\gamma + \delta(\nu - 1)]t^{\nu-1}}{\theta \beta_{0} \mu \Gamma(\nu)(b + \nu)^{\nu-4}} \right| \\ &- \frac{[\xi - \beta(\nu - 3)][\gamma + \delta(\nu - 1)][(\eta + 2 - \nu)(\eta + 3 - \nu)]t^{\nu-2}}{\beta(\nu - 2)\theta \beta_{0} \mu \Gamma(\nu)(b + \nu)^{\nu-4}} \right| \\ &\times \sum_{s=0}^{b+1} (b - s + 2)(b + \nu - \sigma(s))^{\nu-2} + \left| \frac{[(\eta + 2 - \nu)(\eta + 3 - \nu) - \theta \beta_{0}]t^{\nu-3} - \theta t^{\nu-1}}{\beta_{0} \theta^{2} \eta^{\nu-3} \Gamma(\nu)} \right| \\ &+ \frac{[-\xi + \beta(\nu - 3)][(\eta + 2 - \nu)(\eta + 3 - \nu) - \theta \beta_{0}]t^{\nu-2}}{\beta(\nu - 2)\theta^{2} \beta_{0} \eta^{\nu-3} \Gamma(\nu)} \right| \\ &\times \sum_{s=0}^{\eta-\nu} (\eta - \sigma(s))^{\frac{\nu-1}{2}} + \sum_{s=0}^{t-\nu} \frac{(t - \sigma(s))^{\nu-1}}{\Gamma(\nu)} \right\}, \\ G_{2} &= \max_{t \in \mathbb{N}_{r=3}^{b+1}} \left\{ \left| \frac{(\nu - 3)[\gamma + \delta(\nu - 1)][(\eta + 2 - \nu)(\eta + 3 - \nu)]t^{\nu-4}}{\theta \beta_{0} \mu \Gamma(\nu)(b + \nu)^{\nu-4}} - \frac{(\nu - 1)\theta[\gamma + \delta(\nu - 1)][(\eta + 2 - \nu)(\eta + 3 - \nu)]t^{\nu-3}}{\beta \theta \beta_{0} \mu \Gamma(\nu)(b + \nu)^{\nu-4}} \right| \\ &\times \sum_{s=0}^{b+1} (b - s + 2)(b + \nu - \sigma(s))^{\frac{\nu-2}{2}} \\ &+ \left| \frac{(\nu - 3)[(\eta + 2 - \nu)(\eta + 3 - \nu) - \theta \beta_{0}]t^{\nu-4}}{\beta_{0} \theta^{2} \eta^{\nu-3} \Gamma(\nu)} + \frac{[-\xi + \beta(\nu - 3)][(\eta + 2 - \nu)(\eta + 3 - \nu) - \theta \beta_{0}]t^{\nu-3}}{\beta \theta^{2} \beta_{0} \eta^{\nu-3} \Gamma(\nu)} \right| \\ &\times \sum_{s=0}^{p-\nu} (\eta - \sigma(s))^{\frac{\nu-1}{2}} + \sum_{s=0}^{t-\nu+1} \frac{(t - \sigma(s))^{\nu-2}}{\Gamma(\nu - 1)} \right\} \end{split}$$

and

$$G_{3} = \max_{t \in \mathbb{N}_{\nu-3}^{b+1+\nu}} \left\{ \left| \frac{(\nu-3)(\nu-4)[\gamma+\delta(\nu-1)][(\eta+2-\nu)(\eta+3-\nu)]t^{\nu-5}}{\theta\beta_{0}\mu\Gamma(\nu)(b+\nu)^{\nu-4}} - \frac{(\nu-1)(\nu-2)\theta[\gamma+\delta(\nu-1)]t^{\nu-3}}{\theta\beta_{0}\mu\Gamma(\nu)(b+\nu)^{\nu-4}} \right. \right.$$

