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Abstract
This paper addresses the stability problem of a class of switched nonlinear time-delay
systems modeled by delay differential equations. Indeed, by transforming the system
representation under the arrow form, using a constructed Lyapunov function, the
aggregation techniques, the Borne-Gentina practical stability criterion associated
with theM-matrix properties, new delay-independent conditions to test the global
asymptotic stability of the considered systems are established. In addition, these
stability conditions are extended to be generalized for switched nonlinear systems
with multiple delays. Note that the results obtained are explicit, they are simple to
use, and they allow us to avoid the problem of searching a common Lyapunov
function. Finally, an example is provided, with numerical simulations, to demonstrate
the effectiveness of the proposed method.
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1 Introduction
Switched systems are a class of important hybrid systems which consist of a finite number
of subsystems that are governed by differential or difference equations and a switching
law which defines a specific subsystem being activated during a certain interval of time.
Due to the physical properties or various environmental factors, many real-world systems
can be modeled as switched systems such as computer science, autonomous transmission
systems, computer disc drivers, control systems, electrical engineering and technology,
automotive industry, air traffic management, chemical systems, power systems and com-
munication networks, and other applications [–]. On the other hand, considerable ef-
forts have been made as regards the analysis and the design of switched systems. There
are still many open and challenging issues remaining to be tackled, despite great successes
reported during the past several decades. Among those research topics, stability analysis
and stabilization have attracted most attention [–, –]. Hence, several methods have
been proposed for these matters. It is commonly recognized that there are mainly three
basic types of problems considering the stability and the stabilization issues of switched
systems [–]: (i) guaranteeing of asymptotical stability of the switched system with ar-
bitrary switching; (ii) identification of the limited but useful class of stabilizing switching
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laws; and (iii) construction of asymptotically stabilizing switching signals. Specifically, the
stability analysis under arbitrary switching problem (i) which will be focused on in this
work deals with the case that all subsystems are stable. This problem seems trivial, but
it is fundamental and important [, –], since we can find many examples where all
subsystems are stable but inappropriate switching rules can make the whole system un-
stable. In addition, stability under arbitrary switching is a desirable property of switched
systems due to its practical importance and also it allows us to consider higher control
specifications for the system. For this problem, it is well known that the existence of a
common Lyapunov function for individual systems guarantees stability of the switched
system under arbitrary switching [, ]. Therefore, this method is usually very difficult
to apply even for continuous-time switched linear systems [, ]; however, it becomes
more complicated for switched nonlinear systems. Yet, some attempts are presented to
construct a common Lyapunov function for nonlinear switched systems [, ].

On the other hand, time delay is a common phenomenon encountered in various practi-
cal and engineering systems [, ] such as chemical processes, nuclear reactors, models
of lasers, electrical systems, aircraft stabilization, biological systems, and systems with
lossless transmission lines; and most of them appear in the form of time-varying delay.
It is a well-known fact that the presence of delays is an inherent feature of many physi-
cal processes, the big sources of instability and poor performances in switched systems.
Thus, it is important to investigate the stability analysis problem for switched delay sys-
tems [–, , , –]. It is noted that current methods of the analysis and design for
time-delay systems can be classified into two categories: delay-independent criteria and
delay-dependent ones. In this work, in view of a delay-independent analysis, we expect to
aid in studying stability analysis of switched systems under an arbitrary switching law.

Presently, the most important consideration in the analysis of switched systems is their
stability. Recently, many researchers focused on switched time-delay systems. Indeed, the
stability analysis problem of switched time-delay systems has attracted a lot of attention
from many researchers [, –]. However, the presence of delays makes this problem
much more complicated. Thus, the main approach for stability analysis under arbitrary
switching relies on the use of a Lyapunov-Krasovskii functional and the LMI approach for
constructing a common Lyapunov function []. In fact, getting such a function becomes
more complicated even for switched linear systems. Consequently, few results have been
obtained for continuous-time switched nonlinear time-delay systems [].

Motivated by these mentioned shortcomings for the existing results in this framework
as well in the sense of various methods that can be employed in this paper, we address this
challenging problem. Indeed, based on the construction of a common Lyapunov function
as well as the use of the Borne-Gentina practical stability criterion [–, –] asso-
ciated with the M-matrix properties [, ], new delay-independent sufficient stability
conditions for continuous-time switched nonlinear time-delay systems under arbitrary
switching are established. Subsequently, these obtained results are extended to be gen-
eralized for continuous-time switched nonlinear systems with multiple delays. Note that
these proposed results can guarantee stability under arbitrary switching and allow us to
avoid searching of a common Lyapunov function, which is very difficult in this case.

Within the frame of studying the stability analysis, this approach was introduced in [,
] for continuous-time-delay systems and in our previous work [, ] for discrete-time
switched time-delay systems.



Kermani and Sakly Advances in Difference Equations  (2015) 2015:225 Page 3 of 20

This paper is organized as follows. Section  formulates the problem and presents some
definitions. The main results of this paper are given in Section . Section  is devoted
to the derivation of new delay-independent conditions for the asymptotic stability of a
class of switched nonlinear systems defined by differential equations. Then this result is
extended for switched systems with multiple delays in Section . A numerical example is
provided to illustrate the design results in Section . Finally, concluding remarks are given
in Section .

Notations The notations in this paper are fairly standard. If not explicitly stated, matri-
ces are assumed to have compatible dimensions. I is an identity matrix with appropriate
dimension. Let �n denote an n dimensional linear vector space over the reals; ‖ · ‖ stands
for the Euclidean norm of vectors. For any u = (ui)≤i≤n, v = (vi)≤i≤n ∈ �n we define the
scalar product of the vector u and v as 〈u, v〉 =

∑n
i= uivi. Denote by λ(M) the set of eigen-

values of the matrix M = (mi,j)≤i,j≤n, MT is its transpose and M– its inverse and we denote
M∗ = (m∗

i,j)≤i,j≤n with m∗
i,j = mi,j if i = j and m∗

i,j = |mi,j| if i 	= j and |M| = |mi,j|, ∀i, j.

In the sequel, we denote (x(t), t) = (·).

2 Preliminaries and problem formulation
Consider the following continuous-time switched time-varying delay system:

{
ẋ(t) = Aσ (t)(·)x(t) + Dσ (t)(·)x(t – h),
x(t) = φ(t), t ∈ [–h, ],

()

where σ (t) : �+ → N = {, , . . . , N} is a right continuous piecewise constant mapping,
called the switching signal, N is the number of subsystems, x(t) ∈ �n is the state, Aσ (t)(·)
and Dσ (t)(·) are matrices with nonlinear elements of appropriate dimensions. ϕ(t) is the
continuous vector valued function specifying the initial state of the system. h >  is the
time delay.

Before addressing the main results, some definitions are first introduced.

Definition  The equilibrium point of system () is said to be uniformly asymptotically
stable if for any ε > , there is a δ(ε) >  such that max–h≤t≤ ‖φ(t)‖ < δ implies ‖x(t,φ)‖ ≤ ε,
t ≥ . For arbitrary switching σ (t), there is also a δ′ such that max–h≤t≤ ‖φ(t)‖ < δ′ implies
‖x(t,φ)‖ →  as t → ∞.

Now, the following lemma and criterion are preliminarily presented, which will play
important roles in our further derivation.

Kotelyanski lemma [] The real parts of the eigenvalues of the matrix A, with non-
negative off-diagonal elements, are less than a real number μ if and only if all those of
the matrix M; M = μIn – A are positive, with In the n identity matrix.

Borne-Gentina practical stability criterion [] Let consider the autonomous nonlin-
ear continuous process described in state space by ẋ = A(·)x; A(·) is an n × n matrix,
A(·) = {aij}≤i,j≤n. If the overvaluing matrix M(A(·)) has its non-constant elements isolated
in only one row, the verification of the Kotelyanski condition enables one to conclude to
the stability of the initial system.
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As an example, if the non-constant elements are isolated in only one row of A(·), the
Kotelyanski lemma applied to the overvaluing matrix obtained by the use of the n regular
vector norm p(x) with x = [x, x, . . . , xn]T , such that p(x) = [|x|, |x|, . . . , |xn|]T , leads to the
following stability conditions of the initial system:

a < ,

∣
∣
∣
∣
∣

a |a|
|a| a

∣
∣
∣
∣
∣

> , . . . , (–)n

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

a |a| · · · |an|
|a| a · · · |an|

...
... · · · ...

|an(·)| |an(·)| · · · ann(·)

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

> .

The Borne-Gentina practical criterion applied to continuous systems generalizes the
Kotelyanski lemma for nonlinear systems and defines large classes of systems for which
the linearity assumption can be applied, either for the initial system or for its comparison
system.

The following theorem of the M-matrix properties is required.

Theorem  [] The matrix A = {aij}≤i,j≤n is an M-matrix if the properties below are
satisfied:

• The principal minors of A are positive:

(A)

(
  · · · j
  · · · j

)

> , ∀j = , . . . , n. ()

• For any positive real numbers η = (η, . . . ,ηn)T the algebraic equations Ax = η have a
positive solution w = (w, . . . , wn).

Remark  A continuous-time system characterized by a matrix A is stable if the matrix
A is the opposite of an M-matrix.

Here the definition of a pseudo-overvaluing matrix is given, which will be used in the
subsequent analysis.

Definition  [, ] The matrix Tc(·) is said to be a pseudo-overvaluing matrix of the
system given by ẋ = A(·)x with respect to the vector norm p, when the following inequality
is verified:

ṗ(x) ≤ Tc(·)p(x), ()

∀x ∈ E and t >  is verified for each corresponding component. Thus, the stability of the
comparison system: ż(t) = Tc(·)z(t) with the initial conditions such as z = p(x), implies
the same property for the initial system.