$$\begin{split} &-\frac{(v-3)[\xi-\beta(v-3)][\gamma+\delta(v-1)][(\eta+2-\nu)(\eta+3-\nu)]t^{\nu-4}}{\beta\theta\beta_0\mu\Gamma(\nu)(b+\nu)^{\nu-4}}\bigg|\\ &\times\sum_{s=0}^{b+1}(b-s+2)\big(b+\nu-\sigma(s)\big)^{\nu-2}\\ &+\bigg|\frac{(v-3)(v-4)[(\eta+2-\nu)(\eta+3-\nu)-\theta\beta_0]t^{\nu-5}-\theta(v-1)(v-2)t^{\nu-3}}{\beta_0\theta^2\eta^{\nu-3}\Gamma(\nu)}\\ &+\frac{(v-3)[-\xi+\beta(v-3)][(\eta+2-\nu)(\eta+3-\nu)-\theta\beta_0]t^{\nu-4}}{\beta\theta^2\beta_0\eta^{\nu-3}\Gamma(\nu)}\bigg|\\ &\times\sum_{s=0}^{\eta-\nu}\big(\eta-\sigma(s)\big)^{\nu-1}+\sum_{s=0}^{t-\nu+2}\frac{(t-\sigma(s))^{\nu-3}}{\Gamma(\nu-2)}\bigg\}. \end{split}$$

Then we have

$$\begin{split} &|h_{1}(t) - h_{2}(t)| \\ &= \left| \left[\frac{[\gamma + \delta(v-1)][(\eta + 2 - v)(\eta + 3 - v)]t^{\nu-3} - \theta[\gamma + \delta(v-1)]t^{\nu-1}}{\theta\beta_{0}\mu\Gamma(v)(b + v)^{\nu-4}} - \frac{[\xi - \beta(v-3)][\gamma + \delta(v-1)][(\eta + 2 - v)(\eta + 3 - v)]t^{\nu-2}}{\beta(v-2)\theta\beta_{0}\mu\Gamma(v)(b + v)^{\nu-4}} \right] \right| \\ &\times \sum_{s=0}^{b+1} (b - s + 2)(b + v - \sigma(s))^{\nu-2}(y_{1} - y_{2})(s) \\ &+ \left[\frac{[(\eta + 2 - v)(\eta + 3 - v) - \theta\beta_{0}]t^{\nu-3} - \theta t^{\nu-1}}{\beta_{0}\theta^{2}\eta^{\nu-3}\Gamma(v)} \right] \\ &+ \frac{[-\xi + \beta(v-3)][(\eta + 2 - v)(\eta + 3 - v) - \theta\beta_{0}]t^{\nu-2}}{\beta(v-2)\theta^{2}\beta_{0}\eta^{\nu-3}\Gamma(v)} \right] \\ &\times \sum_{s=0}^{\eta-v} (\eta - \sigma(s))^{\frac{\nu-1}{2}}(y_{1} - y_{2})(s) + \sum_{s=0}^{t-v} \frac{(t - \sigma(s))^{\nu-1}}{\Gamma(v)}(y_{1} - y_{2})(s) \right| \\ &\leq \left| \frac{[\gamma + \delta(v-1)][(\eta + 2 - v)(\eta + 3 - v)]t^{\nu-3}}{\theta\beta_{0}\mu\Gamma(v)(b + v)^{\nu-4}} - \frac{[\xi - \beta(v - 3)][\gamma + \delta(v - 1)][(\eta + 2 - v)(\eta + 3 - v)]t^{\nu-2}}{\beta(v - 2)\theta\beta_{0}\mu\Gamma(v)(b + v)^{\nu-4}} \right| \\ &\times \sum_{s=0}^{b+1} (b - s + 2)(b + v - \sigma(s))^{\frac{\nu-2}{2}}|y_{1}(s) - y_{2}(s)| \\ &+ \left| \frac{[(\eta + 2 - v)(\eta + 3 - v) - \theta\beta_{0}]t^{\nu-3} - \theta t^{\nu-1}}{\beta_{0}\theta^{2}\eta^{\nu-3}\Gamma(v)} \right| \\ &+ \frac{[-\xi + \beta(v - 3)][(\eta + 2 - v)(\eta + 3 - v) - \theta\beta_{0}]t^{\nu-2}}{\beta(v - 2)\theta^{2}\beta_{0}\eta^{\nu-3}\Gamma(v)} \right| \\ &\times \sum_{s=0}^{\eta-v} (\eta - \sigma(s))^{\frac{\nu-1}{2}}|y_{1}(s) - y_{2}(s)| + \sum_{s=0}^{t-v} \frac{(t - \sigma(s))^{\nu-1}}{\Gamma(v)}|y_{1}(s) - y_{2}(s)| \\ &\leq \max_{t\in\mathbb{N}_{0}^{b+1}} |y_{1}(t) - y_{2}(t)| \end{aligned}$$

$$\times \max_{t \in \mathbb{N}_{\nu=3}^{b+1+\nu}} \left\{ \left| \frac{[\gamma + \delta(\nu - 1)][(\eta + 2 - \nu)(\eta + 3 - \nu)]t^{\nu-3} - \theta[\gamma + \delta(\nu - 1)]t^{\nu-1}}{\theta\beta_0\mu\Gamma(\nu)(b + \nu)^{\nu-4}} - \frac{[\xi - \beta(\nu - 3)][\gamma + \delta(\nu - 1)][(\eta + 2 - \nu)(\eta + 3 - \nu)]t^{\nu-2}}{\beta(\nu - 2)\theta\beta_0\mu\Gamma(\nu)(b + \nu)^{\nu-4}} \right|$$

$$\times \sum_{s=0}^{b+1} (b - s + 2)(b + \nu - \sigma(s))^{\nu-2} + \left| \frac{[(\eta + 2 - \nu)(\eta + 3 - \nu) - \theta\beta_0]t^{\nu-3} - \theta t^{\nu-1}}{\beta_0\theta^2\eta^{\nu-3}\Gamma(\nu)} + \frac{[-\xi + \beta(\nu - 3)][(\eta + 2 - \nu)(\eta + 3 - \nu) - \theta\beta_0]t^{\nu-2}}{\beta(\nu - 2)\theta^2\beta_0\eta^{\nu-3}\Gamma(\nu)} \right|$$

$$\times \sum_{s=0}^{\eta-\nu} (\eta - \sigma(s))^{\nu-1} + \sum_{s=0}^{t-\nu} \frac{(t - \sigma(s))^{\nu-1}}{\Gamma(\nu)} \right\}$$

$$\leq \psi \left(\left| x(t) - z(t) \right| + \left| \Delta x(t) - \Delta z(t) \right| + \left| \Delta^2 x(t) - \Delta^2 z(t) \right| \right) \times G_1.$$

Since

$$\begin{split} \Delta h_1(t) &= \left[\frac{(v-3)[\gamma+\delta(v-1)][(\eta+2-v)(\eta+3-v)]t^{\frac{v-4}{2}} - (v-1)\theta[\gamma+\delta(v-1)]t^{\frac{v-2}{2}}}{\theta\beta_0\mu\Gamma(v)(b+v)^{\frac{v-4}{2}}} \right] \\ &- \frac{[\xi-\beta(v-3)][\gamma+\delta(v-1)][(\eta+2-v)(\eta+3-v)]t^{\frac{v-3}{2}}}{\beta\theta\beta_0\mu\Gamma(v)(b+v)^{\frac{v-4}{2}}} \right] \\ &\times \sum_{s=0}^{b+1} (b-s+2)(b+v-\sigma(s))^{\frac{v-2}{2}}y_1(s) \\ &+ \left[\frac{(v-3)[(\eta+2-v)(\eta+3-v)-\theta\beta_0]t^{\frac{v-4}{2}} - \theta(v-1)t^{\frac{v-2}{2}}}{\beta_0\theta^2\eta^{\frac{v-3}{2}}\Gamma(v)} \right] \\ &+ \frac{[-\xi+\beta(v-3)][(\eta+2-v)(\eta+3-v)-\theta\beta_0]t^{\frac{v-3}{2}}}{\beta\theta^2\beta_0\eta^{\frac{v-3}{2}}\Gamma(v)} \right] \\ &\times \sum_{s=0}^{\eta-v} (\eta-\sigma(s))^{\frac{v-1}{2}}y_1(s) + \sum_{s=0}^{t-v+1} \frac{(t-\sigma(s))^{\frac{v-2}{2}}}{\Gamma(v-1)}y_1(s), \end{split}$$