When the pseudo-overvaluing matrix Tc(·) is defined with respect to regular vector
norms, the following properties can be considered:

• The off-diagonal elements of the matrix Tc(·) are non-negative.
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• When all the real parts of the eigenvalues of Tc(·) are negative, this matrix is the
opposite of an M-matrix. It allows an inverse whose elements are all non-positive.

• When we denote by λM <  the real part of the eigenvalue of maximum real part of
Tc(·), it comes the inequalities: Re(λMC (·)) ≤ λM .

• When its inverse is an irreducible matrix, then Tc(·) admits an eigenvector u(x, t)
relative to the eigenvalues λM and whose components are strictly positive.

• In addition, if we suppose now that the non-constant elements are isolated in only one
row of Tc(·). Then the main eigenvector u related to the main eigenvalue λM is a
constant vector.

Remark  In the case that the nonlinear elements of the matrix A(·) are isolated in only
one row, the conditions of Theorem , Definition  and Remark  still valid.

Assumption  We suppose that the nonlinear elements of the pseudo-overvaluing matrix
Tc(·) are isolated in only the last row.

3 Main results
Theorem  System () is asymptotically globally stable under arbitrary switching rule ()
σ (t) = i ∈ N , if the matrix Tc(·) is the opposite of an M-matrix, with

Tc(·) = max
≤i≤N

((
Ai(·)
)∗ + sup

[·]

(∣
∣Di(·)

∣
∣
))

. ()

Proof Let w ∈ �n with components (wm > , ∀m = , . . . , n) and x(t) ∈ �n is the state vector.
Choose a radially unbound common Lyapunov function as follows:

V
(
x(t), t

)
= V
(
x(t), t

)
+ V
(
x(t), t

)
()

with

V
(
x(t), t

)
=
〈∣
∣x(t)
∣
∣, w
〉

()

and

V
(
x(t), t

)
=
〈

|Dc|
∫ t

t–h

∣
∣x(θ )

∣
∣dθ , w

〉

, ()

where

Dc(·) = max
≤i≤N

(∣
∣Di(·)

∣
∣
)

()

and Dc = max≤i≤N (sup[·](|Di(·)|)).
It is clear that V (t = ) ≥ .
Taking the right derivative of V (x(t), t) along the trajectory of system () yields

d+V (x(t), t)
dt+ =

d+V(x(t), t)
dt+ +

d+V(x(t), t)
dt+ , ()
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where

d+V(x(t), t)
dt+ =

〈
d+|x(t)|

dt+ , w
〉

=
〈

sgn
(
x(t)
)d+x(t)

dt+ , w
〉

()

and

sgn
(
x(t)
)

=

⎛

⎜
⎜
⎝

sgn(x(t))
. . .

sgn(xn(t))

⎞

⎟
⎟
⎠ . ()

Then

d+V(t)
dt+ =

〈
sgn
(
x(t)
)(

Aσ (t)(·)x(t) + Dσ (t)(·)x(t – h)
)
, w
〉

≤ 〈((Aσ (t)(·)
)∗∣∣x(t)

∣
∣ +
∣
∣Dσ (t)(·)

∣
∣
∣
∣x
(
t – h(t)

)∣
∣
)
, w
〉

≤ 〈((Ac(·))∗∣∣x(t)
∣
∣ +
∣
∣Dc(·)∣∣∣∣x(t – h)

∣
∣
)
, w
〉

()

with Ac(·) = max≤i≤N (|Ai(·)|).
Also we have

d+V(x(t), t)
dt+ =

〈∣
∣Dc(·)∣∣(∣∣x(t)

∣
∣ –
∣
∣x(t – h)

∣
∣
)
, w
〉
. ()

From () and (), we obtain the following inequality:

d+V (t)
dt+ <

〈((
Ac(·))∗∣∣x(t)

∣
∣ +
∣
∣Dc(·)∣∣∣∣x(t – h)

∣
∣
)

+
∣
∣Dc(·)∣∣∣∣x(t)

∣
∣ –
∣
∣Dc(·)∣∣∣∣x(t – h)

∣
∣, w
〉

=
〈((

Ac(·))∗∣∣x(t)
∣
∣
)

+
∣
∣Dc(·)∣∣∣∣x(t)

∣
∣, w
〉

=
〈∣
∣Tc(·)∣∣∣∣x(t)

∣
∣, w
〉
, ()

where Tc(·) is given in ().
We know that

〈
Tc(·)∣∣x(t)

∣
∣, w
〉

=
〈
Tc(·)T w,

∣
∣x(t)
∣
∣
〉
. ()

In the case that the nonlinear elements of Tc(·) are isolated in the last row (Assumption 
is satisfied) the eigenvector v(t, x(t)) relative to the eigenvalue λm is constant [] where
λm is such that Re(λm) = max{Re(λm),λ ∈ λTc(·)}. Then, to complete this proof, we assume
that Tc(·) is the opposite of an M-matrix. Indeed, according to the M-matrix properties,
we can find a vector ρ ∈ �∗n

+ (ρl ∈ �∗
+, l = , . . . , n) satisfying the relation (Tc(·))T w = –ρ ,

∀w ∈ �∗n
+ .