we get

$$\begin{split} \left| \Delta h_{1}(t) - \Delta h_{2}(t) \right| \\ &\leq \left| \frac{(v-3)[\gamma + \delta(v-1)][(\eta + 2 - v)(\eta + 3 - v)]t^{\nu-4} - (v-1)\theta[\gamma + \delta(v-1)]t^{\nu-2}}{\theta\beta_{0}\mu\Gamma(v)(b + v)^{\nu-4}} - \frac{[\xi - \beta(v-3)][\gamma + \delta(v-1)][(\eta + 2 - v)(\eta + 3 - v)]t^{\nu-3}}{\beta\theta\beta_{0}\mu\Gamma(v)(b + v)^{\nu-4}} \right| \\ &\quad \times \sum_{s=0}^{b+1} (b - s + 2)(b + v - \sigma(s))^{\nu-2} |y_{1}(s) - y_{2}(s)| \\ &\quad + \left| \frac{(v-3)[(\eta + 2 - v)(\eta + 3 - v) - \theta\beta_{0}]t^{\nu-4} - \theta(v-1)t^{\nu-2}}{\beta_{0}\theta^{2}\eta^{\nu-3}\Gamma(v)} \right| \\ &\quad + \frac{[-\xi + \beta(v-3)][(\eta + 2 - v)(\eta + 3 - v) - \theta\beta_{0}]t^{\nu-3}}{\beta\theta^{2}\beta_{0}\eta^{\nu-3}\Gamma(v)} \Big| \\ &\quad \times \sum_{s=0}^{\eta-\nu} (\eta - \sigma(s))^{\nu-1} |y_{1}(s) - y_{2}(s)| + \sum_{s=0}^{t-\nu+1} \frac{(t - \sigma(s))^{\nu-2}}{\Gamma(v-1)} |y_{1}(s) - y_{2}(s)| \end{split}$$

$$\begin{split} &\leq \max_{t\in\mathbb{N}_{v-3}^{b+1}} \left| y_{1}(t) - y_{2}(t) \right| \\ &\times \max_{t\in\mathbb{N}_{v-3}^{b+1}} \left\{ \left| \frac{(\nu-3)[\gamma+\delta(\nu-1)][(\eta+2-\nu)(\eta+3-\nu)]t^{\nu-4}}{\theta\beta_{0}\mu\Gamma(\nu)(b+\nu)^{\nu-4}} - \frac{(\nu-1)\theta[\gamma+\delta(\nu-1)]t^{\nu-2}}{\theta\beta_{0}\mu\Gamma(\nu)(b+\nu)^{\nu-4}} - \frac{[\xi-\beta(\nu-3)][\gamma+\delta(\nu-1)][(\eta+2-\nu)(\eta+3-\nu)]t^{\nu-3}}{\beta\theta\beta_{0}\mu\Gamma(\nu)(b+\nu)^{\nu-4}} \right| \\ &\times \sum_{s=0}^{b+1} (b-s+2)(b+\nu-\sigma(s))^{\nu-2} \\ &+ \left| \frac{(\nu-3)[(\eta+2-\nu)(\eta+3-\nu)-\theta\beta_{0}]t^{\nu-4}-\theta(\nu-1)t^{\nu-2}}{\beta_{0}\theta^{2}\eta^{\nu-3}\Gamma(\nu)} + \frac{[-\xi+\beta(\nu-3)][(\eta+2-\nu)(\eta+3-\nu)-\theta\beta_{0}]t^{\nu-3}}{\beta\theta^{2}\beta_{0}\eta^{\nu-3}\Gamma(\nu)} \right| \\ &\times \sum_{s=0}^{\eta-\nu} (\eta-\sigma(s))^{\nu-1} + \sum_{s=0}^{t-\nu+1} \frac{(t-\sigma(s))^{\nu-2}}{\Gamma(\nu-1)} \Big\} \\ &\leq \psi \left(|x(t)-z(t)| + |\Delta x(t) - \Delta z(t)| + |\Delta^{2}x(t) - \Delta^{2}z(t)| \right) \times G_{2}. \end{split}$$

Also, we have

$$\begin{split} |\Delta^{2}h_{1}(t) - \Delta^{2}h_{2}(t)| \\ &\leq \Big| \frac{(v-3)(v-4)[\gamma+\delta(v-1)][(\eta+2-v)(\eta+3-v)]t^{\nu-5}}{\theta\beta_{0}\mu\Gamma(v)(b+v)^{\nu-4}} \\ &- \frac{(v-1)(v-2)\theta[\gamma+\delta(v-1)]t^{\nu-3}}{\theta\beta_{0}\mu\Gamma(v)(b+v)^{\nu-4}} \\ &- \frac{(v-3)[\xi-\beta(v-3)][\gamma+\delta(v-1)][(\eta+2-v)(\eta+3-v)]t^{\nu-4}}{\beta\theta\beta_{0}\mu\Gamma(v)(b+v)^{\nu-4}} \Big| \\ &\times \sum_{s=0}^{b+1} (b-s+2)(b+v-\sigma(s))^{\frac{\nu-2}{2}}|y_{1}(s)-y_{2}(s)| \\ &+ \Big| \frac{(v-3)(v-4)[(\eta+2-v)(\eta+3-v)-\theta\beta_{0}]t^{\nu-5}-\theta(v-1)(v-2)t^{\nu-3}}{\beta_{0}\theta^{2}\eta^{\nu-3}\Gamma(v)} \\ &+ \frac{(v-3)[-\xi+\beta(v-3)][(\eta+2-v)(\eta+3-v)-\theta\beta_{0}]t^{\nu-4}}{\beta\theta^{2}\beta_{0}\eta^{\nu-3}\Gamma(v)} \Big| \\ &\times \sum_{s=0}^{\eta-\nu} (\eta-\sigma(s))^{\frac{\nu-1}{2}}|y_{1}(s)-y_{2}(s)| + \sum_{s=0}^{t-\nu+2} \frac{(t-\sigma(s))^{\nu-3}}{\Gamma(v-2)}|y_{1}(s)-y_{2}(s)| \\ &\leq \max_{t\in\mathbb{N}_{\nu-3}^{b+1}} \Big| y_{1}(t)-y_{2}(t) \Big| \\ &\times \max_{t\in\mathbb{N}_{\nu-3}^{b+1}} \Big\{ \Big| \frac{(v-3)(v-4)[\gamma+\delta(v-1)][(\eta+2-v)(\eta+3-v)]t^{\nu-5}}{\theta\beta_{0}\mu\Gamma(v)(b+v)^{\nu-4}} \\ &- \frac{(v-1)(v-2)\theta[\gamma+\delta(v-1)]t^{\nu-3}}{\theta\beta_{0}\mu\Gamma(v)(b+v)^{\nu-4}} \end{split}$$

$$-\frac{(v-3)[\xi-\beta(v-3)][\gamma+\delta(v-1)][(\eta+2-v)(\eta+3-v)]t^{\nu-4}}{\beta\theta\beta_{0}\mu\Gamma(v)(b+v)^{\nu-4}}\Big|$$

$$\times\sum_{s=0}^{b+1}(b-s+2)(b+v-\sigma(s))^{\frac{\nu-2}{2}}$$

$$+\left|\frac{(v-3)(v-4)[(\eta+2-v)(\eta+3-v)-\theta\beta_{0}]t^{\nu-5}-\theta(v-1)(v-2)t^{\nu-3}}{\beta_{0}\theta^{2}\eta^{\nu-3}\Gamma(v)}\right|$$