We have

〈(
Tc(·))∣∣x(t)

∣
∣, w
〉

=
〈(

Tc(·))T w,
∣
∣x(t)
∣
∣
〉

=
〈
–ρ,
∣
∣x(t)
∣
∣
〉
. ()

Substituting () into () gives rise to

dV (t, x(t))
dt

<
〈
–ρ,
∣
∣x(t)
∣
∣
〉

= –
n∑

l=

ρl
∣
∣x(t)
∣
∣ < . ()

Thus, the proof is completed. �
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4 Stability of switched nonlinear systems modeled by delay differential
equations

This section discusses the stability property of a class of switched nonlinear delay systems
described by a set of delay differential equations described as follows:

{
yn(t) + (

∑n–
j= aj

i(·)y(j)(t)) + (
∑n–

p= dj
i(·)y(j)(t – h)) = , h > ,

y(j)(θ ) = φj(θ ), θ ∈ [–h, ], j = , . . . , n – ,
()

where y(t) ∈ �n, aj
i(·) and dj

i(·) are nonlinear coefficients for each i ∈ N and j = , . . . , n – .
u(t) ∈ � is the control input. h >  denotes the delay. φj(θ ) (j = , . . . , n – ) are the initial
conditions on [–h, ].

The following changes:

xj+(t) = y(j)(t), j = , . . . , n – , ()

imply the state variables

{
ẋj(t) = xj+(t), j = , . . . , n – ,
ẋn(t) = –(

∑n–
j= aj

i(·)xj+(t) +
∑n–

j= dj
i(·)xj+(t – h)).

()

Therefore, all the studied subsystems are described by the following state space represen-
tation:

{
ẋ(t) = (Ai(·)x(t) + Di(·)x(t – h) + Bi(·)u(t)),
x(θ ) = φ(θ ), θ ∈ [–τ , ],

i ∈ N , ()

where x(t) is the state vector, whose components are xj(t), j = , . . . , n, and the matrices
Ai(·) and Di(·) are given by

Ai(·) =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

  · · · 

 
. . .

...
...

...
. . . 

–a
i (·) –a

i (·) · · · –an–
i (·)

⎤

⎥
⎥
⎥
⎥
⎥
⎦

, i ∈ N , ()

Di(·) =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

  · · · 

 
. . .

...
...

...
. . . 

–d
i (·) –d

i (·) · · · –dn–
i (·)

⎤

⎥
⎥
⎥
⎥
⎥
⎦

, i ∈ N , ()

where aj
i(·) is a coefficient of the instantaneous characteristic polynomial PAi(·)(λ) of the

matrix Ai(·) given as follows:

PAi(·)(λ) = λn +
n–∑

q=

aq
i (·)λq ()
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and dj
i(·) is a coefficient of the instantaneous characteristic polynomial QDi(·)(λ) of the

matrix Di(·) defined by

QDi(·)(λ) =
n–∑

q=

dq
i (·)λq. ()

By considering the switching rule (), the switched nonlinear time-delay system is deduced
as below:

{
ẋ(t) = Aσ (t)(·)x(t) + Dσ (t)(·)x(t – h),
x(θ ) = φ(θ ), θ ∈ [–h, ].

()

Therefore, to complete this development a change to base of system () into the arrow
matrix form is performed. Indeed, apply the following transformation:

z(t) = Px(t), ()

where P is the corresponding passage matrix given as follows:

P =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

  · · ·  
α α · · · αn– 

(α) (α) · · · (αn–) ...
...

... · · · ... 
(α)n– (α)n– . . . (αn–)n– 

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

()

with αj, j = , . . . , n –  are distinct arbitrary constant parameters.
This leads to the new following state representation:

ż(t) = Fi(·)z(t) + Ei(·)z(t – h), i ∈ N . ()

The matrix Fi(·), i ∈ N is given by

Fi(·) = P–Ai(·)P =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

α  · · ·  β


. . . . . .

...
...

...
. . . . . . 

...
 · · ·  αn– βn–

γ 
i (·) · · · · · · γ n–

i (·) γ n
i (·)

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

. ()

The elements of the matrix Fi(·), i ∈ N are defined by
{

γ
j
i (·) = –PAi(·)(αj), ∀j = , . . . , n – ,

γ n
i (·) = –an–

i (·) –
∑n–

j= αj
()

with

βj =
n–∏

q=
q 	=j

(αj – αq)–, ∀j = , . . . , n – . ()
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The matrix Ei(·), i ∈ N is given by

Ei(·) = P–Di(·)P =

[
n–,n– · · · n–,

δ
i (·) · · · δn–

i (·) δn
i (·)

]

()

with
{

δ
j
i(·) = –QDi(·)(αj), ∀j = , . . . , n – ,

δn
i (·) = –dn–

i (·). ()

According to the previous relations, the matrices Ti(·), i ∈ N are defined by

Ti(·) =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

α  · · ·  |β|


. . . . . .
...

...
...

. . . . . . 
...

 · · ·  αn– |βn–|
t
i (·) · · · · · · tn–

i (·) tn
i (·)

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

()

with
{

tj
i(·) = |γ j

i (·)| + sup[·](|δj
i(·)|), j = , . . . , n – ,

tn
i (·) = γ n

i (·) + sup[·](|δn
i (·)|). ()

Next, by considering the switched rule given in () the comparison system corresponding
to system () is defined by

ż(t) = Tc(·)z(t), ()

where Tc(·) is the comparison matrix relative to system (), given by

Tc(·) =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

α  · · ·  |β|


. . . . . .
...

...
...

. . . . . . 
...

 · · ·  αn– |βn–|
t̄
i (·) · · · · · · t̄n–

i (·) t̄n
i (·)

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

()

with

t̄j(·) = max
≤i≤N

(
tj
i(·)
)
, j = , . . . , n. ()

Now we are in a position to provide the following theorem which presents a new delay-
independent stability conditions for system ().

Theorem  System () is globally asymptotically stable under the arbitrary switching rule
(), if there exist αj <  (j = , . . . , n – ), αj 	= αq, ∀j 	= q, satisfying the following condition:

–t̄n(·) +
n–∑

j=

t̄j(·)|βj|α–
j > . ()
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Proof According to the Borne-Gentina criterion [] we have

(–)j�j > , j = , . . . , n, ()

where �j is the jth principal minor of the matrix Tc(·).
It is clear that, for j = , . . . , n – , the condition () is verified for αj ∈ �∗

–. Therefore, the
last condition, j = n, yields

(–)n det
(
Tc(·)) = (–)n

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

α  · · ·  |β|


. . . . . .
...

...
...

. . . . . . 
...

 · · ·  αn– |βn–|
|t̄(·)| · · · · · · |t̄n–(·)| t̄n(·)

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

. ()

That is,

= (–)n

[

t̄n(·)
n–∏

q=

αq –
n–∑

j=

(
∣
∣t̄j(·)∣∣|βj|

n–∏

j=
j 	=q

αj

)]

> .

The last condition in Theorem  is obtained by dividing this previous condition by
((–)n–∏n–

q= αq).
This gives rise to

–t̄n(·) +
n–∑

j=

t̄j(·)|βj|α–
j > .

This completes the proof of the theorem. �

Thus, if there exist αj (j = , . . . , n – ) such that

βj

(
PAi(·)(αj) + sup

[·]

(
QDi(·)(αj)

))
= –βj

(
γ n

i (·) + sup
[·]

(
δn

i (·))
)

<  ()

we obtain the following result.

Corollary  System () is globally asymptotically stable under arbitrary switching rule
(), if there exist αj ∈ �– (j = , . . . , n – ), αj 	= αq, ∀j 	= q for each i ∈ N such that

(i) βj

(
PAi(·)(αj) + sup

[·]

(
QDi(·)(αj)

))
< , ()

(ii)
(

PAi(·)() + sup
[·]

(
QDi(·)()

))
> . ()

Proof [] If there exist αj < , j = , . . . , n – , such that

βj

(
PAi(·)(αj) + sup

[·]

(
QDi(·)(αj)

))
= –βj

(
γ n

i (·) + sup
[·]

(
δn

i (·))
)

< 
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and the comparison matrix T(·) can be chosen identically to

T(·) =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

α  · · ·


. . . . . .
...

. . . . . .
 · · · 

max≤i≤N (γ 
i (·) + sup[·](δ

i (·))) · · · · · ·
 β
...

...


...

αn– βn–

max≤i≤N (γ n–
i (·) + sup[·](δn–

i (·))) max≤i≤N (γ n
i (·) + sup[·](δn

i (·)))

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

Then, the nth principal minor of T(·) is deduced as follows:

�n = –
(

sup
[·]

(
δn

i (·)) + γ n
i (·)
)

+
n–∑

j=

(αj)–
(

sup
[·]

(
δ

j
i(·)
)

+ γ
j
i (·)
)
βj

=
n–∏

j=

(αj)–
(

PAi(·)() + sup
[·]

(
QDi(·)()

))
.

This implies that PAi(·)() + sup[·](QDi(·)()) > .
The proof is completed. �

5 Stability analysis of switched systems with multiple delays
In this part, a generalization of the previous results will be given to a class of switched
nonlinear systems with multiple delays.