$$+\frac{(v-3)[-\xi+\beta(v-3)][(\eta+2-v)(\eta+3-v)-\theta\beta_{0}]t^{\nu-4}}{\beta\theta^{2}\beta_{0}\eta^{\nu-3}\Gamma(v)}\Big|$$

$$\times\sum_{s=0}^{\eta-\nu}(\eta-\sigma(s))^{\frac{\nu-1}{2}}+\sum_{s=0}^{t-\nu+2}\frac{(t-\sigma(s))^{\nu-3}}{\Gamma(v-2)}\Big\}$$

$$\leq\psi\left(|x(t)-z(t)|+|\Delta x(t)-\Delta z(t)|+|\Delta^{2}x(t)-\Delta^{2}z(t)|\right)\times G_{3}.$$

Hence, we obtain

$$\begin{aligned} \|h_{1} - h_{2}\| &= \max_{t \in \mathbb{N}_{\nu-3}^{b+1+\nu}} \left|h_{1}(t) - h_{2}(t)\right| + \max_{t \in \mathbb{N}_{\nu-3}^{b+1+\nu}} \left|\Delta h_{1}(t) - \Delta h_{2}(t)\right| \\ &+ \max_{t \in \mathbb{N}_{\nu-3}^{b+1+\nu}} \left|\Delta^{2}h_{1}(t) - \Delta^{2}h_{2}(t)\right| \\ &\leq \psi\left(\left|x(t) - z(t)\right| + \left|\Delta x(t) - \Delta z(t)\right| + \left|\Delta^{2}x(t) - \Delta^{2}z(t)\right|\right)(G_{1} + G_{2} + G_{3}) \\ &\leq (G_{1} + G_{2} + G_{3})\psi\left(\|x - z\|\right) \end{aligned}$$

for all $x, z \in \mathcal{X}$, $h_1 \in \mathcal{F}(x)$, and $h_2 \in \mathcal{F}(z)$. So $H_d(\mathcal{F}(x), \mathcal{F}(z)) \le (G_1 + G_2 + G_3)\psi(||x - z||)$ for all $x, z \in \mathcal{X}$.

Define the function α on $\mathcal{X} \times \mathcal{X}$ by $\alpha(x, z) = 1$ whenever $G_1 + G_2 + G_3 < 1$ and $\alpha(x, z) = \frac{1}{G_1 + G_2 + G_3}$ otherwise. Thus,

$$\alpha(x,z)H_d(\mathcal{F}(x),\mathcal{F}(z)) \leq \psi(\|x-z\|)$$

for all $x, z \in \mathcal{X}$. Let $\{x_n\}$ be a sequence in \mathcal{X} with $\alpha(x_n, x_{n+1}) \ge 1$ for all n and $x_n \to x$. Then it is easy to check that there exists a subsequence $\{x_{n_k}\}$ of $\{x_n\}$ such that $\alpha(x_{n_k}, x) \ge 1$ for all k. This implies that \mathcal{X} obeys the condition (C_α) . If $x \in \mathcal{X}$ and $y \in \mathcal{F}(x)$ with $\alpha(x, y) \ge 1$, then it is easy to see that $\alpha(y, z) \ge 1$ for all $z \in \mathcal{F}(y)$. Thus, \mathcal{F} is an α -admissible α - ψ -contractive multifunction. Hence by using Theorem 2.2, there exists $x^* \in \mathcal{X}$ such that $x^* \in \mathcal{F}(x^*)$. One can check that x^* is a solution for the problem (3).