Consider a class of switched nonlinear systems with multiple delays formed by N sub-
systems given by

{
ẋ(t) = Aσ (t)x(t) +

∑m
l= Dσ (t),lx(t – hl),

x(t) = φ(t), t ∈ [– max≤l≤m(hl), ],
()

where σ (t) is the switching signal given in (), Ai(·) ∈ �n×n and Dl,i(·) ∈ �n×n (l = , . . . , m)
are matrices of appropriate dimensions with nonlinear elements. ϕ(t) is the continuous
vector valued function specifying the initial state of the system. hl >  denotes the delays.

Generalizing the Lyapunov function introduced in (), it is easy to obtain the following
sufficient stability conditions for system ().

Theorem  System () is globally asymptotically stable under arbitrary switching () if
matrix Tm,c(·) is the opposite of an M-matrix, with

Tm,c(·) = max
≤i≤N

(
(
Ai(·)
)∗ + sup

[·]

(∣
∣
∣
∣
∣

m∑

l=

Dl,i(·)
∣
∣
∣
∣
∣

))

. ()
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Proof It suffices to choose the Lyapunov function V (t) given as below and to follow the
same steps as described in the proof of Theorem :

V
(
x(t), t

)
= V
(
x(t), t

)
+ V
(
x(t), t

)
()

with

V
(
x(t), t

)
=
〈∣
∣x(t)
∣
∣, w
〉

()

and

V
(
x(t), t

)
=

m∑

l=

〈

Dl,c

∫ t

t–hl

∣
∣x(θ )

∣
∣dθ , w

〉

, ()

where

Dl,c = max
≤i≤N

(

sup
[·]

(∣
∣
∣
∣
∣

m∑

l=

Dl,i(·)
∣
∣
∣
∣
∣

))

. ()
�

Now, the conditions of Theorem  will be applied to switched systems with multiple
delays given by N subsystems which are modeled by the following differential equation:

⎧
⎪⎨

⎪⎩

yn(t) + (
∑n–

j= aj
i(·)y(j)(t)) +

∑m
l=(
∑n–

j= dj
l,i(·)y(j)(t – hl))

= , hl > , l ∈ {, . . . , m},
y(j)(t) = ϕj(t), j ∈ {, . . . , n – }, t ∈ [– max≤l≤m(hl), ].

()

Now, the same idea performed for the system given by the subsystems defined in ()
will be applied in order to obtain stability conditions for the studied system. Then, to this
aim, the following change of variables is performed: xj+(t) = y(j)(t), j = , . . . , n – , and
taking into consideration the switched rule signal σ (t) given in (), the resulting switched
nonlinear system is given by the following state representation:

{
ẋ(t) = Aσ (t)(·)x(t) +

∑m
l= Dl,σ (t)(·)x(t – hl),

x(t) = φ(t), t ∈ [– max≤l≤m(hl), ],
()

where x(t) is the state vector, the matrices Ai(·), i ∈ N are given in (), and Dl,i(·) for each
l = , . . . , m and i ∈ N are given as follows:

Dl,i(·) =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

  · · · 

 
. . .

...
...

...
. . . 

–d
l,i(·) –d

l,i(·) · · · –dn–
l,i (·)

⎤

⎥
⎥
⎥
⎥
⎥
⎦

. ()

The characteristic polynomial PAi(·)(λ) of the matrix Ai(·), i ∈ N is given in () and for
each l = , . . . , m and i ∈ N the new polynomial QDl,i(·)(λ) is defined by

QDl,i(·)(λ) =
n–∑

q=

dq
l,i(·)λq. ()
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By introducing the same variable change given in (), system () will be represented in
the arrow form as follows:

{
ż(t) = Fσ (t)(·)z(t) +

∑m
l= El,σ (t)(·)z(t – hl),

z(t) = Pφ(t), t ∈ [– max≤l≤m(hl), ],
()

where the matrices Fi(·), i ∈ N are introduced in () and El,i(·) (l = , . . . , m), i ∈ N are
given as follows:

El,i(·) = P–Dl,i(·)P =

[
n–,n– · · · n–,

δ
l,i(·) · · · δn–

l,i (·) δn
l,i(·)

]

()

with
{

δ
j
l,i(·) = –QDl,i(·)(αj), ∀j = , . . . , n – , l = , . . . , m,

δn
l,i(·) = –dn–

l,i (·). ()

Finally, the matrices Tl,i(·) (l = , . . . , m), i ∈ N are given by

Tl,i(·) =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

α  · · ·  |β|


. . . . . .
...

...
...

. . . . . . 
...

 · · ·  αn– |βn–|
t
l,i(·) · · · · · · tn–

l,i (·) tn
l,i(·)

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, ()

where
{

tj
l,i(·) = |γ j

i (·)| + sup[·] |
∑m

l= δ
j
l,i(·)|, j = , . . . , n – ,

tn
l,i(·) = γ n

i (·) + sup[·] |
∑m

l= δn
l,i(·)|.