Example 3.1 Consider the fractional finite difference inclusion

$$\Delta_{-0.5}^{2.5} x(t) \in \left[1, e^{t^2} + 2 + \frac{\sin x(t)}{e^{2|t|}} + \sinh^2 t + \frac{|\Delta x(t)|}{4|t|} + \frac{3}{6t^2 - 1} + \frac{|\Delta^2 x(t)|}{\cosh|3t|} \right]$$
(4)

via the boundary value conditions $\xi x(-0.5) + \beta \Delta x(-0.5) = 0$, $\gamma x(6.5) + \delta \Delta x(6.5) = 0$, and x(3.5) = 0, where ξ , β , γ , δ are non-zero numbers. In fact, this problem is a special case of the problem (3), where v = 2.5, $\eta = 3.5$, b = 4, and

$$F(t, x_1, x_2, x_3) = \left[1, e^{t^2} + 2 + \frac{\sin x_1}{e^{2|t|}} + \sinh^2 t + \frac{|x_2|}{4|t|} + \frac{3}{6t^2 - 1} + \frac{|x_3|}{\cosh|3t|}\right].$$

Note that $e^{t^2} + 2 + \frac{\sin x_1}{e^{2|t|}} + \sinh^2 t + \frac{|x_2|}{4|t|} + \frac{3}{6t^2 - 1} + \frac{|x_3|}{\cosh|3t|} > 1$ for all $t \in \mathbb{N}^{7.5}_{-0.5}$ and $x_1, x_2, x_3 \in \mathbb{R}$. Also, $e^{2|t|} \ge 2$, $4|t| \ge 2$, and $\cosh|3t| \ge 2$ for all $t \in \mathbb{N}^{7.5}_{-0.5}$ and F is a compact valued multifunction on $\mathbb{N}^{7.5}_{-0.5} \times \mathbb{R} \times \mathbb{R} \times \mathbb{R}$. Now, define $\psi \in \Psi$ by $\psi(z) = \frac{z}{2}$ for all $z \ge 0$. Since

$$\begin{aligned} H_d \Big(F(t, x_1, x_2, x_3), F(t, z_1, z_2, z_3) \Big) \\ &\leq \left| \frac{\sin x_1}{e^{2|t|}} - \frac{x_2}{4|t|} + \frac{x_3}{\cosh|3t|} - \frac{\sin z_1}{e^{2|t|}} + \frac{z_2}{4|t|} - \frac{z_3}{\cosh|3t|} \right| \\ &\leq \frac{|x_1 - z_1| + |x_2 - z_2| + |x_3 - z_3|}{2} \\ &= \psi \Big(|x_1 - z_1| + |x_2 - z_2| + |x_3 - z_3| \Big) \end{aligned}$$

for all $t \in \mathbb{N}^{7,5}_{-0.5}$ and $x_1, x_2, x_3, z_1, z_2, z_3 \in \mathbb{R}$, by using Theorem 3.2 the problem (4) has at least one solution.

4 Conclusions

In this manuscript, based on a fixed point theorem, we provided the existence result for a fractional finite difference inclusion in the presence of the general boundary conditions. An example illustrates our result.

Competing interests

The authors declare that they have no competing interests.

Authors' contributions All authors contributed equally to the writing of this paper. All authors read and approved the final manuscript.

Author details

¹Department of Mathematics, Cankaya University, Ogretmenler Cad. 14, Balgat, Ankara, 06530, Turkey. ²Institute of Space Sciences, Magurele, Bucharest, Romania. ³Department of Mathematics, Azarbaijan Shahid Madani University, Tabriz, Iran.

Acknowledgements

The research of the second and third authors was supported by Azarbaijan Shahid Madani University.

Received: 14 April 2015 Accepted: 30 June 2015 Published online: 06 August 2015

References

- 1. Awasthi, P: Boundary value problems for discrete fractional equations. PhD thesis, University of Nebraska-Lincoln, Ann Arbor, MI (2013)
- Baleanu, D: A k-dimensional system of fractional finite difference equations. Abstr. Appl. Anal. 2014, Article ID 312578 (2014)
- 3. Goodrich, CS: On a fractional boundary value problem with fractional boundary conditions. Appl. Math. Lett. 25, 1101-1105 (2012)
- 4. Goodrich, CS: On discrete sequential fractional boundary value problems. J. Math. Anal. Appl. 385, 111-124 (2012)
- 5. Goodrich, CS: Solutions to a discrete right-focal fractional boundary value problem. Int. J. Differ. Equ. 5, 195-216 (2010)
- 6. Goodrich, CS: Some new existence results for fractional difference equations. Int. J. Dyn. Syst. Differ. Equ. **3**, 145-162 (2011)
- 7. Pan, Y, Han, Z, Sun, S, Zhao, Y: The existence of solutions to a system of discrete fractional boundary value problems. Abstr. Appl. Anal. 2012, Article ID 707631 (2012)
- 8. Acar, N, Atici, FM: Exponential functions of discrete fractional calculus. Appl. Anal. Discrete Math. 7, 343-353 (2013)
- 9. Atici, FM, Sengul, S: Modeling with fractional difference equations. J. Math. Anal. Appl. 369, 1-9 (2010)
- 10. Atici, FM, Eloe, PW: Initial value problems in discrete fractional calculus. Proc. Am. Math. Soc. 137, 981-989 (2009)
- 11. Elaydi, SN: An Introduction to Difference Equations. Springer, Berlin (1996)
- 12. Holm, M: Sum and differences compositions in discrete fractional calculus. CUBO 13, 153-184 (2011)
- 13. Holm, M: The theory of discrete fractional calculus: development and applications. PhD thesis, University of Nebraska-Lincoln, Ann Arbor, MI (2011)
- 14. Kang, S, Li, Y, Chen, H: Positive solutions to boundary value problems of fractional difference equation with nonlocal conditions. Adv. Differ. Equ. 2014, 7 (2014)
- 15. Mohan, JJ, Deekshitulu, GVSR: Fractional order difference equations. Int. J. Differ. Equ. 2012, Article ID 780619 (2012)
- Agarwal, RP, Ahmad, B: Existence theory for anti-periodic boundary value problems of fractional differential equations and inclusions. J. Appl. Math. Comput. 62, 1200-1214 (2011)

- Agarwal, RP, Belmekki, M, Benchohra, M: A survey on semilinear differential equations and inclusions involving Riemann-Liouville fractional derivative. Adv. Differ. Equ. 2009, Article ID 981728 (2009)
- Agarwal, RP, Benchohra, M, Hamani, S: A survey on existence results for boundary value problems of nonlinear fractional differential equations and inclusions. Acta Appl. Math. 109, 973-1033 (2010)
- 19. Ahmad, B, Nieto, JJ: Existence of solutions for anti-periodic boundary value problems involving fractional differential equations via Leray-Schauder degree theory. Topol. Methods Nonlinear Anal. **35**, 295-304 (2010)
- Ahmad, B, Ntouyas, SK: Boundary value problem for fractional differential inclusions with four-point integral boundary conditions. Surv. Math. Appl. 6, 175-193 (2011)
- 21. Aubin, J, Ceuina, A: Differential Inclusions: Set-Valued Maps and Viability Theory. Springer, Berlin (1984)
- 22. El-Sayed, AMA, Ibrahim, AG: Multivalued fractional differential equations. Appl. Math. Comput. 68, 15-25 (1995)
- 23. Kisielewicz, M: Differential Inclusions and Optimal Control. Kluwer Academic, Dordrecht (1991)
- 24. Liu, X, Liu, Z: Existence result for fractional differential inclusions with multivalued term depending on lower-order derivative. Abstr. Appl. Anal. **2012**, Article ID 423796 (2012)
- 25. Goodrich, CS: A comparison result for the fractional difference operator. Int. J. Differ. Equ. 6, 17-37 (2011)
- Mohammadi, B, Rezapour, S, Shahzad, N: Some results on fixed points of ξ-ψ-Ciric generalized multifunctions. Fixed Point Theory Appl. 2013, 24 (2013)

Submit your manuscript to a SpringerOpen[®] journal and benefit from:

- ► Convenient online submission
- ► Rigorous peer review
- Immediate publication on acceptance
- ► Open access: articles freely available online
- ► High visibility within the field
- Retaining the copyright to your article

Submit your next manuscript at > springeropen.com