()

Therefore, the comparison system corresponding to system () is given as follows:

ż(t) = Tl,c(·)z(t), ()

where the comparison matrix relative to system () Tl,c(·) is deduced thus:

Tl,c(·) =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

α  · · ·  |β|


. . . . . .
...

...
...

. . . . . . 
...

 · · ·  αn– |βn–|
t̄
l (·) · · · · · · t̄n–

l (·) t̄n
l (·)

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

()

with

t̄j
l(·) = max

≤i≤N

(
tj
l,i(·)
)
, j = , . . . , n. ()

Next, using the special form of system () we can announce the following theorem.
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Theorem  System () is globally asymptotically stable under the arbitrary switching rule
(), if there exist αj <  (j = , . . . , n – ), αj 	= αq, ∀j 	= q (l = , . . . , m) satisfying the following
condition:

–t̄n
l (·) +

n–∑

j=

t̄j
l(·)|βj|α–

j > . ()

Next, Theorem  can be simplified to the following delay-dependent stability conditions.

Corollary  System () is globally asymptotically stable under the arbitrary switching
rule (), if there exist αj ∈ �– (j = , . . . , n – ), αj 	= αq, ∀j 	= q for each i ∈ N and l = , . . . , m
such that

(iii) βj

(

PAi(·)(αj) + sup
[·]

( m∑

l=

QDl,i(·)(αj)

))

< , ()

(iv)

(

PAi(·)() + sup
[·]

( m∑

l=

QDl,i(·)()

))

> . ()

Proof [] Consider the comparison matrix Tl(·) chosen as follows:

Tl(·) =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

α  · · ·


. . . . . .
...

. . . . . .
 · · · 

max≤i≤N (sup[·](
∑m

l= δ
l,i(·)) + γ 

i (·)) · · · · · ·
 β
...

...


...

αn– βn–
max≤i≤N (sup[·](

∑m
l= δn–

l,i (·)) + γ n–
i (·)) max≤i≤N (sup[·](

∑m
l= δn

l,i(·)) + γ n
i (·))

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

If there exist αj < , j = , . . . , n –  such that

βj

(

PAi(·)(αj) + sup
[·]

( m∑

l=

QDl,i(·)(αj)

))

= –βj

(

γ n
i (·) + sup

[·]

( m∑

l=

δn–
l,i (·)

))

< ,

then the nth principal minor of Tl(·) is deduced as follows:

�n = –

(

sup
[·]

( m∑

l=

δn–
l,i (·)

)

+ γ n
i (·)
)

+
n–∑

j=

(αj)–

(

sup
[·]

( m∑

l=

δn–
l,i (·)

)

+ γ
j
i (·)
)

βj

=
n–∏

j=

(αj)–

(

PAi(·)() + sup
[·]

( m∑

l=

QDl,i(·)()

))

.
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This implies that

PAi(·)() + sup
[·]

( m∑

l=

QDl,i(·)()

)

> .

This completes the proof of the corollary. �

6 Simulation results
In this section, we provide a numerical example to demonstrate the proposed results. In
what follows, we consider the continuous-time switched nonlinear time-delay system ()
given by three subsystems which are modeled by the following differential equation:

{
y(t) + (

∑
j= aj

i(·)y(j)(t)) +
∑

l=(
∑

j= dj
l,i(·)y(j)(t – hl)) = , hl > , l ∈ {, },

y(j)(t) = ϕj(t), j ∈ {, }, t ∈ [– max≤l≤(hl), ].

All the subsystems i = {, , } are given in the state form by

{
ẋ(t) = (Ai(·)x(t) +

∑
l= Dl,i(·)x(t – hl)),

x(t) = φ(t), t ∈ [– max≤l≤(hl), ],

where

A(·) =

[
 

–f (·) +  –ϕ(·)

]

, A(·) =

[
 

–f (·) +  –ϕ(·)

]

,

A(·) =

[
 

–f (·) +  –ϕ(·) – 

]

, D,(·) =

[
 

–ψ(·) +  –

]

,

D,(·) =

[
 

–ψ(·) +  –ψ(·)

]

, D,(·) =

[
 

–ψ(·) –

]

,

D,(·) =

[
 

–.ψ(·) + . –

]

, D,(·) =

[
 

–ψ(·) +  –

]

,

D,(·) =

[
 

–ψ(·) +  –

]

,

where f (·), �(·) and ψ(·) are unknown nonlinear functions.
The two delays are h >  and h > .
Note that, due to the complexity and the important number of the subsystems, it is

difficult to find a common Lyapunov function for all the subsystems. Then we cannot
guarantee stability of this switched system under the arbitrary switching sequence ().

Now, due to (), (), (), (), and (), the matrices in arrow form are the following:

F(·) =

[
α 

γ 
 (·) γ 

 (·)

]

, F(·) =

[
α 

γ 
 (·) γ 

 (·)

]

,

F(·) =

[
α 

γ 
 (·) γ 

 (·)

]

, E,(·) =

[
 

δ
,(·) δ

,(·)

]

,
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E,(·) =

[
 

δ
,(·) δ

,(·)

]

, E,(·) =

[
 

δ
,(·) δ

,(·)

]

,

E,(·) =

[
 

δ
,(·) δ

,(·)

]

, E,(·) =

[
 

δ
,(·) δ

,(·)

]

,

E,(·) =

[
 

δ
,(·) δ

,(·)

]

with
{

γ 
 (·) = –PA(·)(α) = –[α + ϕ(·)α + f (·) – ],

γ 
 (·) = –(ϕ(·) + α),

{
γ 

 (·) = –PA(·)(α) = –[α + ϕ(·)α + f (·) – ],
γ 

 (·) = –(ϕ(·) + α),
{

γ 
 (·) = –PA(·)(α) = –[α + (ϕ(·) + )α + f (·) – ],

γ 
 (·) = –(ϕ(·) +  + α)

and
{

δ
,(·) = –QD,(·)(α) = –[α + �(·) – ],

δ
,(·) = –,

{
δ

,(·) = –QD,(·)(α) = –[ψ(·)α + �(·) – ],
δ

,(·) = –ψ(·),
{

δ
,(·) = –QD,(·)(α) = –[α + ψ(·)],

δ
,(·) = –,

{
δ

,(·) = –QD,(·)(α) = –[α + .�(·) – .],
δ

,(·) = –,
{

δ
,(·) = –QD,(·)(α) = –[α + ψ(·) – ],

δ
,(·) = –,

{
δ

,(·) = –QD,(·)(α) = –[α + ψ(·) – ],
δ

,(·) = –.

In the case α = –, β = , the stability conditions for the example given by Corollary  are
the following:

(i)
(
PA(·)(α) + QD,(·)(α) + QD,(·)(α)

)
< ,

(ii)
(
PA(·)(α) + QD,(·)(α) + QD,(·)(α)

)
< ,

(iii)
(
PA(·)(α) + QD,(·)(α) + QD,(·)(α)

)
< ,

(iv)
(
PA(·)() + QD,(·)() + QD,(·)()

)
> ,

(v)
(
PA(·)() + QD,(·)() + QD,(·)()

)
> ,

(vi)
(
PA(·)() + QD,(·)() + QD,(·)()

)
> .
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Then, in the case that we assume that ψ(·) ∈ E([., ., .]) conditions (ii), (iii), (iv), (v),
and (vi) allow for deducing the following stability conditions:

(i) f (·) <



�(·) + ,

(ii) f (·) < �(·) + .,

(iii) f (·) < �(·) + .,

(iv) f (·) > ..

Due to these inequalities, we determine the stability domain for the chosen α. Figure 
illustrates the stability domain given by the nonlinear f (·) relative to the nonlinear �(·).

According to the stability domain given in Figure  and for particular values chosen
for the nonlinearity functions f (·) = . and �(·) = .. The simulation results are on the
assumption that the vector valued initial function φ(t) = [– ]T . According to the switched
law given in Figure  and from the particular values of the delay functions h = h = . s,
a typical result is plotted in Figure , Figure , and Figure , which show the norm of the
state, the system state, and state space converge to zero.

Therefore, Figure , Figure , and Figure  allow one to conclude that the switched sys-
tem converges to zero. This implies that the system given in this example is globally asymp-
totically stable, which demonstrates the effectiveness of the proposed method.

Figure 1 Stability domain given of the switched
system illustrate in example obtained from
Corollary 2.

Figure 2 Switching function σ (t) between
subsystems.
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Figure 3 The state’s norm of the switched system
in the example.

Figure 4 State response of the switched system
in the example.

Figure 5 The state of the switched system in the
example.

This example shows that the obtained stability conditions are sufficient and very close to
be necessary; on the other hand, the proposed results make it possible to avoid searching
a common Lyapunov function, which is a very difficult matter in this case.

7 Conclusion
In this paper, a new approach for the stability analysis problem of a class of continuous-
time switched nonlinear time-delay systems under arbitrary switched rules has been de-
veloped. By introducing a new constructed common Lyapunov function, the application
of the Borne-Gentina criterion, the M-matrix properties, the aggregation techniques,
and the vector norms notion. New delay-independent stability conditions under arbitrary
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switching are deduced. In addition, these obtained conditions are extended to be gener-
alized for switched nonlinear systems with multiple delays. Compared with the existing
results, the benefit of this method is that it can avoid the research of a common Lyapunov
function which is usually very difficult, or even not possible. A numerical example is given
to demonstrate the applicability of the proposed approach.

Note that these proposed results could be further used as a constructive solution to the
problems of state and static output feedback stabilization.

The limit of this paper is that it has been confined to the boundaries of numerical ex-
amples. It would be beneficial to extend the research further so as to include real systems.
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